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abstract2

Mesoscale oceanic eddies are routinely detected from instantaneous velocities derived3

from satellite altimetry data. While simple to implement, this approach often gives4

spurious results and hides true material transport. Here it is shown how geodesic5

transport theory, a recently developed technique from nonlinear dynamical systems,6

uncovers eddies objectively. Applying this theory to altimetry-derived velocities in the7

South Atlantic reveals, for the first time, Agulhas rings that preserve their material8

coherence for several months, while ring candidates yielded by other approaches tend9

to disperse or leak within weeks. These findings suggest that available velocity-based10

estimates for the Agulhas leakage, as well as for its impact on ocean circulation and11

climate, need revision.12
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1. Introduction13

Oceanic eddies are commonly envisaged as whirling bodies of water that preserve14

their shape, carrying mass, momentum, energy, thermodynamic properties, and15

biogeochemical tracers over long distances (e.g., Robinson, 1983). While this widespread16

view on eddies is fundamentally Lagrangian (material), most available eddy detection17

methods are Eulerian (velocity-based).18

Eulerian detection of mesoscale eddies (with diameters ranging from 50 to 25019

km) is routinely applied to instantaneous velocities derived from satellite altimetry20

measurements of sea surface height (SSH). In some cases, eddies are identified from the21

Okubo–Weiss criterion as regions where vorticity dominates over strain (e.g., Chelton22

et al., 2007; Henson and Thomas, 2008; Isern-Fontanet et al., 2003; Morrow et al.,23

2004). In other cases, eddies are sought as regions filled with closed streamlines of the24

SSH field (e.g., Chelton et al., 2011a,b; Fang and Morrow, 2003; Goni and Johns, 2001),25

or as features obtained from a wavelet-packet decomposition of the SSH field (Doglioli26

et al., 2007; Turiel et al., 2007). These detection methods invariably use instantaneous27

Eulerian information to reach long-term conclusions about fluid transport. Furthermore,28

they give different results in reference frames that move or rotate relative to each other.29

The problem with the use of instantaneous velocities is their inability to reveal30

long-range material transport and coherence in unsteady flows (Batchelor, 1964). An31

example is shown in Fig. 1, where the instantaneous velocity field is classified as32

eddy-like for all times by each of the Eulerian criteria mentioned above. Specifically,33

vorticity dominates over strain, and streamlines are closed for all times. Yet actual34

particle motion turns out to be governed by a rotating saddle point with no closed35

transport barriers (Haller, 2005).36 Fig. 1.

Figure 1 also highlights the issue with frame-dependent eddy detection, whether37

Eulerian or Lagrangian. Truly unsteady flows have no distinguished reference frames:38

such flows remain unsteady in any frame (Lugt, 1979). Conclusions about flow39
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structures, therefore, should not depend on the chosen frame, because it is not a priori40

known which—if any—frame reveals those structures correctly.41

Beyond conceptual problems, Eulerian eddy detection yields noisy results,42

necessitating the use of filtering and threshold parameters. Applying such detection43

methods to altimetry data, Souza et al. (2011) report variabilities up to 50% in the44

number of eddies detected, depending on the choice of parameters and filtering methods.45

A systematic comparison of these varying numbers with actual material transport is46

difficult because of the sparseness of in-situ hydrographic measurements and Lagrangian47

data. In particular, most useful drifter trajectory data are only available from dedicated48

experiments, and satellite ocean color imagery is constrained by cloud cover or the49

absence of biological activity. This in turn implies that Eulerian predictions for50

Lagrangian eddy transport have remained largely unverified.51

These shortcomings of contemporary eddy detection are important to consider when52

quantifying transport by eddies. For instance, recent studies suggest that long-range53

transport by anticyclonic mesoscale eddies (Agulhas rings) pinched off from the Agulhas54

Current retroflection is a potential moderating factor in global climate change. Known55

as the largest eddies in the ocean (Olson and Evans, 1986), Agulhas rings transport56

warm and salty water from the Indian Ocean into the South Atlantic (Agulhas leakage).57

They may also possibly reach the upper arm of the Atlantic Meridional Overturning58

Circulation (AMOC) when driven northwestward by the Benguela Current and its59

extension (Gordon, 1986). Following an apparent southward shift in the subtropical60

front (Ridgway and Dunn, 2007), the intensity of the Agulhas leakage has been on the61

rise (Biastoch et al., 2009), leading to speculation that it may counteract the slowdown62

of the AMOC due to Arctic ice melting in a warming climate (Beal et al., 2011). To63

assess this conjecture, an accurate Lagrangian identification of Agulhas rings is critical.64

Indeed, most eddies identified from Eulerian footprints will disperse over relatively65

short times. While some of these dispersing features still drag water in their wakes,66
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the transported water will stretch and fold due to the lack of a surrounding, coherent67

material boundary. As a consequence, distinguished features of the transported water,68

such as high temperature and salinity, will be quickly lost due to enhanced diffusion69

across filamented material boundaries.70

Counteracting the effects of melting Arctic ice on AMOC requires a supply of71

warm and salty water (Beal et al., 2011). Agulhas rings with persistent and coherent72

material cores deliver this type of water directly from its source, the Agulhas leakage.73

By contrast, transient Eulerian ring-like features mostly stir the ocean without creating74

the clear northwest pathway for temperature and salinity envisioned by Gordon (1986).75

In steady flow, coherent material eddies are readily identified as regions of closed76

streamlines. In near-steady flows with periodic time dependence, the Kolmogorov–77

