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Abstract1

Long-term and direct measurements of surface shortwave radiation (SWR) have been2

recorded by the Prediction and Research moored Array in the Tropical Atlantic (PI-3

RATA) since 1997. Previous studies have shown that African dust, transported west-4

ward from the Sahara and Sahel regions, can accumulate on mooring SWR sensors in5

the high-dust region of the North Atlantic (8◦N–25◦N, 20◦W–50◦W), potentially lead-6

ing to significant negative SWR biases. Here dust-accumulation biases are quantified7

for each PIRATA mooring using direct measurements from the moorings, combined8

with satellite and reanalysis data sets and statistical models. The SWR records from9

five locations in the high-dust region (8◦N, 12◦N, and 15◦N along 38◦W; 12◦N and10

21◦N along 23◦W) are found to contain monthly mean accumulation biases as large as11

-200 W m−2 and record-length mean biases on the order of -10 W m−2. The other 1212

moorings, located mainly between 10◦S–4◦N, are in regions of lower atmospheric dust13

concentration and do not show statistically significant biases. Seasonal to interannual14

variability of the accumulation bias are found at all locations in the high-dust region.15

The moorings along 38◦W also show decreasing trends in the bias magnitude since16

1998 that are possibly related to a corresponding negative trend in atmospheric dust17

concentration. The dust-accumulation biases described here will be useful for inter-18

preting SWR data from PIRATA moorings in the high-dust region. The biases are also19

potentially useful for quantifying dust deposition rates in the tropical North Atlantic,20

which at present are poorly constrained by satellite data and numerical models.21
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1 Introduction22

The Prediction and Research moored Array in the Tropical Atlantic (PIRATA) consists23

of 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys24

equipped with sensors to measure near-surface meteorological and subsurface oceanic25

parameters (Bourlès et al. 2008; Fig. 1). The moorings are a unique component of the26

tropical Atlantic observing system, providing long time series (15 years and growing)27

at a high temporal resolution (1–10 min averages). In contrast to moving platforms28

such as drifting buoys and floats, PIRATA moorings remain fixed, providing colocated29

air-sea measurements that are valuable for studying ocean-atmosphere interaction on30

diurnal to decadal timescales (e.g., Bourlès et al. 2008 and references therein).31

The near-surface atmospheric measurements from PIRATA are in general of sig-32

nificantly higher quality than those inferred from satellites and simulated by models,33

making the PIRATA moorings a valuable tool for identifying biases in satellite- and34

reanalysis-based estimates of surface turbulent heat fluxes (Sun et al. 2003, Kumar35

et al. 2012), rainfall (Serra and McPhaden 2003), and shortwave radiation (SWR;36

Pinker et al. 2009, Kumar et al. 2012). Nevertheless, the meteorological sensors on37

the moorings are exposed to elements such as sea-spray, natural and anthropogenic38

aerosols, and severe weather during each year-long deployment. The sensors therefore39

occasionally develop time-dependent drifts or biases. In most cases, systematic errors40

are identified from the near-real-time data streams or from the internally stored data41

after a mooring is recovered (Freitag et al. 1994). The suspicious data are then either42

flagged, or a correction is applied based on the results of post-deployment calibra-43

tion. Similar quality-control procedures are used on data from ATLAS moorings in44

the tropical Pacific and Indian Oceans (McPhaden et al. 1998, 2009).45
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One unique aspect of the tropical Atlantic that complicates quality-control pro-46

cedures for PIRATA data is the presence of large quantities of African dust in the47

atmosphere of the tropical North Atlantic (Prospero and Carlson 1972, Kaufman et48

al. 2005; Fig. 1). Most of the dust originates from the Sahel and Sahara regions49

of Africa and is blown westward over the ocean by the surface and mid-level easterly50

winds (Prospero et al. 2002, Moulin and Chiapello 2004, Kaufman et al. 2005). The51

highest dust aerosol optical depth (τdust) is found between 8◦N–20◦N (Fig. 1), north of52

the heaviest band of precipitation associated with the intertropical convergence zone53

(ITCZ).54

About 60% of the ∼240 Tg of dust that are transported westward from Africa55

falls to the tropical and subtropical North Atlantic Ocean (Ginoux et al. 2001, Gao56

et al. 2001, Kaufman et al. 2005). Most deposition occurs during boreal summer and57

fall, when dust export from Africa is highest. Northward of about 10◦N, τdust shows58

a pronounced peak in boreal summer. The peak shifts from summer to spring and59

decreases in magnitude southward from 10◦N to the equator (Kaufman et al. 2005).60

It is therefore not surprising that the meteorological sensors on PIRATA moorings in61

the tropical North Atlantic accumulate a substantial layer of dust during year-long62

deployments (Medovaya et al. 2002, Foltz and McPhaden 2005). Of the instruments63

on the PIRATA moorings, accumulated dust is most likely to interfere with the SWR64

radiometer, an upward-facing glass dome that is fully exposed to falling dust. Indeed,65

dust buildup has been observed on several PIRATA moorings in the tropical North66

Atlantic during servicing cruises (Freitag and Brown, manuscript in preparation).67

The potential for dust buildup to interfere with SWR measurements on open-68

ocean moorings was first acknowledged by Moyer and Weller (1997). They found traces69
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of red sand on the instrumentation of the Southeast Subduction Experiment buoy at70

18◦N, 22◦W and suggested that its presence on the radiometer might have reduced the71

measured insolation. Waliser et al. (1999) further showed that daytime clear-sky SWR72

meaurements from the Subduction buoy were biased low by about 70 W m−2 relative to73

those estimated from a radiative transfer model. They concluded that the most likely74

cause of the bias was accumulation of African dust on the radiometer. However, they75

noted that post-deployment calibrations performed with and without the dust coating76

on the sensor differed by only 1%, or about 5 W m−2, leading them to suspect that77

some of the dust may have fallen off the sensor either while in the field or during transit78

to the post-deployment calibration site. Medovaya et al. (2002) compared clear-sky79

measurements of SWR from several open-ocean moorings to estimates from a model.80

They found significant mean differences at several locations, including the Southeast81

Subduction buoy, that they attributed to a combination of radiometer tilt (due to ocean82

currents or deployment technique), clear-sky model biases, and aerosol buildup on the83

radiometer. Foltz and McPhaden (2005) found discontinous upward jumps in SWR84

of ∼50 W m−2 from the 15◦N, 38◦W PIRATA buoy immediately following servicing85

cruises that they attributed to dust buildup on the radiometer.86

Laboratory comparisons between dusty sensors recovered from PIRATA moorings87

in the tropical North Atlantic and a newly calibrated sensor showed that the output88

from the dusty sensors was biased low by up to 14% (Freitag and Brown, manuscript89

in preparation). The comparisons also showed that for clear-sky conditions, the mag-90

nitude of the bias can depend strongly on the solar zenith angle, whereas under cloudy91

conditions the bias is more constant throughout the day. The difference likely results92

from an uneven distribution of dust on the radiometer dome.93
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Previous strategies for dealing with dust buildup on mooring sensors include dis-94

carding all SWR data that are contaminated (Waliser et al. 1999), using the data95

without any correction (Pinker et al. 2009, Kumar et al. 2012), or applying a lin-96

ear time-dependent correction backward in time from radiometer swap dates (Foltz97

and McPhaden 2005). Each approach has distinct disadvantages. Discarding all data98

contaminated by dust buildup would eliminate several years’ worth of SWR records99

from each PIRATA mooring in the tropical North Atlantic (8◦N–21◦N). On the other100

hand, there is evidence of significant time-dependent negative biases in the Southeast101

Subduction and PIRATA SWR time series that should be accounted for prior to their102

use in scientific analyses. The method used by Foltz and McPhaden (2005) worked103

reasonably well for analyzing intraseasonal (30–70 day period) variability since the104

dust-accumulation bias is expected to increase in magnitude gradually over several105

months. The same method was used to study an anomalous event during a single106

year, though in this case SWR measurements from another mooring without signifi-107

cant dust buildup were used for validation of the corrected SWR time series (Foltz and108

