
Marine Chemistry 132–133 (2012) 44–55

Contents lists available at SciVerse ScienceDirect

Marine Chemistry

j ourna l homepage: www.e lsev ie r .com/ locate /marchem
Regression-based estimates of the rate of accumulation of anthropogenic CO2 in the
ocean: A fresh look

William Carlisle Thacker ⁎
Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, 4301 Rickenbacker Causeway, Miami, FL 33149, USA
⁎ Cooperative Institute for Marine and Atmospheric
Miami, FL 33149, USA. Tel.: +1 305 361 4323; fax: +1

E-mail address: carlisle.thacker@noaa.gov.

0304-4203/$ – see front matter © 2012 Elsevier B.V. All
doi:10.1016/j.marchem.2012.02.004
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 28 March 2011
Received in revised form 30 December 2011
Accepted 17 February 2012
Available online 23 February 2012

Keywords:
Carbon dioxide
Regression
MLR
eMLR
Regression-based methods used for estimating the rate of increase of anthropogenic CO2 in the ocean are
reviewed and guidelines for improvement are presented. Following these guidelines leads to a local two-
regression method, the first regression accounting for changes in oceanic carbon due to natural variability
and the second regression associating the remaining systematic temporal variability with the anthropogenic
signal to quantify the rate of accumulation. While a formal measure of the accumulation rate's uncertainty is
provided by the standard error of the second regression's slope parameter, both the available data's limited
ability to characterize carbon's natural variability in the absence of any anthropogenic contribution and the
choice of regressors to account for that variability present significant uncertainties that are less easily quan-
tified. An attractive feature of the method is its applicability to data other than those from repeated hydro-
graphic surveys, such as might be provided by appropriately instrumented profiling floats.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Since first suggested byWallace (1995) regression-based methods
have been widely used for estimating the rate at which anthropogen-
ic CO2 has been accumulating in the ocean. The data on which these
estimates are based come from transoceanic hydrographic surveys
which have been repeated at roughly decadal intervals. Simply sub-
tracting corresponding values of carbon observed by the repeated
surveys is not sufficient for estimating the increase, as oceanic car-
bon's natural spatial and temporal variability is larger than the
expected anthropogenic signal. The role of regression is to exploit
empirical relationships between carbon and other observed environ-
mental variables to improve the signal-to-noise ratio. However, as the
ways in which regression has been used for estimating anthropogenic
CO2 are somewhat unorthodox and as previous studies have not been
sufficiently clear as to what is signal and what is noise, a fresh look is
needed. The purpose of this work is to clarify the role of regression
and to suggest improvements to the methodology.

Regression-based methods are attractive, as they need neither
assumptions characterizing the rate of exchange of CO2 through the
air–sea interface at any spatial location or at any moment in time
nor assumptions about its fate once in the ocean. Instead, the conse-
quences of the air–sea transfer and subsequent transport are reflected
in the statistics of the data. And without question, carbon exhibits
strong empirical relationships to other observed variables (e.g.,
Studies, University of Miami,
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Redfield, 1934; Redfield et al., 1963). The issue is only whether the
regression-basedmethods adequately account for these relationships.

Given that the central problem is the possibility of confounding
anthropogenic increase with natural spatial and temporal variability,
it is useful to consider how this variability might ideally be sampled.
For example, suppose profiling floats capable of the same sorts of
measurements as obtained by the hydrographic surveys were gener-
ously deployed to give data sampled frequently in both space and
time. Because such an observing system would capture the natural
variability far better than the decadal snapshots confined to particular
sections, it is useful to consider how regression might be used if such
data were available. Clearly, methods based on decadal differences
would have to be modified to accommodate sampling more continu-
ous in time and not confined to survey lines. A start toward improved
methods might be possible by focusing on how to estimate the rate of
increase of anthropogenic CO2 in the vicinity of the intersection of
two repeated surveys, so that there would be data from a minimum
of four different years and variability would be sampled not just in a
single plane but in two orthogonal planes to give a richer picture of
the empirical relationships in the neighborhood of their intersection.
This is in fact the strategy pursued here with data from the region
centered on the intersection of lines P06 and P16 in the South Pacific
from the stations indicated in Fig. 1.