Arnold–Moser (KAM) theory (cf., e.g., Arnold et al., 2006) reveals families of nested78

closed material curves (so-called KAM curves) that assume the same position in the79

flow after each temporal period. An outermost such KAM curve from a given family,80

therefore, plays the role of a coherent material eddy boundary. This result extends81

to near-steady time-quasiperiodic flows, in which KAM curves are quasiperiodically82

deforming closed material lines (Jorba and Simó, 1996).83

Identifying similar material boundaries for coherent eddies in general unsteady84

flows has been an open problem. Recently, however, Haller and Beron-Vera (2012)85

developed a new mathematical theory of transport barriers that, among other features,86

identifies generalized KAM curves (elliptic transport barriers) for arbitrary unsteady87

flows. Here we use this new theory to devise a methodology, geodesic eddy detection, for88

the objective identification of Lagrangian eddy boundaries in the ocean.89

Analyzing altimetry measurements in the eastern side of the South Atlantic90

subtropical gyre, we find that geodesic eddy detection significantly outperforms available91

Eulerian and Lagrangian methods in locating long-lived and coherent Agulhas rings. An92

independent analysis of available satellite ocean color (chlorophyll) data corroborates93
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our results by showing localized and persistent biological activity in an eddy identified94

using geodesic eddy detection. Our findings suggest that Eulerian estimates of the95

volume of water transported by Agulhas rings in a coherent manner are significantly96

exaggerated.97

Geodesic eddy detection is outlined in Section 2, which is organized into four98

subsections. Section 2.1 presents the dynamical systems setup for studying material99

transport. The rationale behind the geodesic transport theory of Haller and Beron-Vera100

(2012) is reviewed in Section 2.2. Section 2.3 covers the notion of shear transport101

barriers. The definition of coherent material eddy boundary is given in Section 2.4.102

Our main results are presented in Section 3. The conclusions are stated in Section 4.103

Appendix A describes the velocity data on which geodesic eddy detection is applied.104

The algorithmic steps of geodesic eddy detection are summarized in Appendix B.105

Finally, computational details are given in Appendix C.106

2. Geodesic eddy detection107

a. Dynamical systems setup108

Consider an unsteady flow on the plane with velocity field v(x, t), where x = (x, y)109

denotes position and t is time. The evolution of fluid particle positions in this flow110

satisfies a nonautonomous dynamical system given by the following differential equation:111

dx

dt
= v(x, t). (1)112

Material transport in (1) is determined by the properties of the flow map,113

F t
t0

: x0 7→ x(t;x0, t0), (2)114
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which takes an initial fluid particle position x0 at time t0 to its later position x(t; t0,x0)115

at time t 6= t0, along trajectories of (1) (Fig. 2).116 Fig. 2.

When obtained from satellite altimetry (cf. Appendix A), the velocity field in (1) is117

a temporally aperiodic, highly unsteady finite-time dataset. Material transport in the118

resulting flow, therefore, cannot be described by classic dynamical systems methods,119

such as those surveyed by Ottino (1989). Instead, we adopt the recent approach of120

Haller and Beron-Vera (2012) by seeking transport barriers in (1) near least-stretching121

material lines.122

b. Transport barriers as geodesics123

As noted in Haller and Beron-Vera (2012), the least-stretching behavior of transport124

barriers is observed in several canonical flow examples where they are known to exist.125

Examples include steady flow around a stagnation point, steady shear jet flow, and126

steady circular shear flow.127

Of particular relevance for our purposes here is the steady circular shear flow, the128

prototype of a coherent eddy. The least-stretching property of circular transport barriers129

in this flow is illustrated in Fig. 3. Indeed, for sufficiently long time, perturbations to130

a reference material curve lying on a closed streamline grow longer than the reference131

curve, even if the perturbation was initially shorter than this curve.132

Similar behavior is seen for KAM curves in near-steady time-periodic and133

quasiperiodic flows. As noted earlier, nested families of KAM curves in such flows134

objectively indicate the presence of coherent material eddies. The stretching of material135

lines off a KAM curve is due to the twist (shear) across the curve, which may be even136

magnified by the presence of resonance islands.137 Fig. 3.

In a time-aperiodic flow defined over a finite-time interval, locating at time t0 the138

positions of material lines that will stretch the least over the time interval [t0, t] leads139

to a variational problem. As shown in Haller and Beron-Vera (2012), the solutions of140
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this problem are distinguished material curves at time t0 that turn out to be minimal141

geodesics (shortest paths) of the metric generated by the Cauchy–Green strain tensor,142

Ct
t0

(x0) = ∇F t
t0

(x0)
>∇F t

t0
(x0), (3)143

where > denotes transpose and ∇ refers to the spatial gradient operator.144

From each point x0 in the initial flow configuration, Cauchy–Green geodesics145

emanate in all possible directions. In fact, any pair of points on the plane are connected146

by a unique Cauchy–Green geodesic, which is locally the least-stretching material line147

out of all material lines connecting those two points (Fig. 4a).148 Fig. 4.