McPhaden 2006). The linear correction method does not take into account rinsing of109

the radiometer dome by rainfall, and it is unknown how much uncertainty is involved110

with calculating the dust-accumulation bias from pre- and post-swap SWR values. Fur-111

thermore, it is unclear whether the SWR attenuation caused by dust buildup increases112

linearly in time or is a more complex function of τdust and possibly other parameters.113

In this study a more rigorous technique is developed to calculate dust-accumulation114

biases in PIRATA SWR records. The corrected time series are found to be more con-115

sistent with observed cloud cover in the tropical Atlantic over the past 13 years and116

agree better with satellite-derived SWR estimates over the same time period.117
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2 Data118

The primary data set consists of daily-averaged SWR measurements from 17 PIRATA119

moorings (Fig. 1). The moorings have acquired a combined total of 120 years of SWR120

data since 1997 (Fig. 2) and sample a wide variety of SWR regimes, including the121

stratus deck of the southeastern tropical Atlantic, the intertropical convergence zone122

(ITCZ), and the region of high τdust to the north of the ITCZ. Several other satellite123

and reanalysis data sets are used in conjunction with PIRATA data to calculate dust-124

accumulation biases.125

2.1 PIRATA126

Each PIRATA buoy is equipped with an Eppley pyranometer that measures down-127

welling SWR in the range of 0.285 to 2.8 µm. The sensor is mounted at a height of128

3.5 m, and values are recorded as 2-min means. Here we use the daily-averaged data129

through March 2011. The sensors are deployed for about one year on average. During130

each servicing cruise, the SWR sensor is recovered with the mooring, and a new sensor131

is deployed. The earliest time series begin in 1997, and the most recent time series132

start in 2007. Because of gaps in most of the records, the usable portion of each time133

series ranges from 3 to 13 years in length (Figs. 1, 2).134

Uncertainties in SWR measurements from the moorings are estimated to be ±135

3% based on pre- and post-deployment calibration (Freitag and Brown, manuscript136

in preparation). In all cases, post-deployment calibrations were performed with clean137

sensors (i.e., rinsed of any sea salt or aerosol residue). These instrumental errors are138

likely a lower bound on the uncertainties of the SWR measurements in the field, which139

also include errors due to buoy tilt and salt/aerosol buildup on the sensor. Errors due140
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to buoy tilt are difficult to quantify (MacWhorter and Weller 1991), but are likely to be141

significant only at locations with strong mean currents (i.e., in the strong westward flow142

along the equator and eastward flow between 4◦N–8◦N in the tropical Atlantic). Buoy143

tilt biases are therefore expected to be largest at the 8◦N, 38◦W mooring location, where144

maximum monthly mean current speed is ∼40 cm s−1, based on Ocean Surface Current145

Analysis-Realtime (OSCAR) data averaged during 1992–2011 (Bonjean and Lagerloef146

2002). Tilt biases are not expected to be significant in the 12◦N–21◦N latitude band,147

where monthly mean current speeds are <20 cm s−1. None of the PIRATA SWR time148

series that is used in this study has been corrected for buoy tilt, nor for salt/aerosol149

(including dust) buildup on the sensor.150

In addition to SWR, we use daily-averaged rainfall from each PIRATA mooring.151

Rainfall, measured at a height of 3.5 m by an R. M. Young capacitive rain gauge, is152

used to identify when the SWR sensor would be rinsed of dust.153

2.2 Satellite and reanalysis products154

Several satellite and reanalysis data sets aid in quantifying the buoy dust-accumulation155

biases. Because direct measurements of dust deposition are not available at the156

PIRATA moorings, we rely on satellite-based estimates of aerosol optical thickness157

(AOT). Daily-averaged AOT at 550 nm is available from the Moderate Resolution158

Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra satellites at a hor-159

izontal resolution of 1◦ (Remer et al. 2005). Data from Terra are used for February160

2000 through July 2002 and from Aqua during July 2002 through March 2011. Daily161

MODIS fine mode fraction (FMF), proportional to the size of scattering aerosol, is used162

with MODIS AOT and surface wind speed (described later) to calculate dust aerosol163

optical thickness (τdust). We also use daily MODIS primary cloud fraction and cloud164
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optical thickness (τcloud) to determine the impact of clouds on SWR measured by the165

moorings.166

Since many of the PIRATA records begin before the launch of MODIS in 2000,167

monthly mean AOT at 670 nm from the Advanced Very High Resolution Radiometer168

(AVHRR) Pathfinder Extended dataset (PATMOS-x) is used to extend the MODIS169

record back in time from February 2000 to the start of the PIRATA SWR record. The170

PATMOS-x data are available during 1982–2011 on a 0.5◦ grid (Ignatov and Stowe171

2002, Evan et al. 2006). The MODIS cloud fraction is extended backward using172

International Satellite Cloud Climatology Project (ISCCP) data for the period 1998–173

2000 on a 2.5◦ grid (Rossow and Schiffer 1991). Monthly mean climatological MODIS174

FMF and τcloud are used for the 1998–2000 period since reliable replacements are not175

available.176

Daily averaged SWR is obtained from the ISCCP Flux Dataset (ISCCP-FD) for177

the period 1998–2009 on a 2.5◦ grid (Zhang et al. 2004). This product uses ISCCP178

cloud retrievals and atmospheric reanalysis products as input to a radiative transfer179

model to calculate surface and top of the atmosphere shortwave and longwave radiation.180

Daily surface clear-sky solar radiation is available from the NCEP/NCAR reanalysis181

(Kalnay et al. 1996) during 1948–2011 on a 2◦ grid and from the Modern Era Ret-182

rospective analysis for Research and Applications (MERRA; Rienecker et al. 2011)183

during 1979–2011 on a 2
3

◦

-lon×1
2

◦

-lat grid. Here we use the data for the period 1998–184

2011. The NCEP/NCAR reanalysis clear-sky SWR product does not include dust185

aerosols explicitly, whereas the MERRA product includes the seasonal cycle of dust186

aerosol radiative forcing. The NCEP/NCAR and MERRA reanalyses also use differ-187

ent input data and different radiative transfer models to calculate clear-sky radiation.188
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The differences in clear-sky radiation between the data sets therefore reflect differences189

between two independent methods, each with its own strengths and weaknesses. Pre-190

cipitation rate from the Tropical Rainfall Measuring Mission (TRMM) precipitation191

radar are available during 1998–2011 on a 0.5◦ grid. Here we use the hourly gridded192

product (3G68 from NASA/GSFC) averaged to a daily resolution. These data are used193

to fill gaps in the PIRATA precipitation records.194

3 Methodology195

In this section we first describe the methods used to calculate τdust and an index repre-196

senting the magnitude of the dust-accumulation bias at a given mooring location. We197

then describe the methodology used to calculate time series of the dust-accumulation198

bias.199

3.1 τdust and dust-accumulation index200

We calculate τdust following the methodology of Kaufman et al. (2005):201

τdust =
AOT (0.9 − FMF ) − 0.6τmarine

0.4
(1)

τmarine = 0.007W + 0.02 (2)

Here τmarine is the optical depth of particles such as sea salt and sulfates, which are202

produced from the oxidation of ocean-produced organic material, and W is monthly203

climatological NCEP/NCAR reanalysis surface wind speed for the period 1998–2010,204

interpolated to a daily resolution.205

To determine which PIRATA locations exhibit significant dust-accumulation bi-206

ases, we define a dust-accumulation bias index, which represents the maximum bias207

10



averaged over all sensor deployments and at a given location. Two different methods208

of calculating the index are described: the “rain-free” and “swap” methods.209

For the rain-free method, we start by defining a “rain-free” segment of a full210

SWR time series as one which falls completely between sensor swap dates and in which211

rainfall on every day of the segment is less than 5 mm. This ensures that, in principle,212

dust is continually accumulating on the sensor since it is not being rinsed by rain.213

