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Abstract We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed
layer and explain shear evolution in the transition layer using observations from a mooring at 15.268 N in
the Arabian Sea during the southwest monsoon. The highly sheared and stratified transition layer at the
mixed-layer base varies between 5 m and 35 m and correlates negatively with the wind stress. Results from
the mixed layer near-inertial KE (NIKE) balance suggest that wind energy at times can energize the transition
layer and at other times is fully utilized within the mixed layer. A simple two layer model is utilized to study
the shear evolution in the transition layer and shown to match well with observations. The shear production
in this model arises from alignment of wind stress and shear. Although the winds are unidirectional during
the monsoon, the shear in the transition layer is predominantly near-inertial. The near-inertial shear bursts
in the observations show the same phasing and magnitude at near-inertial frequencies as the wind-shear
alignment term.

1. Introduction

Internal waves with frequencies close to the local inertial frequency, or near-inertial waves (NIW), constitute
the most energetic part of the internal wave spectrum and are important for transferring energy and
momentum from the upper ocean into the interior. Previous studies by Alford [2003] and Watanabe and
Hibiya [2002] suggest that globally, surface winds inject about 0.3–1.4 TW energy into the NIW in the mixed
layer, a fraction of which propagates to the interior and helps maintain the abyssal stratification.

Several studies [Pollard and Millard, 1970; D’Asaro, 1985; Plueddemann and Farrar, 2006; Silverthorne and
Toole, 2008; Alford et al., 2012] present a detailed analysis on the generation, evolution and the propagation
of NIW from the upper ocean into the interior. Most of these studies quantify the energy input at the surface
using a slab-like mixed layer and are limited to the physical processes occurring only in the mixed layer.

Wind-generated NIW in the upper ocean spans the weakly stratified ‘mixed layer’ and occasionally pene-
trate the transition layer, a highly sheared and stratified region between the mixed layer and the upper sea-
sonal thermocline. In a classical slab-like scenario near-inertial currents are uniform with depth in the mixed
layer but highly sheared within the transition layer. Such currents in the mixed layer decay with time due to
the local dissipation and propagation of NIW from the mixed layer. To understand the input of near-inertial
energy fluxes from the wind to the ocean, D’Asaro [1985] introduced a one-dimensional model of the mixed
layer following Pollard and Millard [1970]. D’Asaro [1985] showed the forcing of inertial motions is highly
intermittent in the mixed layer due to the sensitivity of the inertial response to variations in wind speed and
direction. Plueddemann and Farrar [2006] (PF06, hereafter) used a similar one-dimensional model of the
mixed layer and showed the one-dimensional mixed layer models must incorporate the interaction
between the mixed layer and the interior ocean to reproduce the observed NIKE balance. They found that
dissipation due to turbulence is the major energy sink in the mixed layer and observed the downward prop-
agation of NIW and remotely generated NIW propagation, at times, can contribute to the mixed layer near-
inertial energy budget.
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The highly sheared and stratified transition layer often displays O(1) Richardson [Johnston and Rudnick,
2008] number leading to instabilities due to enhanced shear. Using a simplified two-layer model. Burchard
and Rippeth [2009] showed that the alignment of wind and shear can lead to sharp increases in shear var-
iance in a shallow stratified tidal sea. Brannigan et al. [2013] expanded this idea in an open ocean context
and showed that the simplified two layer construction works well when the upper ocean displays a two-
layer structure and the transition layer is highly stratified.

To understand the energy distribution of NIW in the mixed layer and to study the evolution of transition
layer thickness (TLT, hereafter) and shear in it, we analyze data from a mooring array near 15.78N in the Ara-
bian Sea and use results from a one dimensional model of the mixed layer forced with the observed fluxes
and initialized with temperature and salinity profiles. The Arabian Sea experiment was conducted for a year
between October 1994 and October 1995 including both the wintertime northeast and the summertime
southwest monsoon to understand the air-sea interaction in this region, and in particular to understand the
oceanic response to the large-scale atmospheric forcing associated with monsoon. The data used in this
study span both the transition period with low winds and the period of extremely strong winds at the peak
of the southwest monsoon. It also enables us to study the generation and evolution of near-inertial currents
in the mixed layer and shear in the transition layer in a tropical unidirectional wind forcing regime which is
different from the midlatitude studies of isolated storms with rotating winds.

The paper is structured as follows. We discuss the data used in this study in section 2. In section 3, we pres-
ent the TLT time series based on maximum shear and stratification and explain their evolution during the
southwest monsoon. We derive the energy balance of near-inertial currents in the mixed layer in section 4
and explain the near-inertial energy evolution in the transition layer in section 5. Sections 6 and 7 discuss
the production and destruction of shear in the transition layer. We summarize and discuss our results in sec-
tion 8.