Among all geodesics passing through x0, the locally least-stretching geodesic at x0149

is of particular interest. This geodesic is tangent to the direction of minimal strain at150

x0. More specifically, consider151

Ct
t0
ξi(x0) = λi(x0)ξi(x0), 0 < λ1(x0) ≤ λ2(x0), |ξi(x0)| = 1, i = 1, 2, (4)152

where λi(x0) and ξi(x0) are the ith eigenvalue and eigenvector of Ct
t0

(x0), respectively,153

and | · | denotes Euclidean norm. Then the locally least-stretching geodesic through x0154

is tangent to the weakest strain eigenvector at x0, ξ1(x0), as shown in Fig. 4a.155

Typical geodesics in a turbulent flow still stretch by a relatively large amount,156

even though they stretch less than any other curve connecting their endpoints. Most157

geodesics, therefore, do not act as observable transport barriers. Observable barriers,158

however, must necessarily run close to locally least-stretching geodesics. This means159

that at each point x0 of an observable transport barrier, both the tangent and the160

curvature of the barrier must be close to the tangent and curvature of the locally161

least-stretching geodesic through x0. For short, we say that such a barrier is a material162

line that is geodesically shadowed over the time interval [t0, t].163
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c. Shear barriers164

With the behavior of streamlines in the steady circular flow example in mind, it165

is natural to seek the transport barriers of interest as those maximizing shear. An166

appropriate frame-independent form of shear in unsteady flows is given by the Lagrangian167

shear, defined as the tangential projection of the linearly advected normal to a material168

line. As shown in Haller and Beron-Vera (2012), Lagrangian-shear-maximizing transport169

barriers (or shear barriers) over [t0, t] turn out to be geodesically shadowed trajectories170

of the Lagrangian shear vector fields171

χ±(x0) = α1(x0)ξ1(x0)± α2(x0)ξ2(x0), αi(x0) =

√ √
λj(x0)√

λ1(x0) +
√
λ2(x0)

, i 6= j. (5)172

Closeness of a trajectory (or shearline) of (5) to its shadowing least-stretching geodesic173

at x0 can be computed as the sum of their tangent and curvature differences. This174

sum, the geodesic deviation of a shearline, can be proven to be equal to (Haller and175

Beron-Vera, 2012)176

d
χ±
g (x0) = |1− α1|+

∣∣∣∣
(
α1 +

λ1
λ2
− 1

)
κ1 ∓ α2κ2 ∓

∇α1 · χ±
α2

− ∇λ1 · ξ2
2λ2

∣∣∣∣ , (6)177

where178

κi(x0) = ∇ξi(x0)ξi(x0) · ξj(x0), i 6= j, (7)179

is the curvature of the curve tangent to the ith strain eigenvector field at x0 (Fig. 4b).180

Shear barriers are either open curves (parabolic barriers) or closed curves (elliptic181

barriers). While sets of parabolic barriers generalize the concept of a shear jet to182

arbitrary unsteady flow, elliptic barriers generalize the concept of a KAM curve. As183

limit cycles of the shear vector field (Fig. 4c), elliptic barriers are robust with respect184

to perturbations of the underlying velocity data, and hence smoothly persist under185

moderate noise and small changes to the observational time interval [t0, t].186
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d. Eddy boundaries187

If elliptic barriers occur in a nested family, the outermost barrier is the physically188

observed eddy boundary, enclosing the largest possible coherent water mass in the189

region. Outermost elliptic barriers, however, also tend to be the most sensitive to errors190

and uncertainties in the velocity data.191

To obtain a robust eddy boundary, we select the member of a nested family of192

closed shearlines which has the lowest average geodesic deviation, 〈dχ±
g 〉, in the family193

(Fig. 4d). As discussed in Haller and Beron-Vera (2012), 〈dχ±
g 〉 along an elliptic barrier194

measures how much the barrier extraction procedure has converged over the time195

interval [t0, t]. Accordingly, an elliptic barrier with the lowest 〈dχ±
g 〉 value in a nested196

family of barriers is the best eddy barrier candidate. As such, it is also the least197

susceptible to errors and uncertainties. Based on these considerations, geodesic eddy198

detection comprises the algorithmic steps described in Appendix B.199

We finally note that, in incompressible flows, elliptic barriers have two important200

conservation properties: 1) they preserve the area they enclose, and 2) they reassume201

their initial arclength at time t (Fig. 5) (Haller and Beron-Vera, 2012). These two202

properties make elliptic barriers ideal boundaries for coherent eddy cores.203 Fig. 5.

3. Results204

We consider a region of the South Atlantic subtropical gyre, bounded by longitudes205

[14◦W, 9◦E] and latitudes [39◦S, 21◦S], which encompasses possible routes of Agulhas206

rings (dashed rectangle in each panel of Figs. 7 and 9). The same region has been207

analyzed by Beron-Vera et al. (2008), who showed that the finite-time Lyapunov208

exponent, a widely used Lagrangian diagnostic (Haller, 2001; Peacock and Dabiri, 2010),209

does not reveal coherent material eddies. More recently, the same area was also studied210

by Lehahn et al. (2011), who reported observations of a nearly isolated mesoscale211

chlorophyll patch, traversing the region in the period from November 2006 to September212
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2007.213

We apply geodesic eddy detection to altimetry-derived currents (cf. Appendix A)214

in the selected region starting on t0 = 24 November 2006, with the detection time scale215

set to T = t− t0 = 90 d. Following the algorithmic steps described in Appendix B, with216

numerical details given in Appendix C, geodesic eddy detection isolates two coherent217

material eddies (denoted geodesic eddies). The boundary of the first eddy is obtained218

as a limit cycle of the χ+(x0) shear vector field, with an anticyclonic polarity. The219

boundary of the second eddy is recovered as a limit cycle of the χ−(x0) field, with a220

cyclonic polarity. The extraction of the anticyclonic eddy boundary is detailed in Fig. 6.221

The geographical locations of the two eddies identified on 24 November 2006 are shown222

in the upper-left panel of Fig. 7, with the anticyclonic eddy indicated in red and the223

cyclonic eddy in blue.224 Fig. 6.