The bias for each rain-free segment with a length >75 days is then calculated as the214

difference between the buoy SWR anomaly (with respect to ISCCP-FD daily mean215

seasonal cycle) averaged over the first 30 days of the segment and the buoy SWR216

anomaly averaged over the last 30 days of the segment. The monthly mean seasonal217

cycle of ISCCP-FD SWR is subtracted from the buoy SWR before computing the bias218

to account for the strong seasonal cycle of SWR at most locations. The individual219

biases calculated from each rain-free segment at a given PIRATA location are then220

averaged, giving a single-valued dust accumulation bias index. Statistical significance221

of each index is assessed using a Student’s t-test with p = 0.05. Indices are not222

computed for locations with less than three rain-free segments of at least 75 days in223

length. All locations satisfy this criterion except 4◦N, 38◦W and 4◦N, 23◦W, where224

annual mean rainfall is highest.225

To calculate the dust-accumulation index using the “swap” method, the mean226

of the buoy SWR anomaly (with respect to the daily mean ISCCP-FD SWR seasonal227

cycle) during the 30-day period immediately before a sensor swap is subtracted from228

the mean buoy SWR anomaly during the 30 days immediately after a sensor swap.229

Because of gaps in the buoy SWR time series at the end of some deployments, there230

are fewer swap bias estimates than rain-free estimates. The swap bias estimates are231
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also more sensitive to anomalies in SWR related to changes in cloudiness, since there232

is sometimes significant rainfall immediately before or after a sensor swap. For this233

reason, we use only the highest 15 daily SWR values from each 30-day pre- and post-234

swap period for calculating each mean. This decreases the likelihood of including235

cloudy days in the means, which would bias the calculation. Note that the “rain-free”236

and “swap” bias indices are defined as positive when there is an attenuation of SWR237

due to accumulated dust (i.e., a negative bias in the SWR time series).238

For validation of the “swap” biases we have also calculated the SWR bias directly239

from five dusty sensors that were recovered from the 15◦N, 12◦N, and 8◦N PIRATA240

moorings along 38◦W during April 2002 and July 2003 (Freitag and Brown, manuscript241

in preparation). The output from each recovered sensor was compared to a clean,242

calibrated sensor during a period of 28 days. The sensors were placed in direct sunlight243

outside the Pacific Marine Environmental Laboratory in Seattle and experienced both244

sunny and overcast conditions. The radiometers were then cleaned and calibrated245

either by the manufacturer (The Eppley Laboratory, Inc.) or the National Renewable246

Energy Laboratory in order to quantify sensor drift unrelated to dust accumulation.247

The dust-accumulation bias for each sensor was calculated as248

Blab = Sclim(Ptot − Pdrift) (3)

where Sclim is the 1998–2011 climatological mean ISCCP-FD SWR on the calendar249

day of the sensor recovery, Ptot is the mean bias from the laboratory comparison with250

the dusty sensor, and Pdrift is the mean bias of the clean sensor after removal of all251

dust. The Ptot and Pdrift biases are expressed as a percentage of the total incoming252

solar radiation and represent averages over the full 28 days of the experiment (day253
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and night). For consistency, the values of Blab are not included in the calculation of254

the dust-accumulation index nor in the time-dependent bias correction methodologies255

described next, but are shown and described in section 4.256

The methods described above give a single-valued, time-independent, dust-accumulation257

bias at a given mooring location. In order to quantify the time-dependence of the258

bias, three independent methods were developed: “rain-free,”, “swap,” and “clear-259

sky.” These methods are described in the remainder of this section.260

3.2 Rain-free261

To calculate dust-accumulation biases using the rain-free method, first the monthly262

mean seasonal cycle of ISCCP-FD SWR at a given PIRATA location is interpolated263

to a daily resolution and subtracted from the daily PIRATA SWR time series. This264

gives a daily time series of PIRATA SWR anomalies for the length of the PIRATA265

record. As in the rain-free index calculation, the time-dependent bias calculation is266

only performed on segments of the time series that are between sensor swaps and that267

have no significant rainfall.268

A rainfall criterion of 5 mm day−1 was used to define rain-free segments for the269

index calculation. This criterion was chosen because we were interested in finding the270

maximum bias before any rinsing of the sensor had occurred. For the time-dependent271

bias calculation in this section we use a criterion of 50 mm accumulated over a period272

of 30 days. This choice allows for partial rinsing and is based on examination of the273

rainfall and SWR records from the moorings along 38◦W. The results are similar for274

other reasonable choices of the rainfall criterion since at most locations there is a275

well-defined start to the rainy season.276

The buoy SWR anomalies in each rain-free segment are the result of forcing277
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from several sources: (1) anomalies of clouds, water vapor, and aerosols suspended278

in the atmosphere, (2) dust build-up on the buoy SWR sensor, and (3) biases in the279

ISCCP-FD SWR climatology caused, for example, by changes in satellite coverage and280

limited measurements of the vertical profiles of suspended aerosols. Since the goal is to281

quantify the SWR signal associated with (2), ideally (1) and (3) should be completely282

removed from the buoy SWR anomaly time series, giving the dust accumulation bias283

as a residual. However, it is difficult to remove the SWR variability due to clouds,284

water vapor, and aerosols, and it is also challenging to quantify biases in ISCCP-FD285

SWR since the only in situ measurements are from PIRATA, and they are biased by286

dust buildup. An alternative technique is to model the dust accumulation bias as a287

function of one or more time-dependent variables. Developing a model that describes288

time-dependent SWR biases from dust buildup would require knowledge of the rate of289

dust accumulation on the sensor as a function of meteorological conditions and τdust.290

These relationships cannot be determined confidently with the available data. We291

therefore use a hybrid technique, which is described below.292

First, anomalies of SWR due to clouds and suspended dust are removed from the293

daily PIRATA SWR anomaly time series. Based on time series of clear-sky SWR from294

NCEP and MERRA reanalyses, we have found that nonseasonal variability of water295

vapor-induced SWR is much weaker compared to the SWR signals from clouds and296

suspended dust and therefore do not remove the water vapor signal. Since the removal297

of the cloud- and dust-induced signals is not perfect and the remaining cloud- and298

dust-free signal may be contaminated by biases in ISCCP-FD SWR, we fit a curve to299

each rain-free segment of the cloud- and dust-free SWR anomaly time series. The curve300

is based on the observed dependence of buoy SWR anomalies on the time-integral of301
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τdust. In the rest of this subsection the details of this method are described, beginning302

with the removal of the cloud and τdust signals, followed by the curve-fitting procedure.303

Attenuation of SWR by clouds (SWRcloud) is assumed to be proportional to one304

minus the direct transmittance of light through the cloud layer, times the total cloud305

fraction:306

SWRcloud ∝ f(1 − e−τcloud) (4)

Here f is total cloud fraction and τcloud is cloud optical depth, both from daily mean307

MODIS data and with the corresponding mean seasonal cycle removed. For the period308

before February 2000 when MODIS data are not available we use ISCCP f and the309

monthly mean climatology of MODIS τcloud since we have found that nonseasonal310

variability of τcloud is small compared to that of f . In order to avoid contamination311

by dust-accumulation biases in the buoy SWR data, the SWR anomaly time series312

is filtered using a high-pass Lanczos filter with a cut-off period of 120 days and 100313

coefficients. A third-order polynomial is then fit to the daily high-pass filtered SWR314

anomalies, from a given PIRATA mooring, as a function of the righthand side of (4).315

The results from three locations along 38◦W are shown in Fig. 3. The model works316

reasonably well northward of 8◦N, but has difficulty predicting cloud forcing anomalies317

for large positive anomalies of f(1−exp(−τcloud)) at 8◦N, 38◦W. Nonlinearity of the fits318

in Fig. 3 is caused by the diffuse transmittance of light, which is difficult to quantify319

and is not included in (4).320

Attenuation of SWR by suspended dust (SWRdust) is calculated as a function321

of calendar month, latitude, and τdust, at each mooring location, following Evan and322

Mukhopadhyay (2010). On average, SWRdust is about 70 W m−2 per unit of τdust in the323
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tropical North Atlantic, consistent with other studies (e.g., Zhu et al. 2007). Anomalies324

of SWRdust from the seasonal cycle are generally weaker than anomalies of SWRcloud,325

which is expected since clouds are optically much thicker than dust plumes. At the326

high-dust PIRATA locations the daily, record-length, standard deviation of SWRcloud327

anomalies ranges from 22–31 W m−2, whereas for anomalies of SWRdust the range is328

14–15 W m−2. For 180-day low-passed time series, the anomaly standard deviation of329