2. Data

To understand the air-sea interaction and oceanic response to the large scale atmospheric forcing, an array
of five moorings in the Arabian Sea was deployed. The mooring array yielded yearlong time series of atmos-
pheric and oceanic variables spanning the wintertime northwest and summertime southwest monsoon in
the Arabian Sea from October 1994 to October 1995. The five moorings in the array were deployed in a
square of 55 km sides, centered at (15.58N, 61.58E). The Upper Ocean Processes Group, Woods Hole Oceano-
graphic Institution (WHOI) deployed the heavily instrumented central mooring and the other four moorings,
two in the east and two in the west, were deployed by University of Washington and Scripps Institution of
Oceanography (SIO). In this study we mainly use observations from the SIO south mooring (SIO-S) at
15:26o N, 61:26o E. This mooring provides time series of sea surface temperature (SST) every 7.5 min, sub-
surface temperature every 15 min at 10, 20, 30, 40, 50, 70, 90, 110, 130, 150, 170, and 190 meters, and cur-
rents. A downward facing ADCP at 1.5 m covered a depth between 8 m and 124 m and recorded currents
every 4 m. The processed ADCP currents have 15 min temporal resolution. We obtain the wind stress data
from meteorological measurements using a COARE-Met Flux algorithm [Fairall et al., 1996] every 7.5 min.

Since salinity data are not available at SIO-S and mixed-layer depth at SIO-S and at the central WHOI moor-
ing are about the same, we use salinity data from the central mooring (courtesy, Robert Weller/WHOI) meas-
ured at depths: 1.8, 10, 35, 65, 80, 100, 150, 200 and 250 meters at 15 min intervals.

3. Shear and Stratification-Based Transition Layer Thickness

TLT is defined in literature in several ways, for an example, Johnston and Rudnick [2008] define TLT based on
mixed-layer depth (MLD, hereafter) variations, momentum transport depth, strength of shear and stratifica-
tion at the mixed-layer base using Sea-Soar data. Dohan and Davis [2011] use a temperature criteria to
define the transition layer.

Following Johnston and Rudnick [2008], we estimate TLT based on maximum shear and stratification at the

mixed-layer base as, TLTS2
max

5zðS2
maxÞ2zðMLDÞ, and TLTN2

max
5zðN2

maxÞ2zðMLDÞ. Where S5
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shear, and u and v are eastward and northward velocities and z is depth. Density stratification strength ðN2Þ
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is related to the vertical gradient of density @q
@z as, N252

g
qo

@q
@z 5gb @s
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� �

, where a52 1
q0

@q
@T and

b5 1
q0

@q
@s , in which g, s, T, q, and C [Gill, 1982] are gravity, salinity, temperature, depth, density and adiabatic

temperature gradient respectively, and q0 is the reference density.

We estimate MLD as the depth where the temperature changes by 0:1�C from the surface. The estimated
MLD has a mean value of 32 m and varies from 1.01 to 91 m with a standard deviation of 22 m. The transi-
tion layer thickness varies between 5 m during the strongest winds at the peak of the southwest monsoon
and 35 m in the pre-monsoon period. The TLT values observed in this study are similar to that (8–24 m)
observed by Johnston and Rudnick [2008]. Since the vertical resolution of shear and stratification are 4 m and
about 10–15 m respectively, the TLT estimates involve errors due to interpolation. TLTS2

max
is relatively well

resolved, therefore all the calculations shown in the following sections involving TLT are based on TLTS2
max

.

3.1. Evolution of TLT During the Transition Period and in the Southwest Monsoon
The transition period in April and May is characterized by weak winds. Weak winds and strong surface heat-
ing (not shown) [Fischer et al., 2002] during this period create a shallow mixed layer. As the winds
strengthen during the summertime southwest monsoon (in June, July, and August) mixed layer deepens.
The net heat flux during the transition period and in the southwest monsoon varies between 225 W/m2

and 200 W/m2 (not shown). Fischer [1997] shows that the net heat flux during the transition period balances
the integrated heat content of the water-column, but this balance deviates during the southwest monsoon
in June and July.