The remaining panels in the left column of Fig. 7 show several later advected225

positions of the two geodesic eddies to illustrate their coherence. Note the complete lack226

of material filamentation or leakage from these eddies over 90 d. This can be seen in227

more detail in the right column of Fig. 8, which shows the two eddies on the detection228

date and 90 d later. Closed material lines like the boundaries of these eddies are highly229

atypical in an otherwise turbulent flow. Their role is indeed best compared to the role230

of KAM curves in time-periodic or quasiperiodic flows.231 Fig. 7.

Fig. 8.Remarkably, the coherence of the anticyclonic eddy is preserved well over the 90-d232

period on which our computations were performed (Fig. 9, left column). Indeed, this233

eddy preserves its coherence even 540 d later, exhibiting only translation, rotation, and234

minor deformation without noticeable leakage, stretching or folding. The remarkable235

coherence of this eddy can attributed to its interior being foliated by a large number of236

nested closed shearlines. The inner shearlines are less exposed to the ambient turbulent237

mixing than the outer ones, thereby providing a stability buffer for the eddy. By238

contrast, the boundary of the cyclonic eddy is the only member of a family of nested239
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closed shearlines. With the stability buffer absent, the boundary of this eddy exhibits240

filamentation immediately after 90 d.241 Fig. 9.

For comparison, the remaining columns of Fig. 7 illustrate the accuracy of the two242

most widely used Eulerian eddy diagnostics and one recent Lagrangian eddy diagnostic243

on the same dataset.244

The middle-left column of Fig. 7 shows the material evolution of eddies (denoted245

SSH eddies) obtained from the method of Chelton et al. (2011b), who argue that246

closed SSH contours can play roughly the same role in inhibiting transport as closed247

streamlines do in steady flows. Chelton et al. (2011b) suggest that this should be248

the case when the rotational speed of the eddy, U , dominates its translational speed,249

c (cf. also Early et al., 2011). More specifically, Chelton et al. (2011b) propose that250

U/c > 1 should signal the presence of a coherent eddy, as opposed to a linear wave251

(U/c < 1). However, as revealed by the Lagrangian evolution of closed SSH contours252

in the upper-middle row of Fig. 7 (all with U/c > 1 over at least 90 d), most such253

contours rapidly stretch and fold, exhibiting leakage and filamentation that disqualifies254

them as physically reasonable coherent material eddy boundaries. Only two SSH eddies255

approximate coherent geodesic eddies on 24 November 2006 (Fig. 8, middle-left column).256

However, both eddies exhibit almost instantaneous material filamentation beyond that257

date. The panels in the right column of Fig. 9 further demonstrate the inability of an258

SSH eddy with U/c > 1 for a period of at least 540 d to trap and carry within water in259

a coherent manner. We conclude that the SSH contour approach, with or without the260

U/c > 1 requirement,1 shows major inaccuracies in detecting material eddies, including261

the overestimation of coherent material eddy cores, as well as the generation of a large262

number of false positives.263

The middle-right column of Fig. 7 documents similar findings for the Okubo–Weiss264

1Indeed, U/c→∞ in the flow defined in Fig. 1.
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criterion (Okubo, 1970; Weiss, 1991), the other broadly used frame-dependent Eulerian265

method for eddy identification. Relative to a reference frame, this method identifies266

eddies (denoted OW eddies) as regions of fluid where vorticity dominates over strain.267

The regions indicated in black qualify as OW eddies in the Earth’s frame on 24268

November 2006. In a similar manner to SSH eddies, coherent geodesic eddies on 24269

November 2006 are roughly approximated by two OW eddies, which deform rapidly after270

that date (Fig. 8, middle-right column). The remaining OW eddies are false positives271

for Lagrangian eddies: they undergo intense stretching and filamentation, before fully272

dispersing a few months later. We conclude that when used for coherent material eddy273

detection, the Okubo–Weiss approach also shows major inaccuracies. This includes the274

inability to capture actual coherent eddies accurately, as well as well as the tendency to275

generate numerous false positives. False negatives also arise once threshold values (not276

discussed) are introduced for the Okubo–Weiss parameter.277

We now proceed to consider the application of the more recent Lagrangian eddy278

diagnostic of Mézic et al. (2010). This approach views a fluid region at time t0 as a279

mesoelliptic region if the eigenvalues of the deformation gradient ∇F t
t0

(x0) are purely280

imaginary for all x0 in that region. Even though this approach is Lagrangian, the281

eigenvalues of ∇F t
t0

(x0) are frame-dependent, and hence the resulting eddy candidates282

are not objective. As noted in Mézic et al. (2010), mesoelliptic regions approach283

Okubo–Weiss elliptic regions as t tends to t0. For increasing T = t − t0, mesoelliptic284

regions (denoted ME eddies) tend to rapidly fill the full domain of extraction, as most285

initial conditions accumulate enough rotation in their evolution to create imaginary286

eigenvalues for ∇F t
t0

(x0). As a result, identifying ME eddies over time scales longer than287

a few days becomes unrealistic. Instead, we have chosen to use T = 4 d, following Mézic288

et al. (2010).289

Shown in the right colum of Fig. 7, ME eddies resemble OW eddies closely, as290

expected. In a fashion similar to OW eddies, only two ME eddies approximate the291
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geodesic eddies detected on 24 November 2006. Just as OW eddies, these ME eddies292

develop substantial material filamentation beyond that date (Fig. 8, right column).293

Independent observational evidence for the Lagrangian eddies can be inferred294

from surface ocean chlorophyll concentration in the South Atlantic. Figure 10 shows a295

sequence of snapshots of chlorophyll concentration derived from the MODIS (Moderate296

Resolution Imaging Spectroradiometer) sensor aboard the Aqua satellite. Note the297

patch of high chlorophyll concentration, discussed in Lehahn et al. (2011), which298

translates inside the anticyclonic geodesic eddy detected on 24 November 2006 from this299

date through 23 May 2007. Due to the lack of filamentation in the ring boundary, the300

diffusion of chlorophyll is moderate and remains confined to the periphery of the ring.301

This observation confirms the ability of Lagrangian eddies to preserve the concentration302

peaks of diffusive substances over long distances.303 Fig. 10.