SWRcloud ranges from 6–7 W m−2 and SWRdust ranges from 3–4 W m−2. The low-330

passed values are significantly lower than the accumulation bias indices (described in331

the next section), indicating that a large portion of the anomalous SWR variability at332

the high-dust locations results from dust buildup on the sensors.333

After removing SWR anomalies due to clouds and suspended dust from the PI-334

RATA SWR anomaly time series, the remaining signal (SWRresid) contains variability335

associated with dust buildup on the sensor and, ideally, only a much smaller signal336

from anomalies in water vapor and trace gases, which have not been removed. In re-337

ality, the combination of clouds and suspended dust explains only about 30% of the338

nonseasonal SWR variability at the high-dust locations. It is also possible that there339

are significant biases in the ISCCP-FD SWR climatology. We therefore estimate the340

measured dust-accumulation SWR bias by fitting a curve to each rain-free segment of341

the PIRATA SWRresid time series of the form342

SWRaccum(t) = (c1 − c2e
−c3τ int

dust
(t)) (5)

τ int
dust(t) =

∫ tend

t0

τdustdt (6)

Here τ int
dust(t) is the time-integral of τdust between t0, the first day of a given rain-free343

segment, and tend, the last day of the rain-free segment. In (5), we set c1 = 200 W m−2.344
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Results are not sensitive to the choice of c1 as long as it is greater than the maximum345

observed dust-accumulation bias. The constants c2 and c3 are determined through346

an iterative procedure that fits the righthand side of (5) to each rain-free SWRresid347

time series at a given PIRATA location. The parameterization in (5) assumes that348

the dust-accumulation bias is proportional to the time-integral of τdust under rain-free349

conditions and not τdust itself. This assumption is based on the observation that most350

dust-accumulation biases increase in magnitude with time, until rainfall commences or351

there is a sensor swap. Further justification of (5) is shown in Fig. 4. There is a clear352

negative bias in buoy SWR that increases in magnitude as τ int
dust increases (Fig. 4a).353

In contrast, there is not a strong relationship between buoy SWR anomalies and τdust354

(Fig. 4b). On average, the relationship between SWRresid and τ int
dust is nearly linear,355

possibly because the amount of dust that sticks to the sensor, for a given deposition356

rate, decreases as the amount of dust on the sensor increases. Note that in (5), positive357

values of SWRaccum indicate a reduction in SWR recorded by the buoy sensor, for358

consistency with the sign of the dust-accumulation bias indices described earlier in this359

section.360

The purpose of fitting the righthand side of (5) to each SWRresid segment is361

to reduce the chance that seasonally-varying ISCCP-FD SWR biases or unresolved362

natural SWR variability (i.e., due to cloudiness or τdust anomalies) are interpreted as a363

dust-accumulation bias. For example, (5) ensures that a large negative SWR anomaly364

in SWRresid that is actually due to increased cloud cover will be significantly reduced365

in magnitude if there is not a corresponding increase in τ int
dust. The application of (5)366

to each rain-free segment also acts as a low-pass filter, eliminating most of the high-367

frequency SWR variability that is unrelated to more slowly-evolving dust buildup. In368
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order to eliminate mean biases that may be present in the ISCCP-FD SWR climatology,369

the value of SWRaccum at the beginning of a given rain-free segment is subtracted from370

the SWRaccum(t) time series.371

3.3 Swap372

The rain-free method for computing time-dependent dust-accumulation biases relies on373

the ISCCP-FD SWR climatology, which may contain significant seasonally-dependent374

biases. We therefore consider an alternative method that is based on the difference375

between the buoy SWR anomaly before and after a sensor swap. The procedure is as376

follows. First, the swap bias (∆SWR) at the end of each deployment is calculated as377

described earlier in this section. Each ∆SWR is then extended back in time either until378

the significant rain threshold is satisfied or until the previous sensor swap. In either379

case, it is assumed that the dust-accumulation bias is zero at the beginning of the time380

segment. The magnitude of the time-dependent swap bias (SWRswap) is assumed to381

increase from zero at the beginning of the time segment to ∆SWR at the end. The382

rate of decrease of SWRswap depends on the time-integral of τdust (equations 5, 6).383

The advantage of this method is that the dust accumulation bias at the end of384

a given deployment is calculated by comparing SWR values from a dusty sensor to385

those from a sensor that is known to be clean. The sensor swap takes only one day386

to complete, and ∆SWR is calculated as the difference between the SWR anomaly387

averaged over the 30-day period after a sensor swap and the SWR anomaly averaged388

over the 30-day period prior to the sensor swap. We have found that the results of the389

“swap” method are not strongly sensitive to the choice of the time periods before and390

after the sensor swap that are used to calculate ∆SWR.391
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3.4 Clear-sky392

Neither the “rain-free” nor the “swap” methods calculates the dust-accumulation bias393

during periods of significant rainfall. Instead, it is assumed that the bias goes to zero394

after a certain rainfall threshold is reached. This is a disadvantage of these techniques,395

since a complete rinsing of the sensor can occur over a period of several months at some396

locations. In addition, for the rain-free method, calculation of the SWR forcing due397

to clouds is complicated by a mismatch in spatial scales between the mooring and the398

satellite footprint, and uncertainties in the statistical and radiative transfer models.399

In this section a third method is described that gives a continuous daily time series of400

the dust-accumulation bias and does not rely on satellite data for cloud removal.401

On a given cloud-free day, the difference between the buoy SWR and the modeled402

clear-sky SWR is, in principle, the dust-accumulation bias. The challenge in imple-403

menting the “clear-sky” method is therefore the identification of cloud-free days in the404

buoy record and the use of an appropriate clear-sky model. To identify cloud-free days405

in the PIRATA SWR time series, a centered 30-day running-maximum filter is applied.406

This gives a daily time series of the maximum daily-averaged SWR value in a window407

of ±15 days under the assumption that there is at least one cloud-free day during408

that interval. Examination of daily MODIS cloud fraction at each high-dust location409

revealed that during a given 30-day period there are, on average, 2–3 days with cloud410

coverage of <5%. Cloud coverage is most persistent at 8◦N, 38◦W, where there are411

913 thirty-day segments between July 2002 and April 2011 without a day in which412

cloud cover is <5%. The magnitude of the dust-accumulation biases may therefore be413

overestimated when calculated using the clear-sky method, especially at 8◦N, 38◦W.414

The clear-sky SWR estimates based on the buoy time series (SWRcs−biased) con-415
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tain the dust accumulation bias as well as variability in clear-sky SWR due to changes416

in the solar zenith angle and changes in water vapor and aerosols in the atmosphere.417

The dust bias signal is therefore estimated as the residual between SWRcs−biased and418

an estimate of the “true” clear-sky SWR (SWRcs). Three independent estimates of419

SWRcs are considered: one based on the buoy SWR time series and two from atmo-420

spheric reanalyses (NCEP and MERRA).421

To calculate the “true” clear-sky SWR (SWRcs) from the buoy time series, first422

the biased clear-sky time series (SWRcs−biased) is calculated using the method described423

above. This time series includes biases due to dust buildup. From all years, the424

maximum SWRcs−biased value is chosen for each calendar day in an attempt to create a425

daily clear-sky SWR climatology that is not contaminated by dust-accumulation biases.426

This method is expected to work well when the SWR sensors are rinsed or swapped427

at different times of the year since there is likely to be a different period during each428

year with very little dust buildup. The method will also perform better at locations429

with long records since there are potentially more data available that are not strongly430

contaminated by dust buildup. This is verified by an experiment in which a certain431

number of years of data (less than the number of years in the time series) were chosen432

at random from the full buoy time series before calculating SWRcs (Fig. 5). In general,433

about seven years of data are needed to reduce errors in buoy-derived SWRcs below 5434