It is also useful to note that carbon's non-anthropogenic variability
results from the variability of physical and biogeochemical processes.
Their variability is poorly known and hard to quantify, so it is difficult
to judge the extent to which it is adequately characterized by the data
from the repeated surveys. Even a fleet of profiling floats would fail to
capture near-surface diurnal variability, but they might resolve
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Fig. 1. Locations of stations contributing data to this study.
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seasonal variability and variability associated with vertical and hori-
zontal displacements better than the surveys do. Any unsampled var-
iability will not be explained by the regression model and will have
the potential of being confounded with the sought anthropogenic
signal. In addition, there is the important issue of whether decadal
climate changes are altering the empirical relationships between the
environmental constituents; this will require a multi-decadal data re-
cord to sort out. The focus here is strictly on methodology, but never-
theless the nature of the variability and the adequacy of the sampling
should be kept in mind.
2. MLR and eMLR

The method introduced by Wallace (1995) is referred to as the
MLR method because it uses multivariate linear regression.1 Its objec-
tive is to compare data from repeated hydrographic surveys, which
provide measurements of carbon and concurrent environmental vari-
ables. First, a linear regression model is fitted to the earlier data to
capture the empirical relationship between carbon and the environ-
mental variables. Then this model is used with data from the later
survey to predict what would have been measured if there had
been no accumulation of anthropogenic carbon.2 Difference between
the observed and predicted values at each observation point are then
interpreted as anthropogenic carbon accumulated during the interval
between the surveys.

A flaw in this reasoning can be seen by considering a hypothetical
situation where the second survey follows immediately after the first
and yields data with exactly the same values as those from the first.
By design, there is no possibility of instantaneous accumulation of
carbon and none should be inferred from the data. Nevertheless, the
MLR method would indicate instantaneous accumulation, positive at
some points and negative at others. For this example the differences
between observed and predicted values that this method attributes
to the accumulation of anthropogenic carbon are simply the residuals
of the fit.

Put aside this conceptual difficulty for now, accept that the regres-
sion model fitted to the data from the first survey adequately captures
the empirical relationships of carbon to other environmental vari-
ables, and consider the difference between the second survey's obser-
vations and the model's predictions. In addition to the signal of
1 Among the subsequent studies that have used the MLR method are those of
Slansky et al. (1996), Sabine et al. (1999), Ono et al. (2000), McNeil et al. (2001a),
McNeil et al. (2001b), Peng et al. (2003), Quay et al. (2007), Levine et al. (2008), Peng
and Wanninkhof (2010), and Wanninkhof et al. (2010).

2 Similarly, Brewer et al. (1995) had suggested using linear regression to predict
concentrations of oceanic carbon in the absence of direct observations. They sought
better estimates of sound absorption in sea water, which requires improved estimates
of pH that might be inferred from the predicted values of carbon. That application is
quite different in that it doesn't address the problem of changes in the concentration
of carbon.
accumulated anthropogenic carbon there is also prediction error,
which might be regarded as noise. Rather than trying to estimate
the accumulation rate at each point where there is a measurement,
a better estimate might be associated with a region containing
many measurements. By averaging the differences within the region
the noise might be suppressed so that the anthropogenic signal
might be better revealed. If the average is over all of the data from
the survey, then the problem of hypothetical instantaneous accumu-
lation disappears, because the average of all residuals of the fit is nec-
essarily zero. This suggests that to achieve some degree of localization
while separating the anthropogenic signal from noise and simulta-
neously avoiding the possibility of instantaneous accumulation, the
MLR method might attempt to use models fitted to smaller regions.