We now derive estimates for the volume of water carried by eddies obtained from304

different methods. For simplicity, we assume that the eddies are quasigeostrophic and305

equivalent barotropic, with their base lying on the 10◦C-isotherm at a depth of 400 m306

(Garzoli et al., 1999). Under these assumptions, we obtain the volume estimates in307

Table 1 for a single day, with other dates giving similar results. The volume estimates308

are grouped by the polarity of the eddies involved, with anticyclonic eddies being309

candidates for Agulhas rings.310 Table 1.

OW eddies have been reported to overestimate eddy transport rates based311

on comparisons with other Eulerian estimates (Souza et al., 2011), as opposed to312

comparisons with observed material transport. The volume estimates in Table 1 show313

that even other Eulerian indicators, such as closed streamlines of the SSH field with314

U/c > 1 as proposed by Chelton et al. (2011b), significantly overestimate the volume315

of coherent material eddies. The same observation applies to the Lagrangian indicator316

introduced by Mézic et al. (2010). A recent set-theoretical study (Froyland et al., 2012)317

of a three-dimensional Agulhas ring produced by an ocean general circulation model also318
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yields results similar to those from the Eulerian techniques surveyed here. This provides319

further illustration that Lagrangian approaches also lead to exaggerated transport320

estimates, if they fail to capture the frame-independent details of material stretching.321

Note that the coherently transported water mass (Table 1, left column) is carried322

mostly by an anticyclonic geodesic eddy. As an impermeable whirling body of water323

showing minor deformation over roughly a year-and-a-half period, such an eddy324

represents an exact mathematical construction of what has been (somewhat loosely)325

defined as a mesoscale ring in oceanography. Furthermore, this particular ring is best326

referred to as an Agulhas ring, as its backward-time advection (not shown) to the327

Agulhas retroflection area confirms. Thus, by Table 1, actual transport of warm and328

salty water by (coherent material) Agulhas rings is about one order of magnitude less329

than what can be deduced from available nonobjective eddy detection methods.330

To illustrate the general validity of these conclusions, we present in Table 2 the331

results from a more extended survey of the volume carried by geodesic and SSH eddies332

in the years 1997, 2002, and 2007. In agreement with the results discussed above, the333

volume of eddies identified in the Eulerian frame is found to be always significantly334

larger than that of geodesic eddies, thereby overestimating the volume of water that can335

be transported coherently. Consistent with numerical simulations (Biastoch et al., 2009)336

which suggest that the Agulhas leakage has been increasing, the volume of geodesic337

eddies (of both polarities) follows a similar trend. Clearly, to confirm this trend and338

correctly assess the role of geodesic eddies in the Agulhas leakage, a detailed survey is339

needed. Such a survey will require an automated geodesic eddy detection scheme, whose340

construction is currently underway.341 Table 2.

We reiterate that coherent material transport (as opposed to the widespread342

dispersion of SSH, OW and ME eddies observed in Fig. 7) is the relevant metric for343

quantifying the transport of diffusive quantities, such as salinity and temperature.344

Indeed, the disintegration of SSH, OW and ME eddy candidates is accompanied by the345
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erosion of salinity and temperature differences between the water they carry in their346

wake and the water they traverse.347

The use of filters, thresholds, and size-limits would undoubtedly reduce the eddy348

count and transport estimates obtained from nonobjective detection methods. Such349

post-processing steps, however, are largely heuristic: they exploit the high sensitivity350

of the underlying nonobjective detection methods to bring them in line with each351

other, and with sporadic in-situ hydrographic measurements (Souza et al., 2011). We352

stress that geodesic eddy detection has no such tuning parameters, and the underlying353

mathematics (structural stability of limit cycles) renders its conclusions robust.354

4. Conclusions355

We have introduced a new method, geodesic eddy detection, for the objective356

(frame-independent) identification and tracking of mesoscale eddies in the ocean. In357

short, geodesic eddy boundaries are limit cycles of the Lagrangian shear vector field that358

are the closest to least-stretching geodesics of the Cauchy–Green strain tensor. When359

tracked as material lines, geodesic eddy boundaries in a two-dimensional incompressible360

flow preserve their enclosed area and arclength, acting as impenetrable islands of361

minimal deformation in an otherwise turbulent flow. This in turn enables them to362

preserve the concentration of diffusive tracers they carry for extended periods. By the363

structural stability of limit cycles, geodesic eddy boundaries are robust with respect364

velocity measurement errors and changes in their detection period.365

Using geodesic eddy detection, we have isolated highly coherent Agulhas rings366

that carry warm and salty water over large distances. Remarkably, one geodesic eddy367

constructed from three months of data was found to show no sign of disintegration368

up to one year and a half. By comparison, eddies identified by two currently used369