W m−2 at the high-dust locations. We therefore expect a high degree of uncertainty435

associated with this method at the locations along 23◦W, where record lengths are less436

than 4 years.437

The SWRcs estimates from the NCEP and MERRA reanalyses have similar sea-438

sonal cycles at each PIRATA location, but significant mean offsets (Fig. 5a). As439
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expected, the annual mean NCEP SWRcs is significantly larger than the annual mean440

of MERRA SWRcs since NCEP SWRcs does not include radiative forcing from dust441

aerosols. The offsets are corrected by subtracting the record-length mean difference be-442

tween the reanalysis and buoy SWRcs averaged at all low-dust PIRATA locations. Sim-443

ilarly, in order to account for possible contamination from cloudiness in SWRcs−biased,444

the mean difference between SWRcs−biased and buoy SWRcs, averaged at all low-dust445

locations, is subtracted from SWRcs−biased. It is assumed that the resultant estimates446

of SWRcs from MERRA and the buoy include the mean seasonal cycle of SWR-forcing447

from τdust, but do not account for SWR-forcing from anomalies of τdust, which are448

present in SWRcs−biased. Before calculating the clear-sky bias using the MERRA and449

buoy SWRcs, we therefore subtract from each SWRcs−biased time series the SWR-450

forcing from anomalies of τdust, following the methodology of Evan and Mukhopad-451

hyay (2010). Since the NCEP SWRcs does not include radiative forcing from dust,452

no correction is applied before calculating the clear-sky bias based on NCEP. The dif-453

ference between each of the three “true” clear-sky estimates and SWRcs−biased, which454

includes dust-accumulation biases, then gives three estimates of the time-dependent455

dust-accumulation bias at each location (Bcs−NCEP , Bcs−MERRA, and Bcs−buoy). Note456

that positive values of Bcs−NCEP , Bcs−MERRA, and Bcs−buoy represent an attenuation of457

buoy SWR due to dust accumulation. Note also that Bcs−NCEP likely represents an up-458

per bound on the magnitude of the clear-sky dust-accumulation bias at a given location459

because the NCEP SWRcs time series do not include forcing from dust aerosols.460

The advantages of the clear-sky method over the rain-free and swap methods are461

that the clear-sky method does not rely on the ISCCP-FD SWR climatology, which462

contains time-dependent biases, and it provides a continous record of the dust accu-463
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mulation bias. The downside of the clear-sky method is that it relies on accurate time464

series of buoy clear-sky SWR and the “true” clear-sky SWR. In an effort to quan-465

tify the uncertainties associated with the “clear-sky” method we have considered three466

independent estimates of SWRcs.467

4 Results468

In this section, we first present a qualitative analysis of dust-accumulation biases using469

data from the mooring at 12◦N, 38◦W, which experiences a high annual mean τdust470

and strong seasonal variability (Fig. 6a). The dust-accumulation bias index and time-471

dependent biases at each PIRATA mooring location are then quantified using the472

methods described in the previous section.473

4.1 Time series at 12◦N, 38◦W474

Examples of dust-accumulation biases at the 12◦N, 38◦W location are shown in Fig.475

6b. During the middle of 2003 a large bias (defined as the daily ISCCP-FD SWR476

climatology minus the daily maximum buoy SWR) is evident in the PIRATA SWR477

record. The bias increased from 10–20 W m−2 in February–March 2003 to 50–75 W478

m−2 in June–July. The bias increased most rapidly during the period in boreal spring479

and summer with the highest τdust and no significant rainfall, defined here as >5 mm480

day−1. After the mooring was serviced in July 2003 and the old radiometer was replaced481

with a new one, the bias decreased by about 100 W m−2, from 50 W m−2 before the482

sensor replacement to -50 W m−2 immediately after the replacement (Fig. 6b). Note483

that a negative bias does not imply that accumulated dust enhances the buoy SWR,484

because of the way the bias is defined.485

Similar biases developed at 12◦N, 38◦W during 2005 and 2006, though they were486
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noticeably smaller in magnitude compared to the bias in 2003 (Fig. 6b). During487

July 2005 there was a jump up in buoy SWR of ∼50 W m−2 when a new sensor488

was installed. The bias reached a maximum more than a month before the sensor489

swap and then decreased slightly as rainfall began, suggesting that rainfall may have490

partially rinsed the radiometer. Further evidence of rinsing can be found during boreal491

summer and fall of 2006 at the same location. The maximum bias of 2006 was ∼50 W492

m−2 and occurred in June. Between July and September the bias gradually decreased493

as precipitation became more frequent and more intense. Between September and494

December there was no obvious bias in buoy SWR, suggesting that rainfall completely495

rinsed the radiometer. September–December is also the time of year when τdust is low496

and dust is therefore less likely to accumulate on the sensor. As a result, when the497

sensor was swapped in December 2006, there was not a noticable jump up in SWR, in498

contrast to the pronounced jumps during 2003 and 2005.499

In summary, there is compelling evidence of significant (greater than 50 W m−2)500

dust-accumulation biases in the SWR record at 12◦N, 38◦W, one of the locations with501

highest annual mean τdust. There is also evidence of strong interannual variability in502

the dust bias that is likely due to a combination of variability in τdust, timing of sensor503

swaps, and rinsing of the sensor by rainfall.504

4.2 Dust-accumulation bias index505

In agreement with the qualitative analysis at 12◦N, 38◦W, the dust-accumulation in-506

dices from the rain-free and swap methods tend to be largest between 8◦N–20◦N (Fig.507

7). This is the region where the annual mean τdust is highest and where the seasonal508

cycle of τdust is generally out of phase with that of rainfall (i.e., rainfall is low in boreal509

spring and summer, when τdust is high). The rain-free index reaches 50 W m−2 at510
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12◦N, 23◦W, where annual mean τdust is >0.4 and rainfall is low (∼5 cm mo−1) and511

confined to the boreal fall. The much weaker index at 21◦N, 23◦W is surprising, given512

the high τdust and very low rainfall. The low value at this location may due to dust513

falling off the sensor between deployments. The significant bias at 8◦N, 38◦W is also514

surprising, given the high annual mean rainfall. At this location, τdust is highest in515

boreal winter and spring, and the dust layer is lower in the atmosphere (e.g., Yu et al.516

2010), possibly explaining the stronger than expected bias at this location. Despite517

large rain-free dust-accumulation indices at 12◦N and 21◦N along 23◦W, these values518

are not statistically significant because of the small sample size (record lengths of 2–5519

years; Fig. 2). Along 38◦W, the dust-accumulation indices calculated using the “swap”520

method are similar to the indices calculated using the “rain-free” method. Only the521

statistical significance of each swap bias index is therefore shown in Fig. 7. Swap bias522

indices could not be calculated at the 12◦N and 21◦N moorings along 23◦W because of523

shorter records.524

In contrast to the bias indices at locations in the tropical North Atlantic, the525

PIRATA moorings at 0◦ and 10◦W along the equator have much lower values despite526

annual mean values of τdust that are comparable to those along 38◦W (Fig. 7). The527

weaker biases at the equatorial locations result from an in-phase relationship between528

τdust and rainfall: the highest τdust occurs in boreal winter and spring (e.g., Husar et529

al. 1997), when there is abundant rainfall to rinse the SWR sensors. Biases are weak530

and insignificant at the other equatorial locations and at most of the locations in the531

tropical South Atlantic. The exception is at 19◦S, 34◦W, where there are rain-free and532

swap indices of 15 W m−2 and 18 W m−2, respectively, despite very low τdust (<0.05533

in the annual mean). It is therefore unlikely that the biases at this location are caused534
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by dust buildup. Instead, there may be a seasonally-dependent bias in the ISCCP-FD535

SWR climatology that explains the bias. With the exception of the 0◦, 0◦ location,536

everywhere a rain-free index was computed it is positive (i.e., buoy SWR decreases in537

time relative to ISCCP-FD SWR climatology), consistent with the sensor drift biases538

described in Section 3.539

We tested the sensitivity of the rain-free and swap indices to the choice of rainfall540

criterion, using values from 2–20 mm day−1, and the choice of the averaging period541

(10–45 days) and found that the results are not significantly changed. In the rest of this542

section we focus on the locations where the rain-free index is statistically significant543

(8◦N–15◦N along 38◦W).544

4.3 Time-dependent biases545

Here the mean seasonal cycles and longer timescale variability of dust-accumulation546

biases are shown for the high-dust locations in the central tropical North Atlantic547