Now consider the question of whether MLR's model fitted to data
from the first survey adequately captures the empirical relationships
of carbon to other environmental variables. Are the data from the first
survey sufficient to say: “knowing that the other environmental vari-
ables are thus and such, then carbon is generally like this”? When the
model is fitted to data from widely separated stations and from all
depths, as is the usual practice, then the model might know some-
thing about how carbon varies frommode water to deep water. How-
ever, if the fit would be spatially limited, as suggested above to
achieve localization while averaging out noise, then the all of the
data in the sample would confirm the general attributes of the
water and the regression would seek to refine the details, exploiting
regional co-variability to sort out influences from nearby water
masses, but the model would only know of spatial co-variability with-
in the fitting region at the time of the first survey. As the second sur-
vey provides additional information about the co-variability, fitting
the regression model to the combined data from both surveys might
be a good idea.

Friis et al. (2005) modified the MLR method, calling their modifi-
cation the extended MLR method, or eMLR for short.3 This method
avoids the problem of instantaneous accumulation by fitting a second
model — involving exactly the same environmental variables as the
first — to data from the second survey. The difference between the
models is regarded as a model for the changes during the interval be-
tween the surveys that result from the accumulation of anthropogen-
ic carbon.4 The difference model is used with the environmental data
from the second survey to estimate the changes at each observation
point.

Because the eMLR method uses two models, it avoids the problem
of possible instantaneous accumulation. However, its use of two
models leads to conceptual difficulties relating to the separation of
3 For examples of studies that have used the eMLR method see those of Olsen et al.
(2006), Quay et al. (2007), Sabine et al. (2008), Park et al. (2008), Levine et al.
(2008), Brown et al. (2010), Hauck et al. (2010), Peng and Wanninkhof (2010), Wan-
ninkhof et al. (2010), and Goodkin et al. (2011).

4 This difference model is quite unorthodox, its coefficients being defined by sub-
tracting those of the first model from those of the second.
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environmental from anthropogenic variability. Unlike the MLR meth-
od, where the model explained environmental variability, leaving the
signal together with noise in the residuals, eMLR assumes the signal is
entirely in the differences between the two regression models with
none in the residuals. In other words, contemporaneous relationships
with environmental variables account for all of the anthropogenic
carbon together with much of the non-anthropogenic carbon.

Consider a second hypothetical situation. This time the two sur-
veys are well separated in time and there has been substantial accu-
mulation of anthropogenic carbon. However, suppose that carbon
exhibits no empirical relationships with any of the environmental
variables. Of course this is not the case for actual data, but it might
be regarded as the limit of very weak empirical relationships. For
this case the model fitted to the data from the earlier survey reduces
to the mean of those observed values for carbon. Similarly, the model
for the time of the later survey describes carbon as a second mean.
Consequently, the eMLR estimate of accumulated anthropogenic car-
bon is the difference between these twomeans. This might, at best, be
a reasonable estimate for the average accumulation over the entire
surveyed region, but it provides no information about the spatial dis-
tribution, as eMLR in this case provides exactly the same estimate at
all points. To see greater accumulation near the air–sea interface, as
might be expected, and less at extreme depths, data in different
depth ranges would have to be treated separately.
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Fig. 2. Co-variability of total dissolved inorganic carbon and nine environmental variables
to top: sigma0 indicates potential density anomaly (kg/m3) relative to the surface; theta
(μmol/kg); no3, nitrate (μmol/kg); no2, nitrite (μmol/kg); si, silicate (μmol/kg); o2, oxygen
not linear over the entire range of the data.
3. Need for local analyses

While the above discussions of MLR and eMLR both suggest that
estimates of accumulation of anthropogenic carbon should be based
on more localized analyses, hints at this conclusion can be seen in
other studies. For example, Sabine et al. (2008) recognized treating
all of the data from repeated trans-Pacific P02 sections along 30°N
in a single eMLR analysis to be inappropriate and separated the
near-coastal eastern and western data from a central part; neverthe-
less the central region was still large, extending over 75° of longitude
and from surface to bottom. In the same study they also divided the
data from the P16 section into three segments, the largest extending
from 30°S to 72°S and again over the full depth range. Similarly,
Wanninkhof et al. (2010) found that applying the eMLR method
within density layers gave noticeably different results than when ap-
plying it over the full water column, but their empirical relationships
were assumed to be valid for the entire length of the A16 section run-
ning from 60°N to 60°S in the Atlantic Ocean; they did not go further
and reduce the scope of the empirical relationships both horizontally
and vertically.