Eulerian methods and one recent Lagrangian diagnostic showed clear signs of leakage370

and stretching within weeks. The volume of water that such eddies would transport if371
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they were coherent was found to be about an order of magnitude larger than the volume372

of water transported by actual coherent material eddies. Satellite observations of a373

highly coherent chlorophyll patch provided independent confirmation that geodesically374

detected Agulhas rings carry diffusive substances over large distances.375

We argue that geodesically detected Agulhas rings are better positioned to impact376

AMOC than their counterparts obtained from nonobjective methods. Indeed, the latter377

rings lack a coherent material boundary and hence the ability to deliver warm and378

salty water effectively into the upper arm of AMOC. Our argument does assume that379

the geodesically detected Agulhas rings are not trapped within the subtropical gyre. A380

verification of this assumption is currently underway.381

The present analysis is based on forward-time integration of the surface velocity382

field, and hence is appropriate for a historical assessment of eddy formation and383

transport. In a real-time operational setting, geodesic eddy boundaries are determined384

from backward integration, i.e., from reverse fluid motion available up to the present385

time. Undoubtedly, both the forward-time and the backward-time Lagrangian386

analyses are computationally more demanding than an assessment of the SSH field,387

either instantaneous or over time. By nature, however, Lagrangian calculations are388

highly parallelizable, benefiting from up to two orders of magnitude speed-ups on389

multi-processor clusters (Conti et al., 2012; Garth et al., 2007).390

In our view, an investment in additional computational resources is well justified by391

the objectivity of the results, which promises a better assessment of the role of transport392

by mesoscale eddies in global ocean circulation and climate.393
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appendix399

A. Velocity Data400

Eulerian eddy detection is routinely applied to satellite altimetry measurements,401

a unique source of SSH data for global monitoring of mesoscale variability available402

continually since the early 1990s (Fu et al., 2010). The basis for this is the assumption403

of a geostrophic balance in which the pressure gradient is caused by differences in SSH,404

with the resulting currents reflecting an integral dynamic effect of the density field above405

the thermocline.406

The velocity field v(x, t) in (1) is thus assumed to be of the form:407

v(x, t) =

(
− g
f

∂η(x, t)

∂y
,
g

f

∂η(x, t)

∂x

)
. (A1)408

Here x = (x, y) denotes position on a plane with Cartesian x (y) zonal (meridional)409

coordinate; η(x, t) denotes SSH; f is the Coriolis parameter (twice the local vertical410

component of the Earth’s angular velocity); and g is the acceleration of gravity. While411

we choose to work on a planar domain here for simplicity, the underlying geodesic412

transport theory also applies to flows on a sphere (Haller and Beron-Vera, 2012).413

The background η-component is steady, given by a mean dynamic topography414

constructed from altimetry data, in-situ measurements, and a geoid model (Rio and415

Hernandez, 2004). The perturbation η-component is transient, given by altimetric SSH416

anomaly measurements provided weekly on a 0.25◦-resolution longitude–latitude grid.417

This perturbation component is referenced to a 7-yr (1993–1999) mean, obtained from418

the combined processing of a constellation of available altimeters (Le Traon et al., 1998).419

B. Algorithmic Steps of Geodesic Eddy Detection420

Geodesic eddy detection for the flow defined by (1) and (A1) involves the following421

computational steps:422
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1. Fix a grid G0 of initial positions in the flow domain of interest, and time scale T423

over which coherent eddies are to be tracked. For each initial condition x0 ∈ G0,424

integrate the nonautonomous dynamical system (1) from an initial time t0 to time425

t = t0 + T . This leads to a discrete approximation of the flow map F t
t0

(2) over the426

grid G0.427

2. Compute the deformation gradient field ∇F t
t0

(x0). Using central differences over428

a rectangular G0 this can be achieved as follows. Let xi,jt = (xi,jt , y
i,j
t ) denote the429

image under the flow map F t
t0

of a point xi,j0 = (xi,j0 , y
i,j
0 ) ∈ G0. Then430

∇F t
t0

(xi,j0 ) =




xi+1,j
t − xi−1,jt

xi+1,j
0 − xi−1,j0

xi,j+1
t − xi,j−1t

yi,j+1
0 − yi,j−10

yi+1,j
t − yi−1,jt

xi+1,j
0 − xi−1,j0

yi,j+1
t − yi,j−1t

yi,j+1
0 − yi,j−10



. (A2)431

3. Construct the Cauchy–Green strain tensor field Ct
t0

(x0) defined in (3), and432

compute its eigenvalue and eigenvector fields, λi(x0) and ξi(x0), as defined in (4).433

The following are explicit formulas:434

λ1 = 1
2
T −

√
1
4
T 2 −D, λ2 = 1

2
T +

√
1
4
T 2 −D, (A3)435

where T and D denote trace and determinant of Ct
t0

(x0), respectively, and436

ξ1 =

[
0 1

−1 0

]
ξ2, ξ2 =




C12√
(C11 − λ2)2 + C2

12

C11 − λ2√
(C11 − λ2)2 + C2

12


 , (A4)437

where Cij is the ijth entry of Ct
t0

(x0).438

4. Compute the trajectories of the shear vector fields χ±(x0), defined in (5), by439
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solving the differential equation440

dx0(s)

ds
= sign

(
χ±(x0(s)) ·

dx0(s−∆)

ds

)
χ±(x0(s)), (A5)441

with ∆ denoting the integration step in s. The factor multiplying χ±(x0(s)) in442