(8◦N–15◦N along 38◦W). At each location, the mean seasonal cycle of the dust bias548

and its relationship with the seasonal cycles of τdust and rainfall are discussed first,549

followed by a discussion of longer timescale variability.550

The mean seasonal cycles and interannual-decadal variability of the dust-accumulation551

biases at 15◦N, 12◦N, and 8◦N along 38◦W, are shown in Figs. 8-13. At 15◦N, the rain-552

free and swap biases (Brain, Bswap, respectively) and the buoy and NCEP clear-sky553

biases (Bcs−buoy and Bcs−NCEP , respectively) all show a pronounced maximum of 30554

to 35 W m−2 in July. The maximum of the MERRA clear-sky bias (Bcs−MERRA) also555

occurs in July, but is 15–20 W m−2 smaller in comparison. The individual swap biases556

(red circles and squares in Fig. 8a) give a mean of 40 W m−2 in July, which is con-557

sistent with Brain, Bswap, Bcs−buoy, and Bcs−NCEP . We therefore hypothesize that the558
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lower values of Bcs−MERRA relative to the other dust-accumulation bias estimates may559

be due to biases in the MERRA clear-sky climatology.560

July is the month with the largest mean τdust and is the transition period between561

the dry season (January–June) and the rainy season (August–October) (Fig. 8b,c).562

Dust accumulates most rapidly on the sensor during May–July, when τdust >0.3 and563

rainfall is very light. The arrival of heavy rain in August quickly rinses the SWR sensor,564

evident in the rapid decrease in dust-accumulation bias during that month (Fig. 8a).565

During February–March there is a weaker maximum in the dust-accumulation bias566

that is most pronounced in Bswap and Bcs−buoy. However, there is less consistency in567

the magnitude of this secondary maximum between the different bias estimates.568

In Fig. 8a, the mean of the individual swap biases (Bi; red circles and squares)569

generally does not equal the mean of the continuous time-dependent swap biases (Bc;570

Bswap is the mean seasonal cycle of Bc and is given by the red line in Fig. 8a). This571

inequality occurs because each Bc is calculated by extending a Bi value backward in572

time (see section 3). There are therefore generally a larger number of Bc values for573

a given calendar month than Bi values. The difference between the mean of Bc and574

the mean of Bi is especially apparent during March–April, when each Bi is larger than575

the mean of the Bc values. The difference between the means may be due to biases in576

the ISCCP-FD SWR climatology. It is also possible that the dust-accumulation biases577

during March–April happened to be larger in the years when Bi values were available578

compared to the years when Bi values were not available.579

During April 2002 the swap bias calculated from the recovered sensor (Blab; filled580

red square in Fig. 8a) agrees reasonably well with the corresponding Bi (filled red circle581

in Fig. 5a). Blab is about 10 W m−2 smaller than Bi, possibly because some of the dust582
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fell off the sensor during its transit from the field to the laboratory or was washed off by583

sea-spray during the recovery of the sensor from the mooring. In contrast, in July 2003584

Blab is about 35 W m−2 smaller than the corresponding Bi (filled red square and circle,585

respectively, in Fig. 8a). The discrepancy is due in large part to a time-dependent drift586

in the sensor output that ranged from zero at the beginning of the deployment to -7.4%587

at the end of the deployment (Freitag and Brown, manuscript in preparation). This588

sensor drift was erroneously interpreted as a dust-accumulation bias in Bi. Caution589

must therefore be used when interpreting a bias during a single deployment. However,590

a more extensive analysis of the drift bias, based on 316 calibration pairs, found a591

mean of 1.5% of the incident radiation and a standard deviation of 2.4% (Freitag and592

Brown, manusrcipt in prep.). Assuming a mean SWR value of 240 W m−2, the dust-593

accumulation biases in the high-dust region (8◦N–20◦N) are on average 4–10 times as594

large as the corresponding drift biases.595

In addition to a strong seasonal cycle of the dust-accumulation bias, there is596

noticeable interannual variability (Fig. 9a). Comparison of the buoy SWR anomalies597

(without any bias correction) to the dust-accumulation bias estimates shows that most598

of the mean bias with respect to ISCCP-FD SWR and low-frequency (i.e., period >1599

year) variability of the buoy SWR can be attributed to the dust-accumulation bias600

(Fig. 9b). There is a pronounced upward trend in buoy SWR between 1998 and 2005601

that is likely spurious, caused by a decreasing trend in the dust-accumulation bias (Fig.602

9b, Table 1). Anomalous decreases in buoy SWR during 2002–03 and 2007 are also603

likely due to large dust buildup during those years. The decreasing trend in the dust-604

accumulation bias during 1998–2005 is consistent with a decreasing trend in τdust during605

the same period (e.g., Evan et al. 2008, Foltz and McPhaden 2008). After removal606
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of the dust accumulation bias from the buoy SWR, the upward trend is significantly607

reduced and the buoy SWR anomalies show better agreement with anomalies of cloud608

forcing (Fig. 9c and Table 1). The mean buoy SWR increases by 8–16 W m−2, and609

the interannual standard deviation decreases by about 50% (Table 1). An upward610

trend in buoy SWR of 8–14 W m−2 per decade remains after removal of the dust-611

accumulation bias (Table 1). The trend may be caused by a concurrent decrease in612

τdust (and associated attenuation of SWR) or a decrease in cloudiness, though such an613

analysis is beyond the scope of this paper.614

At 12◦N, 38◦W, most of the bias estimates show a maximum of 20 to 40 W m−2
615

during June–July, consistent with the seasonal cycle of dust-accumulation bias at 15◦N,616

38◦W (Fig. 10). In contrast, there is a pronounced maximum in Bcs−buoy of 35 W m−2
617

in early April, followed by smaller values (10 to 20 W m−2) during June–July. The618

smaller values of Bcs−buoy during late May through early July compared to the other619

bias estimates may be due to persistent dust buildup on the sensor and a lack of sensor620

swaps at this time of year, the combination of which would generate a high bias in621

the buoy SWRcs estimates. This reasoning may also explain why during May–June622

Bcs−buoy at 15◦N, 38◦W is smaller than most of the other bias estimates at this location623

(Fig. 8a). Year-to-year variations of the different dust-accumulation bias estimates are624

generally consistent and are in agreement with the results at 15◦N (Fig. 11 and Table625

1).626

At 8◦N, 38◦W the seasonal cycle of τdust peaks in March–April, 3–4 months earlier627

than at 12◦N and 15◦N, and the dry season at 8◦N lasts only from February–April (Fig.628

12). As a result, there is less time for dust to accumulate on the sensor at 8◦N, and629

the maximum seasonal bias is slightly weaker at 8◦N compared to the other locations.630
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There are significant differences between the interannual variability at 8◦N and at 12◦N631

and 15◦N (Fig. 13a). Most notably, the bias at 8◦N is weak during 2007, but at 15◦N632

it is the strongest on record using most methodologies. The discrepancies are likely633

due to differences in the seasonality of dust deposition and rainfall. Consistent with634

the results at 12◦N and 15◦N, most of the interannual–decadal variability and long-635

term trend of the buoy SWR at 8◦N can be explained by the dust accumulation bias636

(Fig. 13b and Table 1). Removal of the bias from the buoy SWR record improves the637

SWR-cloud anomaly correlation dramatically, from -0.2 to -0.6 (Fig. 13c and Table 1).638

5 Summary and Discussion639

We have shown that the SWR measurements from several PIRATA moorings in the640

tropical North Atlantic (8◦N–21◦N) are biased low due to dust buildup on the SWR641

sensors. At a given location in the tropical North Atlantic, the magnitude of the bias642

tends to increase in time until either the dusty sensor is swapped for a clean one or643

significant rainfall rinses the sensor. The timing of the sensor swaps, generally about644

once per year in March–April or July–August, and the commencement of the rainy645

season in June–July, results in periods of 2–4 months during boreal winter–spring and646

spring–summer when dust can accumulate on the SWR sensor.647

To determine which PIRATA SWR records are likely to be affected by dust-648

accumulation biases, a simple dust bias index was created that represents the maximum649

bias at each location, averaged over all deployments. Statistically significant values of650

this index of 21 to 27 W m−2 (indicating an attenuation of SWR due to accumulated651

dust) were found at 8◦N, 12◦N, and 15◦N along 38◦W. These are the PIRATA locations652

with long time series of SWR (>11 years) and where the annual mean τdust is high653
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(∼0.3). Large values were also found at 21◦N, 23◦W and 12◦N, 23◦W (20 W m−2 and654