The wind stress varies from 0.0 to 0.6 N/m2 from the transition period to the peak of the southwest mon-
soon (Figure 1a). The MLD is strongly correlated with the wind stress (correlation coefficient 5 0.9). Shear

Figure 1. (a) Hourly wind-stress components (sx, sy) at the mooring location. (b) Weekly averaged shear-squared (color) in logarithmic scale
overplotted with weekly MLD (black solid line), maximum shear (gray solid line), and maximum stratification (gray dash-dots line) depths.
(c) Weekly averaged stratification-squared (color) overplotted with weekly MLD (black), maximum shear (gray), and stratification (gray
dash-dots) depths. (d) Weekly TLTS2

max
(solid gray line) and TLTN2

max
(gray dash-dots line).
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within the mixed layer is weak, but a strong, persistent shear layer, correlated strongly with the wind-stress
magnitude, is observed at the mixed-layer base (Figure 1b). This persistent shear layer is highly stratified
(Figure 1c). When wind stress is weak and mixed layer is shallow, TLT is thick. During the strong forcing
events mixed layer deepens and a thin transition layer is sustained below.

TLTN2
max

and TLTS2
max

are well correlated (correlation coefficient 5 0.8) and yield a 10 m mode TLT (Figures 1d
and 2). The correlation is even stronger (correlation coefficient 5 0.87) when wind is weak and mixed layer
is shallow. However, the correlation is weak when MLD is deep. Figure 2 shows TLTS2

max
is roughly constant

for MLD> 50m. This perhaps suggests that wind energy only penetrates so deep, and once the mixed layer
is deep enough TLT evolution may be decoupled from the wind forcing. Both measures of TLT exhibit nega-
tive correlation with the wind-stress magnitude (Figure 1d). This is because TLT decreases as strong wind
deepens the mixed layer and erodes the shear layer at its base (Figure 1). Strong shear and stratification in
the transition layer often suggest O(1) Richardson numbers (defined as Ri5N2=S2) that indicate shear based
instability can occur in the transition layer (Figure 3).

4. Near-Inertial Kinetic Energy Budget of the Mixed Layer

In this section, we present the near-inertial kinetic energy budget of the mixed layer and discuss the impor-
tance of different energy partition terms in the budget using a bulk approximation of the mixed layer. The
momentum equation of a slab-like mixed layer (thickness, H) subjected to wind-forcing (sx

W ; s
y
W ) and

bottom-stress (sx
R; s

y
R) in complex notation is,

dZ
dt

1if Z5
TW 2TR

H
(1)

where Z5u1iv is the mixed layer current, TW 5 sx
W 1isy

W

� �
=q is the complex wind stress, f is the Coriolis fre-

quency. TR represent the momentum fluxes associated with all the processes in the mixed layer and in the
transition layer. These processes in general include dissipation in the mixed layer, vertical propagation of
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Figure 2. (a, b) Histograms of weekly averaged TLTS2
max

and TLTN2
max

. The modes (about 10 m) are shown by thin red vertical lines. (c) Scatter
plot of 12 h block-averaged TLTS2

max
and TLTN2

max
. Black and gray circles represent TLT values when MLD varies between 0 and 50 m and

greater than 50 m respectively. TLTs are well correlated for shallower MLD but the correlation is weak for deeper MLD.
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NIW by inertial pumping and momentum transfer between the mixed layer and the transition layer caused
by the turbulent stresses (PF06).

To obtain the near-inertial momentum equation we band pass (1) over the near-inertial frequency band
[Silverthorne and Toole, 2008] and obtain equation (2), the complex near-inertial momentum equation for a
slab-like mixed layer.

dZI

dt
1if ZI5

TWI2TRI

H
: (2)

The near-inertial current (ZI) in the mixed layer is calculated by bandpassing currents 8 m below the surface
using a fourth-order Butterworth band pass filter with a passband 0.8f21.2f (local inertial period 5 45 h). This
choice of passband is used because the horizontal velocity spectra (not shown) contains most of the near-
inertial energy in 0.8f21.2f frequency range. Near inertial wind stress sI is isolated using the same procedure.

Multiplying both sides of (2) by qHZ�I we obtain an energy equation of the mixed layer (3):

dðNIKEMLÞ
dt

1ifqHjZIj25qZ�I TWI2qZ�I TRI1
1
2

qjZIj2
dH
dt
: (3)

NIKEML5
1
2 qHjZIj2 is the near-inertial kinetic energy of the mixed layer. NIKEML varies only on low frequencies

(with our passband limits, NIKEML variations occur between 0 and 0.4 f).

Considering the real part of (3),

dðNIKEMLÞ
dt

5Re qZ�I TWI2qZ�I TRI
� �

1
1
2

qjZIj2
dH
dt
;

dðNIKEMLÞ
dt

5PW 1PR1PH;

(4)

where

PW 5Re Z�I sWI
� �

; PR52Re Z�I sRI
� �

; and PH5
1
2

qjZIj2
dH
dt
: (5)

Equation (4) represents the horizontal kinetic energy balance of near-inertial currents in the mixed layer.
PW is the energy flux from the wind transferring energy to the mixed layer near inertial currents. PW

derived above, is different from the PW estimated in previous studies (discussed in the Appendix A).