(A5) removes orientational discontinuities in χ±(x0(s)) arising from the lack of a443

global orientation for ξi(x0) (cf. Haller and Beron-Vera, 2012, for details).444

5. In the phase portrait of χ±(x0), locate all nested families of limit cycles. Such445

closed shearlines can be located as fixed points of Poincare maps defined on446

one-dimensional sections locally transverse to trajectories of (A5). To construct a447

Poincare map, one considers a trajectory with initial condition on the section and448

observes the location at which this trajectory first returns to the section; a fixed449

point is given by an initial condition that is mapped onto itself (cf., e.g., Ottino,450

1989, Section 5.5).451

6. In each nested family of limit cycles, locate a geodesic eddy boundary at time t0 as452

the limit cycle with the lowest average geodesic deviation 〈dχ±
g (x0)〉, with d

χ±
g (x0)453

defined in (6).454

7. To track geodesic eddies in time, find their time t positions by applying the flow455

map F t
t0

to geodesic eddy boundaries identified at time t0.456

C. Numerical Details457

All trajectory integrations in this paper were carried using a stepsize-adapting458

fourth-order Runge–Kutta method. The interpolations involved were obtained from a459

cubic scheme. Differentiation was executed using finite differences on an auxiliary grid460

of four points neighboring each point in a regular grid of size 20002. Geodesic eddy461

detection was initialized by searching for regions possibly including closed shearlines.462
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This process was started on a coarser grid of points covering the whole geographical463

domain of interest. Once a potential geodesic eddy region was identified, a refined464

calculation in that region was conducted. This involved launching shearlines on a465

straight segment of 2500 grid points. The Poincare section was appropriately located466

across the region to construct a first return map onto this segment for the computation467

of limit cycles.468
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Jorba, À., and C. Simó, 1996: On quasi-periodic perturbations of elliptic equilibrium524

points. SIAM J. Math. Anal., 27, 1,704–1,737.525

Le Traon, P.-Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of526

multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522–534.527
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Figure Captions560

Fig. 1. A planar unsteady velocity field identified as an eddy by Eulerian criteria. In

an appropriate rotating frame, however, the velocity field becomes a steady saddle flow

with no closed transport barriers.

Fig. 2. A fluid domain at time t0, D(t0), deformed under the flow map, F t
t0

: x0 7→
x(t;x0, t0), into a domain D(t) at time t 6= t0 along fluid particle trajectories.

Fig. 3. Minimal stretching property of a material curve γt0 , for times t sufficiently larger

than t0, in a steady circular shear flow among material curves with the same endpoints,

γ̂t0 and γ̄t0 . Note that γ̂t0 and γ̄t0 stretch longer than γt, regardless of whether they are

initially shorter or longer than γt0 .

Fig. 4. (a) Cauchy–Green geodesics emanating from an initial position x0, representing

least-stretching curves out of all material curves connecting two initial positions, such

as x0 and x̂0. The locally least-stretching geodesic at x0 is tangent to the weakest

strain eigenvector ξ1 of the Cauchy–Green tensor, a quantity commonly used to measure

deformation in continuum mechanics. (b) Shearlines are curves tangent to the Lagrangian

shear vector fields χ±, along which an objective (i.e., frame-independent) measure of shear

is maximized. A shear barrier at time t0 between points a and b is a shearline shadowed

by locally least-stretching geodesics. (c) Closed shearlines are limit cycles of the χ±

vector fields. (d) A geodesic eddy boundary is a member of a nested limit cycle family

with the smallest average geodesic deviation. (The family may also just consist of one

member.)
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Fig. 5. Schematics of a closed shearline γt0 computed using flow data over the time

interval [t0, t]. The dashed curve indicates a translated and rotated position of γt0 for

reference. If the flow is incompressible, the advected material line γt has the same

arclength, and encloses the same area, as γt0 .

Fig. 6. Identification of a coherent material eddy boundary on t0 = 24 November 2006

from geodesic eddy detection with detection time scale T = t− t0 = 90 d. Marked in red,

the eddy boundary is obtained as an average-geodesic-deviation-minimizing member of a

nested family of limit cycles of the Lagrangian shear vector field χ+. The full limit cycle

family is shown in blue in the upper panel, with grey arrows indicating the χ+ vector

field. The middle panel shows the first return (Poincare) map, x 7→ P (x), onto a section

Σ locally transverse to χ+ vector field. Dots indicate the fixed points of the Poincare

map, P (x) = x, corresponding to each of the limit cycles. The bottom panel shows the

distribution of the average geodesic deviation over the limit cycles.

Fig. 7. Selected snapshots of the 90-d evolution of fluid inside eddies identified by

geodesic eddy detection (left column); Chelton et al.’s (2011a) method with U/c > 1

over at least 90 d (middle-left column); the Okubo–Weiss (OW) criterion (middle-right

column); and Mezic et al.’s (2010) criterion (right column).

Fig. 8. Fluid positions of eddy candidates obtained from different detection methods on

t0 = 24 November 2006 and 90-d later. The red and blue eddy candidates by other eddy

detection methods (middle-left, middle-right, and right columns) are the closest ones to

the similarly colored geodesic eddies (left column).

Fig. 9. Selected snapshots of the 540-d evolution of fluid inside a geodesic eddy (left

column) and an SSH eddy (right column). The instantaneous SSH contour that defines

the SSH eddy, which has U/c > 1 over at least 540 d, is indicated.
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Fig. 10. Sequence of snapshots of satellite-derived surface ocean chlorophyll concentra-

tion with the boundary of the anticyclonic geodesic eddy detected on 24 November 2006

overlaid. The color scale varies from figure to figure to aid the visualization of chlorophyll

anomalies.
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Tables561

Geodesic eddies SSH eddies OW eddies ME eddies

Cyclonic 0.5 11.5 19.2 19.8

Anticyclonic 1.0 23.5 35.4 37.2

Table 1. Estimated volume [104 km3] of water warmer than 10◦C carried by eddies on 24
November 2006, grouped by their polarity, as identified by different eddy detection methods.