50 W m−2, respectively), though these values are not statistically significant because655

of much shorter time series. The largest value at 12◦N, 23◦W is consistent with the656

highest annual mean τdust of 0.5 at this location.657

Daily time series of the dust-accumulation bias at three locations along 38◦W were658

computed using three methods. Significant annual mean biases and strong seasonal659

and interannual variability of the dust-accumulation bias were found at all locations.660

Annual mean biases range from 10 W m−2 to 20 W m−2. Peak-to-peak seasonal661

amplitudes of the bias at these locations are typically 30 W m−2, and interannual662

standard deviations are 3–4 W m−2. There are also noticeable negative linear trends663

in the magnitude of the accumulation bias at 8◦N, 38◦W and 15◦N, 38◦W. Removal664

of the dust-accumulation bias from SWR records of the 38◦W moorings significantly665

improves the correlation between anomalies of buoy SWR and satellite cloud cover.666

Three different methods for quantifying the time-dependent dust-accumulation667

biases were developed, each with certain strengths and weaknesses. Overall, the meth-668

ods give similar results, though differences can be large between some methods at a669

given location. It is concluded that the MERRA clear-sky method is likely to give the670

most accurate bias at most locations, and we therefore recommend using this method671

to correct the PIRATA SWR time series for dust-accumulation biases if a single method672

is desired. We note, however, that the MERRA clear-sky method likely underestimates673

the true dust-accumulation bias at 15◦N, 38◦W. Time series of SWR from the high-674

dust locations (8◦N, 12◦N, and 15◦N along 38◦W; and 12◦N and 21◦N along 23◦W),675

corrected using the MERRA clear-sky method, are accessible from PMEL’s PIRATA676

web site.677
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These results have important implications for the use of SWR data from PIRATA678

moorings in the high-dust region of the tropical North Atlantic. Overall, the SWR679

data during September–January do not appear to be affected significantly by dust-680

accumulation biases since this is the time of year when there is significant rainfall to681

rinse the SWR sensors. For most applications, the data during these months can likely682

be used without a bias correction. During February–October the biases are much larger683

and exhibit strong interannual variability. These data should therefore be corrected684

for dust-accumulation biases and then used with caution in scientific analyses.685

It is possible that the SWR biases documented in this study may be useful for686

quantifying dust deposition in the tropical North Atlantic. Deposition rates have been687

estimated from satellite τdust and dust transport models, but there are no long obser-688

vational records of dust deposition over the tropical Atlantic Ocean. As a result, there689

are large uncertainties in the dust deposition rate and its seasonal, interannual, and690

longer timescale variability. One way to validate the deposition rates inferred from691

the PIRATA dust-accumulation biases would be to quantify the mass of dust on each692

sensor when it is swapped each year and then compare to the deposition inferred from693

the accumulation bias. Even with such a validation, deposition rates inferred from the694

results presented here would likely be a lower bound on the true deposition rate since695

an unknown amount of dust falls off each sensor during its ∼one-year deployment.696

Quantification of dust deposition from aerosol samplers (e.g., Sholkovitz and Sedwick697

2006) moored at the same locations as the PIRATA buoys would provide more accu-698

rate time series of deposition into the future and could be used to reconstruct dust699

deposition from the accumulation biases going back to 1998.700

701
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Table 1 Statistics of daily SWR records from the 15◦N, 12◦N, and 8◦N PIRATA819

moorings along 38◦W. First column represents the uncorrected SWR time series and the820

second, third, and fourth columns are the time series after removal of the buoy, NCEP,821

and MERRA clear-sky dust accumulation biases, respectively. Reliable statistics could822

not be generated from the rain-free and swap bias-corrected time series because of823

significant gaps in the bias time series. First row for each location is the correlation of824

the mooring SWR anomaly (with respect to ISCCP-FD seasonal cycle) with anomalies825

of (1 − e−τcloud). Second row is the record-length mean SWR in W m−2. Third row826

is the record-length linear trend in SWR in W m−2 per decade. Smaller values in827

columns 2–4 compared to column 1 indicate that the upward linear trends in the828

corrected times series are smaller than in the uncorrected time series. Fourth row is829

the standard deviation of the SWR anomaly time series in W m−2. Before calculating830

the correlation (first row) and standard deviation (last row) the SWR and (1−e−τcloud)831

time series were smoothed with consecutive passes of 181-day and 259-day running832

mean filters.833

834

835
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Uncorr. Buoy NCEP MERRA

15◦N, 38◦W

Corr(SWR,Cloud) -0.54 -0.62 -0.66 -0.65
Mean SWR 231 247 246 239
Trend SWR 14.8 7.9 11.5 14.0
Std. SWR 7.3 2.7 2.8 3.7

12◦N, 38◦W

Corr(SWR,Cloud) -0.63 -0.78 -0.81 -0.88
Mean SWR 222 235 242 234
Trend SWR 4.5 2.6 3.5 4.4
Std. SWR 9.8 7.1 5.7 6.1

8◦N, 38◦W

Corr(SWR,Cloud) -0.19 -0.60 -0.67 -0.64
Mean SWR 211 222 228 223
Trend SWR 13.7 3.1 1.0 4.2
Std. SWR 9.8 5.7 5.3 5.1836
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Figure Captions837

838

Fig. 1 Annual mean surface shortwave radiation (SWR) from ISCCP-FD during 1984–839

2009 (shaded) and dust aerosol optical depth (τdust) from MODIS during 2003–2010840

(contoured every 0.1 units). Black squares and circles indicate locations of PIRATA841

moorings and the length of the SWR time series at each location in data-years (i.e.,842

total record length minus gaps).843

844

Fig. 2 Availability of daily SWR data from each PIRATA mooring.845

846

Fig. 3 Daily anomalies (with respect to the ISCCP-FD seasonal cycle) of PIRATA847

SWR as a function of anomalous cloud forcing, expressed as the fraction of incoming848

solar radiation that is attenuated by clouds, at (a) 15◦N, 38◦W, (b) 12◦N, 38◦W, and849

(c) 8◦N, 38◦W. SWR and cloud forcing time series at each location have been filtered850

to removed variability with periods >120 days. Red lines are third-order polynomial851

fits to the data.852

853

Fig. 4 Daily anomalies (with respect to the ISCCP-FD seasonal cycle) of SWR from854

the high-dust PIRATA moorings, excluding 21◦N, 23◦W, as a function of (a) the time-855

integral of τdust and (b) τdust. The starting time for the integral is the most recent day856

with significant rainfall or the most recent sensor swap date, whichever occurred most857

recently. The red line in (a) is a nonlinear fit based on (5).858

859

Fig. 5 (a) Mean seasonal cycle of clear-sky SWR at the 12◦N, 38◦W PIRATA860

40



mooring location calculated from the mooring SWR time series (black), and from the861

NCEP/NCAR (red) and MERRA reanalyses. (b) Sensitivity of the mooring clear-sky862

SWR to the length of the SWR time series, based on a 20-sample permutation test.863

Record lengths range from three years (black) to 11 years (purple). (c) Standard de-864

viation corresponding to each curve in (b). All time series have been smoothed with a865

31-day running mean filter.866

867

Fig. 6 Daily mean time series at the 12◦N, 38◦W PIRATA mooring location dur-868

ing 2003 and 2005–2006. (a) SWR attenuation due to suspended dust, expressed as a869

percentage of the incoming SWR. (b) SWR measured by the mooring (black); clima-870

tological SWR from monthly ISCCP-FD, averaged during 1998–2010 (blue); days with871

rainfall >5 mm (red stars, plotted according to the buoy SWR value on that day), and872

SWR sensor swap dates (vertical green lines). (c) Rainfall measured by the mooring.873

Red line represents 5 mm d−1. In (a), SWR attenuation is shown instead of τdust in874

order to de-emphasize very large values of τdust.875

876

Fig. 7 Annual mean τdust (shaded) and TRMM rainfall (contours, cm mo−1). White877

circles show the dust accumulation bias index, based on the rain-free method, at the878