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S2
max

×1000

N
2 m

ax
 ×

 1
00

0

Figure 3. Scatter plot of maximum N2 and S2 in the transition layer. Black sloping lines indicate, Ri51 (high slope) and 0.25 (low slope).

Journal of Geophysical Research: Oceans 10.1002/2014JC010198

MAJUMDER ET AL. UPPER OCEAN ENERGY AND SHEAR EVOLUTION 6496



TR is unknown and therefore we can not calculate PR from (5). We calculate PR as a residual flux from (4).
PR accounts for the change in NIKEML due to all such processes that add or remove energy from the mixed
layer, including advection and radiation losses. H is weekly filtered MLD and PH in (5) is the energy flux due
to change in MLD (H) with time (PF06). Thus, this study is restricted to slowly varying MLDs.

We estimate all energy partition terms in (4) using both observations and results from a one-dimensional
mixed-layer model by Price et al. [1986] (PWP). For the model calculations, the salinity and temperature
profiles on 29 April are used for initialization and forced with observed wind stress, heat and fresh water
fluxes, with a 1 m vertical resolution at hourly intervals until 24 June. To account for the radiation losses
associated with downward propagating NIW, we include a linear damping term, -rZ in the model momen-
tum equation, where r is equivalent to 2 inertial periods (4 days). The parameter r is added in the PWP
model to mimic the downward propagation of radiation and to prevent inertial oscillations cut off from
the forcing and mixed layer from ringing forever. Due to the presence of strong horizontal gradients of
temperature [Fischer et al., 2002] at the mooring site after 24 June, there are large differences between the
PWP model and the observations and those model results are not reported here.

Following a similar procedure as with the observations we estimate the energy partition terms using PWP
model results. To obtain a cumulative estimate of windwork, we integrate PW over time. The integrated
windwork PWð5

Ð
PW dtÞ has a step-like structure with varying step heights (Figure 4c). Bigger step heights

indicate strong forcing events with more energy input into the mixed layer (Figures 4b and 4c). Later in July
when the wind stress is at its peak, cumulative windwork is maximum showing a 0.6 kJ increase in step
height (Figure 4c).

Figure 5 shows the time series of energy partition terms, contours of the shear of near-inertial velocities and
the mean shear in the transition layer. Shear in the mixed layer is extremely weak at near-inertial
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Figure 4. (a) Magnitude of wind stress, (b) Mixed layer NIKE, (c) PW (PW integrated in time).
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frequencies (Figure 5, top), but exhibits high values in the transition layer. This high shear in the transition
layer results from the difference between amplitudes of near-inertial currents in the mixed layer and in the
transition layer.

We observe large PW and high mean shear in the transition layer at the same time (Figure 5, middle and
bottom). The residual flux PR is mostly negative indicating energy loss to turbulent dissipation in the mixed
layer and the radiation of NIW away from the mixed layer.

Although the energy partition terms from the model and observations show similar fluctuations (Figure 6a),
the model overestimates the windwork (Figure 6b) and predicts a weaker NIKE change in the mixed layer

dNIKE
dt ML

� �
than the observations. The model residual flux PR is stronger but at times (14–23 June) exhibits

similar values (between 0 and 1.4 mW/m2) as PR from the observations. Since PWP model has no advection,
this result suggests that PR during this period is determined by dissipation in the mixed layer and down-
ward radiation losses of NIW from it.

It is plausible that the discrepancy between the observations and PWP model arises due to the presence of
background near-inertial currents at the mooring site. In general, the background near-inertial currents can
diminish or enhance the total windwork based on whether they oppose the wind or are in the same direction.
The model windwork PW is stronger because the currents are only generated by the wind stress in the model.

To examine the energy flux into or out of the transition layer, we choose to analyze three events, which are
marked A to C (Figure 5, middle).

Figure 5. (top) magnitude of near-inertial shear-squared (contours, in logarithmic scale) and MLD (thick black line) with depth. (middle)
mean shear-squared in the shear based transition layer. (bottom) observations (black) and PWP model (gray) estimates of PW, PR and rate
of change in NIKE in the mixed layer.
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5. Importance of PR to the Energy and Shear Evolution in the Transition Layer

In the previous section we described PR as a residual representing the energy loss in the mixed layer. In
this section we investigate the role of PR to the energy evolution in the transition layer for events A, B and C.