Year 1997 Year 2002 Year 2007

Geodesic eddies 7 (5) 10 (9) 9 (7)

SSH eddies 63 (29) 62 (36) 57 (27)

Table 2. Estimated volume [104 km3] of water warmer than 10◦C carried by eddies along the
years. Indicated in parenthesis is the volume estimate corresponding to eddies with anticyclonic
polarity.
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Figures562

Switch to rotating frame:

x =
(

cos 2t sin 2t
− sin 2t cos 2t

)
x̃

v(x, t) =
(

sin 4t 2+cos 4t
−2+cos 4t − sin 4t

)
x ṽ(x̃) = ( 0 1

1 0 ) x̃

Fig. 1. A planar unsteady velocity field identified as an eddy by Eulerian criteria. In an
appropriate rotating frame, however, the velocity field becomes a steady saddle flow with no
closed transport barriers.
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F t
t0

x0

x(t;x0, t0)

D(t0)

D(t)

Fig. 2. A fluid domain at time t0, D(t0), deformed under the flow map, F tt0 : x0 7→ x(t;x0, t0),
into a domain D(t) at time t 6= t0 along fluid particle trajectories.
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γ̄t0

γ̂t

γ̂t0

γ̄t

γt0

γt

vθ(r)

Fig. 3. Minimal stretching property of a material curve γt0 , for times t sufficiently larger than
t0, in a steady circular shear flow among material curves with the same endpoints, γ̂t0 and γ̄t0 .
Note that γ̂t0 and γ̄t0 stretch longer than γt, regardless of whether they are initially shorter or
longer than γt0 .
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χ±

χ±

χ±

closed shearline

(limit cycle of the shear vector fields)

χ±(a)
ξ1(a)

ξ1(b)
χ±(b)

χ±(r(s)) ξ1(r(s))
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shearline
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(c)

(b)(a)

(d)
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r(s)

χ±

geodesic eddy boundary

shearline

(closed shearline with the smallest
average geodesic deviation)

x0

x̂0

Cauchy–Green geodesics

ξ1(x0)
least-stretchig
geodesic

locally

a

Fig. 4. (a) Cauchy–Green geodesics emanating from an initial position x0, representing least-
stretching curves out of all material curves connecting two initial positions, such as x0 and
x̂0. The locally least-stretching geodesic at x0 is tangent to the weakest strain eigenvector ξ1
of the Cauchy–Green tensor, a quantity commonly used to measure deformation in continuum
mechanics. (b) Shearlines are curves tangent to the Lagrangian shear vector fields χ±, along
which an objective (i.e., frame-independent) measure of shear is maximized. A shear barrier
at time t0 between points a and b is a shearline shadowed by locally least-stretching geodesics.
(c) Closed shearlines are limit cycles of the χ± vector fields. (d) A geodesic eddy boundary
is a member of a nested limit cycle family with the smallest average geodesic deviation. (The
family may also just consist of one member.)
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F t
t0

γt0 γt

Fig. 5. Schematics of a closed shearline γt0 computed using flow data over the time interval
[t0, t]. The dashed curve indicates a translated and rotated position of γt0 for reference. If the
flow is incompressible, the advected material line γt has the same arclength, and encloses the
same area, as γt0 .
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Fig. 6. Identification of a coherent material eddy boundary on t0 = 24 November 2006 from
geodesic eddy detection with detection time scale T = t− t0 = 90 d. Marked in red, the eddy
boundary is obtained as an average-geodesic-deviation-minimizing member of a nested family of
limit cycles of the Lagrangian shear vector field χ+. The full limit cycle family is shown in blue
in the upper panel, with grey arrows indicating the χ+ vector field. The middle panel shows
the first return (Poincare) map, x 7→ P (x), onto a section Σ locally transverse to χ+ vector
field. Dots indicate the fixed points of the Poincare map, P (x) = x, corresponding to each of
the limit cycles. The bottom panel shows the distribution of the average geodesic deviation
over the limit cycles.
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Fig. 7. Selected snapshots of the 90-d evolution of fluid inside eddies identified by geodesic
eddy detection (left column); Chelton et al.’s (2011a) method with U/c > 1 over at least 90
d (middle-left column); the Okubo–Weiss (OW) criterion (middle-right column); and Mezic et
al.’s (2010) criterion (right column).
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Geodesic eddy Closest SSH eddy Closest OW eddy Closest ME eddy

Fig. 8. Fluid positions of eddy candidates obtained from different detection methods on t0 = 24
November 2006 and 90-d later. The red and blue eddy candidates by other eddy detection
methods (middle-left, middle-right, and right columns) are the closest ones to the similarly
colored geodesic eddies (left column).
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Geodesic eddy SSH eddy

Fig. 9. Selected snapshots of the 540-d evolution of fluid inside a geodesic eddy (left column)
and an SSH eddy (right column). The instantaneous SSH contour that defines the SSH eddy,
which has U/c > 1 over at least 540 d, is indicated.
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Fig. 10. Sequence of snapshots of satellite-derived surface ocean chlorophyll concentration
with the boundary of the anticyclonic geodesic eddy detected on 24 November 2006 overlaid.
The color scale varies from figure to figure to aid the visualization of chlorophyll anomalies.