Plots of hydrographic data provide direct evidence of the need to
limit the analysis domain. Consider, for example, the plots in Fig. 2
of data from the relatively limited region surrounding 32.5°S and
150°W but throughout the entire water column: each panel shows
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how carbon varies with a potential regressor.5 First, notice that, even
though the common practice of MLR and eMLR is to use linear
models, the relationships seen in the data are definitely not linear,
with the strongest nonlinearities occurring at the carbon maximum.
More important is the fact that the relationships are multivalued.6 If
different models are used above and below the depth of the carbon
maximum, then phosphate, nitrate, and silicate become single valued,
However. salinity's subsurface minimum makes it unsuitable as a re-
gressor above the carbon maximum unless the domain is again split
and different models are used above and below the salinity maxi-
mum. Similarly, the plots of oxygen show that the domain above
the salinity maximum might need to be split further.

On the other hand, the plots in Figs. 3 and 4 of data limited to in-
tervals 125–275 dbar and 275–525 dbar, respectively, show relation-
ships that are much more suitable for linear modeling. Furthermore,
the tendency of the blue points to correspond to lower values of car-
bon than do the magenta indicates that there might be quantifiable
increases in the amount of dissolved inorganic carbon over the de-
cade between the earlier and later surveys.

4. Guidelines

The above considerations suggest several guidelines that might be
followed for improving regression-based estimates of rates of
accumulation of anthropogenic CO2. (1) For consistency with the as-
sumption of temporally unchanging background variability, use only
one regression model to account for carbon's co-variability with
other environmental variables. (2) For the same reason, treat the
data symmetrically with respect to time. (3) For consistency with
the assumption of linearity, restrict the regression models to smaller
regions. (4) Be clear about what is signal and what is noise and
about how they are to be separated. (5) Average over sufficient data
to insure that estimates of local rates of accumulation are stable.
(6) Allow for the use of data other than those from repeated surveys,
such as might be provided by autonomous profiling floats. (7) At-
tempt to obtain reasonable estimates of the errors of the inferred ac-
cumulation rates. (8) Use independent data to verify the robustness
of the estimated rates.

5. Local two-regression method

The method for estimating the accumulation of anthropogenic
carbon, which is presented now, follows the guidelines of the previ-
ous section. Its signature attribute is its use of regression twice. The
purpose of the first regression is to remove from the data the natural
variability that might obscure the anthropogenic signal. Consequent-
ly, that signal remains in the residuals of the first regression together
with unattributable random variability (noise). The purpose of the
second regression is to separate the anthropogenic signal from the
noise.

Central to the method is its locality: separate analyses are needed
for data from different regions. The extent of the region is governed
by two constraints: the background relationships of carbon to the en-
vironment should be homogeneous within the region and the data
with the region should be sufficient to characterize these relation-
ships. The practice of estimating an accumulation rate at each point
with repeated observations is abandoned in favor of an estimate for
average rate for the region. This frees the method to consider data
from all locations within the region, not just those repeated at the
same points, making it capable of handling data that might be provid-
ed by a fleet of profiling floats. To illustrate this method two regions
are considered: an upper region centering on 200 dbar and a lower
5 Nitrite, as might be expected, shows little useful relationship to carbon.
6 Nonlinear regression might be considered over portions of the water column

where relationships are single valued.
region centering on 400 dbar using the data of Figs. 3 and 4, respec-
tively. The likelihood of success of this approach might be anticipated
from the separation of blue and magenta in those scatter plots. It is
easy to imagine that a linear model fitted to the data might split
them with more blue on one side and more magenta on the other
and that this bias would show up in the residuals.