5.1. Event A
Event A occurs during the quiet phase of the southwest monsoon, when the wind stress varies between 0.0
N/m2 and 0.1 N/m2. The MLD at the beginning of this event is about 30 m, but shoals as the wind weakens
from 20 to 25 May. TLT during this event ranges between 10 m and 30 m. Strong winds and enhanced
windwork between 14 and 18 May steadily increase the NIKE in the mixed layer (Figure 7). The rate of
change in NIKE of the transition layer

Ð @ð12qjZITLj2Þ
@t dz

� �
is positive and nearly matches -PR (Figure 7, bottom)

between 14 and 23 May. The small difference (about 0.2mW/m2) is due to the rapid change in MLD
(PH50:2 mW/m2) during this period.

Wind stress decreases to its minimum value (� 0 N/m2) on 20 May. With decreasing windwork the NIKE
change in the mixed layer is negative. The residual flux during this period is strong with a maximum 0.6
mW/m2 on 20 May when NIKE in the mixed layer does not change. The change in NIKE in the transition
layer equals the residual flux on 20–23 May; thereafter the NIKE change becomes negative. This decrease in
NIKE in the transition layer can be attributed to the processes that remove energy from the transition layer.
As the wind stress decreases after 18 May, mixed layer shoals reaching the surface. A relic mixed layer, esti-
mated as a layer where the temperature changes by 18C (white dash-dots, Figure 7, middle) from the sur-
face, does not show a similar shoaling as seen in the mixed layer (20–27 May). The region between the
mixed and the relic layer thickens on 21–27 May when the change in NIKE in the transition layer is negative.
The thickening of the transition layer associated with a decrease in KE suggests a mixing event. However,
since we do not have well resolved density data, Richardson number cannot be evaluated.

5.2. Event B
Event B occurs during the onset of the southwest monsoon in the Arabian Sea when wind stress is strong
(0.1–0.4 N/m2) and the input wind energy flux is maximum (1.55 mW/m2). Strong wind forcing during this
event deepens the mixed layer resulting a thin (5–7 m) transition layer below. The windwork at the
beginning of this event enhances the KE of the mixed layer (10–13 June). This enhanced KE lasts for about
two inertial periods but does not increase the NIKE in the mixed layer further. The rate of NIKE change in
the mixed layer is zero on 16 June and negative thereafter. The residual flux PR becomes maximum
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(1.5 mW/m2) on 16 June during this event. PR during this event mostly accounts for dissipation in the
mixed layer (shown in section 4); the transition layer receives little energy.

Ð @ð12qjZITLj2Þ
@t dz therefore is weak at

the beginning of this event and becomes zero after 17 June.

5.3. Event C
Event C occurs between 4 July and 16 July when the southwest monsoon in the Arabian Sea was the
strongest (Figure 8). Significantly large windwork deepens the mixed layer (about 70 m) and deposits
strong near-inertial shear in the transition layer. During event C the residual flux is strong. However,
the thin transition layer does not show any change in NIKE. TLT exhibits a strong negative correlation
(correlation coefficient 50.7) with the magnitude of the wind stress for the entire time series. This is
because during strong wind events the mixed layer deepens and erodes the transition layer at its
base; by contrast during the weak wind events the mixed layer shoals and a thicker transition layer
develops.

The transition layer is thin (about 5 m) during events B (9–24 June) and C (4–16 July) and shows negligible
change in NIKE (Figure 7, bottom). The residual flux however is significantly large due to NIKE losses in the
mixed layer.

Figure 7. Processes influencing NIKE balance in the mixed layer and in the transition layer during event A and B. (top) magnitude of hourly
wind stress. (middle) contours of rate of change in near-inertial kinetic energy (m2=s3) overplotted with mixed layer (solid white), the relict
mixed layer (white dash-dot line), maximum shear (gray dash-dot line) and maximum stratification depths (solid gray line). (bottom) PW,
2PR;

dNIKEML
dt , and

Ð @ð12qjZITL j2Þ
@t dz.
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6. Shear Evolution in the Transition Layer

In this section, we study the evolution of near-inertial shear in the transition layer using a two-layer model
following Brannigan et al. [2013] and Burchard and Rippeth [2009]. In a strictly two layer system the transi-
tion layer is infinitesimally thick, but we assume that as layer thickness goes to zero, the shear across this
layer becomes infinite, such that the velocity difference across the transition layer is finite. This model
describes the shear spikes across the transition layer when the upper ocean shows a two-layer structure.
The model assumes that the bulk-mixed-layer moves in response to the wind stress but the layer below is
quiescent.