PIRATA locations where it could be calculated. Filled white circles indicate where879

the rain-free index is significantly different than zero at the 5% level. Black dots indi-880

cate where the index, calculated using the swap method, is significant at the 5% level.881

White x’s mark the locations where the bias could not be calculated.882

883

Fig. 8 Daily mean seasonal cycles at 15◦N, 38◦W. (a) The dust accumulation bias884
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based on the rain-free (black curve), swap (red curve), and clear-sky (blue, green, and885

purple curves for the buoy, NCEP, and MERRA clear-sky values, respectively) meth-886

ods. Grey and blue shading indicate one standard error of the rain-free and buoy887

clear-sky estimates, respectively. Red circles are the individual swap biases. Filled red888

squares are biases based on laboratory comparisons between the retrieved dusty sensor889

and a clean sensor, and filled red circles are the corresponding swap biases. (b) τdust890

(black line) with one standard error shown as grey shading. (c) Same as (b) except891

rainfall from the mooring. Each time series has been smoothed with consecutive passes892

of 21-day and 29-day running mean filters.893

894

Fig. 9 Daily time series at 15◦N, 38◦W during 1998–2011. (a) Dust accumulation895

bias calculated using the swap method when available and the rain-free method other-896

wise (black), and using the buoy (blue), NCEP (green), and MERRA (pink) clear-sky897

methods. (b) Anomalies (with respect to ISCCP-FD mean seasonal cycle) of the moor-898

ing SWR (red) and accumulation biases shown in (a). Cloud forcing anomaly (red) and899

SWR anomaly from the mooring after subtraction of the buoy clear-sky bias (black).900

Time series in (a) have been smoothed with a 31-day running mean filter. Each time901

series in (b) and (c) has been smoothed with consecutive passes of 181-day and 259-day902

running mean filters to emphasize interannual variability.903

904

Fig. 10 Same as Fig. 8 except for the 12◦N, 38◦W PIRATA location. The gap905

in the rain-free time series in (a) during August–November is the result of persistent906

rainfall during that period.907

908
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Fig. 11 Same as Fig. 9 except for the 12◦N, 38◦W PIRATA location.909

910

Fig. 12 Same as Fig. 8 except for the 8◦N, 38◦W PIRATA location.911

912

Fig. 13 Same as Fig. 9 except for the 8◦N, 38◦W PIRATA location.913

914

915
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Fig. 1 Annual mean surface shortwave radiation (SWR) from ISCCP-FD during 1984–
2009 (shaded) and dust aerosol optical depth (τdust) from MODIS during 2003–2010
(contoured every 0.1 units). Black squares and circles indicate locations of PIRATA
moorings and the length of the SWR time series at each location in data-years (i.e.,
total record length minus gaps).
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Fig. 2 Availability of daily SWR data from each PIRATA mooring.
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Fig. 3 Daily anomalies (with respect to the ISCCP-FD seasonal cycle) of PIRATA
SWR as a function of anomalous cloud forcing, expressed as the fraction of incoming
solar radiation that is attenuated by clouds, at (a) 15◦N, 38◦W, (b) 12◦N, 38◦W, and
(c) 8◦N, 38◦W. SWR and cloud forcing time series at each location have been filtered
to removed variability with periods >120 days. Red lines are third-order polynomial
fits to the data.

46



0 0.5 1 1.5 2 2.5 3 3.5
−200

−150

−100

−50

0

50

100

150

200

S
W

R
 a

no
m

. (
W

 m
−

2 )

(b)

τ
dust

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

0 10 20 30 40 50 60 70 80 90 100
−200

−150

−100

−50

0

50

100

150

200
S

W
R

 a
no

m
. (

W
 m

−
2 )

(a)

τ
dust

 integral (days)

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

Fig. 4 Daily anomalies (with respect to the ISCCP-FD seasonal cycle) of SWR from
the high-dust PIRATA moorings, excluding 21◦N, 23◦W, as a function of (a) the time-
integral of τdust and (b) τdust. The starting time for the integral is the most recent day
with significant rainfall or the most recent sensor swap date, whichever occurred most
recently. The red line in (a) is a nonlinear fit based on (5).
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Fig. 5 (a) Mean seasonal cycle of clear-sky SWR at the 12◦N, 38◦W PIRATA moor-
ing location calculated from the mooring SWR time series (black), and from the
NCEP/NCAR (red) and MERRA reanalyses. (b) Sensitivity of the mooring clear-
sky SWR to the length of the SWR time series, based on a 20-sample permutation
test. Record lengths range from three years (black) to 11 years (purple). (c) Standard
deviation corresponding to each curve in (b). All time series have been smoothed with
a 31-day running mean filter.

48



2003
0

0.2

0.4

0.6

0.8

1

1−
e−

τ du
st

(a)

2003
0

50

100

150

200

250

300

S
W

R
 (

W
 m

−
2 )

(b)

2003
0

30

60

90

120

R
ai

nf
al

l (
m

m
 d

ay
−

1 ) (c)

2005 2006

2005 2006
 

 
SWR SWR clim. Rain Sensor swap

2005 2006
Time (year)

Fig. 6 Daily mean time series at the 12◦N, 38◦W PIRATA mooring location during
2003 and 2005–2006. (a) SWR attenuation due to suspended dust, expressed as a
percentage of the incoming SWR. (b) SWR measured by the mooring (black); clima-
tological SWR from monthly ISCCP-FD, averaged during 1998–2010 (blue); days with
rainfall >5 mm (red stars, plotted according to the buoy SWR value on that day), and
SWR sensor swap dates (vertical green lines). (c) Rainfall measured by the mooring.
Red line represents 5 mm d−1. In (a), SWR attenuation is shown instead of τdust in
order to de-emphasize very large values of τdust.
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Fig. 7 Annual mean τdust (shaded) and TRMM rainfall (contours, cm mo−1). White
circles show the dust accumulation bias index, based on the rain-free method, at the
PIRATA locations where it could be calculated. Filled white circles indicate where the
rain-free index is significantly different than zero at the 5% level. Black dots indicate
where the index, calculated using the swap method, is significant at the 5% level.
White x’s mark the locations where the bias could not be calculated.
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Fig. 8 Daily mean seasonal cycles at 15◦N, 38◦W. (a) The dust accumulation bias
based on the rain-free (black curve), swap (red curve), and clear-sky (blue, green,
and purple curves for the buoy, NCEP, and MERRA clear-sky values, respectively)
methods. Grey and blue shading indicate one standard error of the rain-free and buoy
clear-sky estimates, respectively. Red circles are the individual swap biases. Filled red
squares are biases based on laboratory comparisons between the retrieved dusty sensor
and a clean sensor, and filled red circles are the corresponding swap biases. (b) τdust

(black line) with one standard error shown as grey shading. (c) Same as (b) except
rainfall from the mooring. Each time series has been smoothed with consecutive passes
of 21-day and 29-day running mean filters.
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Fig. 9 Daily time series at 15◦N, 38◦W during 1998–2011. (a) Dust accumulation bias
calculated using the swap method when available and the rain-free method otherwise
(black), and using the buoy (blue), NCEP (green), and MERRA (pink) clear-sky meth-
ods. (b) Anomalies (with respect to ISCCP-FD mean seasonal cycle) of the mooring
SWR (red) and accumulation biases shown in (a). Cloud forcing anomaly (red) and
SWR anomaly from the mooring after subtraction of the buoy clear-sky bias (black).
Time series in (a) have been smoothed with a 31-day running mean filter. Time series
in (b) and (c) have been smoothed with consecutive passes of 181-day and 259-day
running mean filters to emphasize interannual variability.
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Fig. 10 Same as Fig. 8 except for the 12◦N, 38◦W PIRATA location. The gap in the
rain-free time series in (a) during August–November is the result of persistent rainfall
during that period.
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Fig. 11 Same as Fig. 9 except for the 12◦N, 38◦W PIRATA location.
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Fig. 12 Same as Fig. 8 except for the 8◦N, 38◦W PIRATA location.
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Fig. 13 Same as Fig. 9 except for the 8◦N, 38◦W PIRATA location.
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