The fundamental assumption is that the patterns of natural vari-
ability are unchanging over the time interval during which data are
available and are unaltered by the increasing anthropogenic compo-
nent of carbon in the ocean. Consequently, the empirical relationships
of carbon to other environmental variables within a limited region
can be captured from the temporally distributed data using a local re-
gression model, separating this background from the oceanic carbon
resulting from human activity. However, there is a concern that
short-term climatic change might actually be altering the nature of
these empirical relationships (Goodkin et al., 2011). If climatic
changes are shown to alter the relationships among the environmen-
tal variables used to characterize the background variability enough
to impact the estimate of the rate at which anthropogenic carbon is
accumulating, then this method would have to be modified. For
now, this fundamental assumption seems reasonable. And as sug-
gested in Section 2, for the regression model to capture the back-
ground variability faithfully, it should be fitted to data from multiple
years in order to benefit from exposure to as many situations as
possible. If the model successfully describes the co-variability of oce-
anic carbon with the other environmental variables, any remaining
systematic temporal variability can be attributed to the accumulation
of anthropogenic CO2.

A second assumption is that the rate of accumulation is constant
over the interval for which there are data. Given the sparsity of tem-
poral sampling, it is unlikely that detecting anything other than a con-
stant rate is possible.7 The assumption of a constant rate is consistent
with a linear temporal trend, so the rate of accumulation of anthropo-
genic carbon can be determined by fitting a linear function of time to
the residuals from the background-regression model. This linear
function has two parameters: slope and intercept. The slope deter-
mined by the least-squares fit provides the estimate of the rate of ac-
cumulation and the standard error of the slope provides a measure of
its uncertainty.

5.1. Background regression

The first task is to identify which of the environmental variables to
use in the background regression. This choice should reflect the cov-
ariability within the local domain being modeled.

Fig. 3 shows that within the shallower layer nitrate and phosphate
have strong linear relationships with carbon, so each is an excellent
candidate for use as regressor, but as both provide essentially the
same information, only one should be used. The same is true of poten-
tial density and potential temperature. Likewise, either oxygen or ap-
parent oxygen utilization, which show weaker linear relationships
due to the greater scatter about the regression lines, might be used,
but not both. Carbon's relationship to silicate is linear with similar
scatter, its relationship to salinity is approximately linear with even
more scatter, while its relationship to nitrite cannot be called linear
at all. The 400 dbar relationships are similar except for carbon to ox-
ygen. Because the boundary between the two layers was chosen near
the depth of the first oxygen maximum, carbon increases with in-
creasing oxygen in the shallower layer and decreases in the deeper
layer. Note that aou looks like a promising regressor in the upper
layer in spite its low values, but because it has a maximum, it is un-
likely to provide much useful information about carbon in the deeper
layer.
7 But there is no fundamental reason that an increasing rate of accumulation might
not be considered.
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8 Over fitting is a consequence of redundancy in the information provided by the re-
gressors, a condition that is sometimes called statistical collinearity. Pairwise redun-
dancy can be identified in scatter plots of pairs of regressors as a tight relationship,
while redundancies involving three or more regressors can be approached through
the condition number of the matrix of regressor correlation coefficients. The result of
over fitting is that minor idiosyncrasies of the fitting data can have undue influence
on the regression coefficients, resulting in a model that performs poorly with indepen-
dent data. It is best avoided by erring on the side of using fewer rather than more
regressors.
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While the scatter plots indicate which variables are the most
promising regressors, deciding which and how many to use is not
so simple. First, much of the information provided by the candidate
regressors is redundant, so different combinations might provide
similar estimates. Second, sampling might not be adequate to capture
the full range of natural variability. Consequently, an independent
sample might lead to different regression coefficients reflecting a dif-
ferent view of what background variability really is and consequently
to a different estimate of the accumulation rate. Indeed, independent
data might lead to a different opinion concerning the best set of re-
gressors. Thus, the goal is not just to find the best fit to the data but
to find a model that would describe an independent sample equally
well (e.g. Davis, 1976).