The momentum equations for the two layer model are,

@Zs

@t
1if Zs5

TW 2Ti

H
; (6)

for the upper layer and,

@Zl

@t
1if Zl5

Ti

hl
; (7)

for the lower layer. Where Ti is the interfacial stress [Burchard and Rippeth, 2009; Brannigan et al., 2013], hl is
the thickness of the lower layer and Zsð5us1ivsÞ and Zlð5ul1ivlÞ are depth-averaged complex horizontal
currents in the upper and the lower layers. The complex bulk shear between the layers is,

S5
Zs2Zl

h
; (8)

where h is the distance between the center of mass of the upper layer and lower layer (below the transition
layer). Substituting (8) by subtracting (6) and (7) and dividing h both sides, we obtain,

Figure 8. (top) magnitude of hourly wind stress. (middle) Same as the middle plot of Figure 7 for event C. (bottom) 2PR;
dNIKEML

dt , andÐ @ð12qjZITL j2Þ
@t dz.
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@S
@t

1ifS5
TW

hH
2

Ti

Hhl
: (9)

Multiplying S� (complex conjugate of S) both sides and only considering the real parts, (9) can be expressed
in terms of vector dot products as,

@S2

@t
52

S:TW

Hh

� �
22

S:Ti

Hhl

� �
: (10)

where S:TW5S�TW 5Sx T x
W 1Sy T y

W and S:Ti5S�Ti5Sx T x
i 1Sy T y

i ; Sx and Sy are the zonal and meridional com-
ponents of the bulk shear. The S2 evolution (10) can be written in terms of shear production and
destruction as,

@S2

@t
5PðS2Þ2DðS2Þ; (11)

where PðS2Þ52 S:Ti
Hh

� �
and DðS2Þ52 S:Ti

Hhl

� �
are S2 production/destruction (depending on the wind and shear

direction) and destruction by interfacial friction. Following Brannigan et al. [2013], the interfacial friction
body force is parameterized as,

Ti5ciðZs2ZlÞjZs2Zlj5cih
2SjSj; (12)

where ci is the drag coefficient. Substituting (12) in (10) we get,

@S2

@t
52

S:TW

hH
2ci

h2

Hhl
jS3j

� �
: (13)

Near-inertial components are obtained by bandpassing (13) as,

@S2
I

@t
52

S:TW

hH

� �
I
22 ci

h2

Hhl
jS3j

� �
I
: (14)

We estimate both @S2

@t and 2 S:TW
hH

� �
and the near-inertial components of these terms in (14) using observa-

tions. We use weekly filtered MLD and TLT and the same near-inertial passband (as used in section 4) to
estimate these terms. In Appendix B, we present a scale analysis of the second term in the right of (13)
and (14) and show that these terms are 7 orders of magnitude smaller than the others and not important
to the shear evolution.

7. Results From Shear Evolution Model

Figure 9 shows the evolution of bulk-shear (@S2

@t ) across the transition layer from 9 May to 25 July. The square
of the mean-bulk-shear (S2, Figure 9, second plot) is intermittent and displays multiple spikes with ampli-
tude ranging from (0.1–0.6) 3 1024s22. After 4 July the production of S2 is weak as the shear alignment is
not high (Figure 9, fourth plot). The maximum S2 (0.6 3 10– 4 s– 2) is observed in event B on 13 June when
the wind stress is about 0.4 N/m2. The shear production term PðS2Þ is less than the shear evolution @S2

@t

� �
in

the transition layer, but the phases of the two terms are in good agreement throughout the time series. Uni-
directional monsoon winds disallow the resonance between rotation of the wind and earths rotation which
is the cause of amplification of near-inertial currents in midlatitudes [Dohan and Davis, 2011]. In the Arabian
sea, the time variation of wind stress and rotation of the bulk shear across the transition layer (Figure 9,
fourth plot) cause the increase in magnitude of the bulk shear across the transition layer when this shear
and wind stress are aligned.

The near-inertial components of shear evolution and production are shown in Figure 10. Maximum near-
inertial S2

I ð� 0:1231024s22Þ is observed between 13 and 15 June, during event B. Other shear spikes during
events A and B can reach upto 1.53 1026s22. The results from the model are in better agreement with the
observations in the near-inertial frequency band showing similar phase and amplitude for the shear produc-
tion and evolution. These results show that the high stratification in the transition layer allows a two layer
system to be a good approximation, particularly for describing the spikes in the near-inertial shear in terms
of alignment of shear and wind stress vectors.
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8. Summary and Discussions

We estimate the NIKE budget of the mixed layer and explain the shear evolution in the transition layer using
data from a mooring in the Arabian Sea during the monsoon season. Extremely strong, unidirectional mon-
soon winds in the Arabian Sea make this region different than the regions in the mid latitude with storms
that last for few days, associated with winds that are not unidirectional.

Figure 9. (first) Hourly wind stress; (second) 4 h low-passed S2; (third) 4 h low-passed shear production PðS2Þ (red) and @S2

@t (black). Gray and
pink shades are uncertainties associated with PðS2Þ and @S2

@t ; (fourth) direction of wind (black stars) and bulk shear (gray dots). The black
sloping lines indicate local inertial rotation.

Figure 10. (top) S2
I , the near-inertial part of S2; (bottom) shear production PðS2

I Þ (black) and @S2
I

@t (red) for the near-inertial frequency band.
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The wind-forced mixed layer is shallow during the quiet periods of the southwest monsoon but deepens
upto 70 m when the wind stress reaches a maximum at the peak of the southwest monsoon. Below the
mixed layer there exists a highly sheared and stratified transition layer. The thickness of this layer depends
on the variations in the wind-modulated MLD and shows values between 5 m and 35 m. In the transition
period (in April–May) the mixed layer is shallow with a 10–35 m thick transition layer below it. As the wind
stress increases after the transition period, in the southwest monsoon, the mixed layer deepens and erodes
the transition layer below.

Several studies in the midlatitudes [Alford et al., 2012; Dohan and Davis, 2011] document the evolution of near
inertial currents that are generated mostly by short-duration storms and by rotating winds. Alternatively,
Weller et al. [2014] found strong near-inertial currents generated by accelerating and decelerating wind stress
in the unidirectional trade wind regime in the southeast Pacific. Arabian Sea during the southwest monsoon
presents a similar scenario as Weller et al. [2014], since we observe strong near-inertial currents in the mixed
layer generated by the variation in wind magnitude, while the direction mainly stays southwest.

The near-inertial currents are uniform in the mixed layer but decay in the transition layer. Since the mixed
layer is shear free at near-inertial frequencies, the bandpassed momentum equations for a slab-like layer
are used to derive a one-dimensional NIKE budget. The NIKE budget in the mixed layer constitutes of an
energy source from the wind PW that forces the mixed layer, the rate of change of near-inertial KE in the
mixed layer dðNIKEMLÞ

dt , a residual flux PR, estimated as a difference between the energy input and energy
change in the mixed layer, and a term PH that accounts for the MLD variation.

During the strong wind events a significant amount of energy from the wind increases the amplitude of the
near-inertial currents. Large energy input during these events increases the NIKE of the mixed layer, but we
observe a decrease in NIKE after two inertial periods. This decrease in NIKE is due to the subsequent
increase in energy losses in the mixed layer.

The NIKE budget discussed here is somewhat different than examined in PF06. In PF06 PW and PR balance
each other and kinetic energy change in the mixed layer plays a minor role. In our case the kinetic energy
change in the mixed layer is not always insignificant, though it decays in about two inertial periods. This dif-
ference may stem from the fact that the steady unidirectional forcing in the Arabian Sea is different than
the resonant forcing events discussed in PF06.

The residual PR from the mixed layer budget is important to the evolution of NIKE of the transition layer.
When dissipation and radiation losses are small in the mixed layer PR acts as a source of energy to the transi-
tion layer. We find such a case during event A (14–25 May) when wind-stress is weak and transition layer is
thick. The NIKE change in the transition layer balances PR over the period 14–23 May. This suggests that the
energy from the mixed layer can sometimes energize the transition layer as well, so that a loss term in the
mixed layer becomes a source of energy to the transition layer. Since energy loss in the mixed layer is
high during the other two events (B and C), PR is large but the change in NIKE in the transition layer is
negligible.

For this data set, the mixed layer defined using a temperature criterion is also well mixed in momentum.
We find that the bulk shear across the transition layer is dominated by near-inertial shear even though the
wind is unidirectional during the monsoon. Since near-inertial currents in the mixed layer primarily arise
due to change in wind stress magnitude with time, the alignment of wind stress and the transition layer
shear explains the near-inertial spikes very well.

Appendix A: Comparison of Different Estimates of PW

In this section, we calculate different estimates of windwork PW by D’Asaro [1985](D85, hereafter), Alford [2003]
(A03, hereafter), and PF06 and compare them with our estimate in (5). Although different estimates of PW have
about the same mean, the instantaneous values are different (Figure 11). In the following we discuss this in detail.