One approach to the choice of variables to characterize the envi-
ronment is via stepwise regression, adding and/or removing variables
until an optimal set is found. The judgment of which set is optimal is
generally based on either Mallows (1973) Cp criterion, the Akaike
(1974) information criterion (AIC), or the Bayesian information crite-
rion (BIC) (Schwartz, 1978). A drawback is that stepwise regression
can be overly permissive, sacrificing robustness by accepting too
many regressors. For example, when using stepwise regression with
these data, AIC excluded only salinity in the 200-dbar layer, retaining
the other eight environmental variables, and in the 400-dbar layer it
excluded none. And as stepwise regression makes its choice of regres-
sors from a single sample, it is incapable of judging how well the
model might describe independent data.
Because of their mutual correlations, it is unlikely that more than
two or three regressors can be used to characterize the environment
in either of these two layers without the risk of over fitting.8 Arguing
that the co-variability of environmental variables is largely due to the
processes responsible for the distribution of salinity and temperature
supporting the ocean's stratification, density should be on the short
list of candidate regressors. As temperature and salinity provide little
additional information beyond what density provides, for robustness
they might be omitted. Nitrate and phosphate both appear to provide
useful information about carbon, but given their high correlation due
to their Redfield ratio, only one of the two should be used. It is reason-
able that the second candidate should be a nutrient to provide
information about biochemical variability, so nitrate is included on
the short list. Nitrite has already been ruled out. In spite silicate's
relatively low levels in the upper ocean, it exhibits relatively strong
correlation with carbon, so it is also included in the short list. Al-
though apparent oxygen utilization does not appear useful in the
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400-dbar layer, it might be useful in the shallower layer, so it has
been included as a fourth candidate. An alternative might be to use
oxygen, but not both oxygen and apparent oxygen utilization.

To explore the collective utility of these four candidate regressors,
six models of background variability were considered. They are listed
in Table 1. The default model m0, which has no regressors, ignores the
problem of the confounding environmental variability with accumu-
lation of anthropogenic carbon; it just has the intercept term, and
when fitted to data that term is evaluated to be the sample mean of
the total dissolved inorganic carbon measurements. Model m1 has
potential density anomaly as its only regressor; m2 has nitrate as a
second regressor; m3 and m4 both retain these two and add silicate
and apparent oxygen utilization, respectively, as third regressors. Fi-
nally, m5 has all four variables as regressors. Each of the background
models is fitted to the data from the 200-dbar layer and separately to
Table 1
Regressors are indicated by x for the 6 model types examined in this study.

Density Nitrate Silicate aou

m0
m1 x
m2 x x
m3 x x x
m4 x x x
m5 x x x x
the data from the 400-dbar layer, as the empirical relationships are
not assumed to be the same in the two layers.9

The values for residuals resulting from these fits are connected by
lines in Fig. 5 to show how individual observations are corrected by
the eachmodel. As each residual is the difference between a measure-
ment of total dissolved inorganic carbon and its modeled counterpart,
it is possible to track the impact of adding each additional regressor.
Comparing the residuals of m0 to those of the other models shows
that failure to account for background variability results in a greater
spread in both depth ranges. Comparing residuals of m0 to those of
m1 shows that characterizing background variability using only a sin-
gle variable, density, accounts for most of the reduction in spread.
Density is also responsible for a dramatic reordering of some residuals
in the shallower layer from low to high and vice versa, which suggests
that short-term variability associated with the penetration of the sur-
face mixed layer may be responsible. If so, sampling may be aliasing
the long-term relationship between carbon and density. The addition
of nitrate further reduces variability in the 200-dbar layer, but the ad-
dition of other regressors has less impact, and density alone accounts
for essentially all of the reduction in spread in the 400-dbar layer. In
both layers the fact that the individual residuals change very little
after the initial reduction in spread suggests that the additional
regressors provide little additional information about the
9 All computations discussed below were made using R (R Development Core Team,
2011; Venables and Ripley, 2002), which is excellent free software for statistics and da-
ta exploration. All graphics were prepared using R's Lattice package (Sarkar, 2008).
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Fig. 5. Residuals of six background-regression models fitted to the data in the 200-dbar (400-dbar) layer are shown in the upper (lower) pair of panels. Residuals are presented
separately for data from P06 and P16 so that they can be examined separately. The lines connecting corresponding residuals for the different models indicate that individual ob-
servations are only slightly affected as more regressors are added. Blue (magenta) indicates data from the earlier (later) surveys.
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environmental variability. As the blue lines indicating data from the
earlier surveys are generally to the left of the magenta lines, the an-
thropogenic signal can be clearly seen. Still, there is a substantial frac-
tion of unexplained spread for blue and magenta lines. If
combinations of regressors other than those considered here cannot
reduce this remaining spread, it should be regarded as noise.
5.2. Temporal regression