Assuming a constant MLD, D85 derives PW using both hourly and 3 hourly wind stress as,

PWD8552Re
ZI

ðr1if Þ�
ds�

dt

	 

; (A1)

where s is the observed wind stress and r parameterizes damping in the mixed layer.
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A03 uses a simplified expression for the windwork as,

PWA035Re½ZIs
��: (A2)

Both D85 and A03 calculate PW using near-inertial current ZI, estimated as a difference between the total
current Z and the time-varying Ekman current ZE5TW=ðr1if Þ as, ZI5Z2ZE .

Near-inertial current estimated this way is noisy and incorporates high frequency components. Therefore, ZI

estimated by A03 and D85 does not match the bandpassed ZI used in our estimate.

PF06 isolates ZI from the total current using a band pass filter and estimates PW as,

PWPF0652q0HRe
Z�I
if

d
dt

TW

H

� �	 

: (A3)

Rather than using near-inertial components of wind stress as used in our expression, PF06 calculates (A3)
using total wind stress and a 10 day smoothed MLD. All these estimates (A1–A3) reduce to (5) for inertially
rotating wind (s5s0e2ift), small damping (r small) and for a constant MLD.

We calculate equations (A1)–(A3)using mooring data. To estimate PW by D85 and A03 we use r50:15f . We
average PW over four inertial periods and present it in Figure 11. This averaging restricts high frequency
winds but allows low frequency components in wind to contaminate PWA03; PWPF06 and PWD85. Among
these three estimates PWA03 is most noisy (Figure 11). The other two estimates (D85, PF06) use the time
derivative of the total wind stress and have less variability than AO3 (shown in the following paragraph).
High frequency components being cancelled out in the integration, cumulative windwork (PW) is less noisy
and is about the same for different estimates (Figure 12).

In this paragraph we analyze why estimates of PW are different. Since PWPF06 and PD85 are about the same
(Figure 11) when MLD is constant and r is small, we only compare PWD85; PWA03 and PW. For simplicity we
consider the total wind stress s as the sum of low frequency ðsLe2ixL tÞ, high frequency ðsHe2ixH tÞ and inertial
frequency components ðsIe2iftÞ,

s5sHe2ixH t1sLe2ixL t1sIe
2ift; (A4)

where xH > f > xL. Combining (A1) and (A4) we obtain,
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Figure 11. Different estimates of PW after applying a running average over four inertial periods. PWAlford shows more variance compared
to the other estimates.
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PWD8552Re
jZIj
ðr1if Þ� ixHsHeiðxH2f Þt1ixLsLeiðxL2f Þt1ifsI

� �	 

; (A5)

where ZI5jZIje2ift is the inertial current. Averaging (A5) over four inertial periods filters out the high fre-
quency variations and we obtain,

PWD8552Re
jZIj
ðr1if Þ� ixLsLeiðxL2f Þt1ifsI

� �	 

: (A6)

This averaging acts as a low pass filter and allows only low frequency components. Assuming a constant
mixed-layer depth H and small dissipation r � f in the mixed layer, (A6) reduces to,

PWD8552Re
jZIj
2if

ixLsLeiðxL2f Þt1ifsI

� �	 

; (A7)

or

PWD855jZIjsI1Re jZIjsL
xL

f

� �
eiðxL2f Þt

h i
: (A8)

Similarly following the above approach (A2) becomes,

PWA035jZIjsI1Re jZIjsLeiðxL2f Þt
h i

; (A9)

and considering H to be almost constant (to simplify our calculation), (A3) becomes,

PWPF065jZIjsI1Re jZIjsL
xL

f

� �
eiðf 2xLÞt

h i
: (A10)

Clearly, (A8), (A9) and (A10) differ by a factor xL
f . The factor xL

f being less than unity, PWA03 is larger than
PWD85 and PPF06. Since our estimate PW 5jZIjsI does not have energy associated with low-frequency com-
ponents of wind stress, it is different than the other estimates.

Appendix B: Scale Analysis of Interfacial Friction

Following Burchard and Rippeth [2009] and Brannigan et al. [2013], the interfacial drag term can be parame-
terized as, ci h2S25jSif , where j and Sif are interfacial eddy viscosity and shear. With Sif � S51024 s21; H5

50 m, hl5 30 m and a typical interior eddy viscosity j51025 m2 s21, we obtain dimensionless interfacial
drag coefficient of 1024. For wind stress sw50:1 N/m2 and a typical h5 60 m the shear production term
P(S2) is O(10– 9) and the dissipation D(S2) is O(10– 16). Therefore D(S2) is not important to the shear evolution
in the two-layer model.
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Figure 12. PW (integrated PW) for PF06 (green), D85 (red) and A03’s (blue) and our estimate (black).
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