Another view of the residuals is shown in Fig. 6 where they are
plotted versus time: they appear as four distinct clusters correspond-
ing to the four surveys providing the data. Again, the spread of resid-
uals at all years is seen to be greatest for the no-regressor case m0 and
the greatest reduction in spread is going fromm0 to m1. The magenta
crosses in Fig. 6 correspond to the means of the residuals for the indi-
vidual surveys. These means can be regarded as the anthropogenic
signal of the individual surveys, and the errors of those means is
considerably smaller than the spread of the unattributable noise. Fur-
thermore, the change of the means in time should reflect the rate of
accumulation. So the next task is to quantify the rate of accumulation
by fitting a linear function of time to the residuals.

The fitted model for each set of residuals is indicated in Fig. 6 by
the magenta lines and the slopes of these lines are the estimates of
the rate of increase of anthropogenic carbon. Note that the means
for the surveys (crosses) are close to the lines. Clearly, regression is
serving to average the data as it separates the anthropogenic signal
from noise. And as the regression addresses data from the four sur-
veys, it is clear that the accumulation rate as estimated by the slope
of the regression line should be regarded an average over the entire
space–time region providing the data to which the model has been
fitted.

The standard errors of the slope and intercept parameters of the
temporal-regression models are analogs of the standard errors of
the means for the individual surveys. The standard error of the
slope is a particularly useful quantity, as it provides a quantitative
measure of the uncertainty of the rate at which anthropogenic carbon
has been accumulating within the study region. The rate resulting
from each background-regression model together with its standard
error is indicated within that model's panel in Fig. 6. The changes in
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Fig. 6. The plotted points at the date of the observations correspond to residuals of the six background-regression models fitted to data from both P06 and P16 within the two depth
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the distribution of residuals from model to model seen in Fig. 5 cause
changes in the slopes of the temporal-regression lines and the differ-
ences in the estimates of accumulation rates provided by the different
models. As expected, estimates of rates for the deeper layer are smal-
ler than those for the layer that is closer to the surface. And as
expected, the standard errors of these estimates are smaller than
those for the shallower layer, reflecting the reduction of variability
with depth.

In both layers, accounting for environmental variability tends to
increase the estimated rate of accumulation of anthropogenic carbon
with the different environmental models all giving quite similar esti-
mates. But it is important to note that the larger spread in the resid-
uals for m0, which makes no attempt to exploit co-variability of
carbon with any environmental variables, causes its estimates to
have relatively large uncertainty. In fact, the uncertainty of the 200-
dbar layer's null model's estimate is sufficiently large that it spans
the accumulation rates inferred from the other five environmental
models. However, in the 400-dbar layer where variability is less, the
low m0 estimate can be considered distinguishable from the esti-
mates that attempt to account for background variability.

In the 200-dbar range using silicate as a regressor appears to have
essentially no impact on either the estimated rate or its uncertainty,
as can be seen by comparing results for m3 with those for m2 and re-
sults for m5 with those of m4. It appears that the accumulation rate
within this depth range is about 0.65 μmol/kg/yr. A better view of
the uncertainty of this estimate is given in Section 6 below, where
the impact of sampling on the estimate rate is discussed.

In the 400-dbar layer background-models m1, m2, and m3 all give
essentially the same estimate for the accumulation rate. The estimate
fromm4 is a bit smaller, and that fromm5 is smaller still. However all
have comparable uncertainties as measured by the standard error of
the slope parameters of the temporal-regression models. It is easy
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to conclude that all provide a better estimate than m0, which ignores
the background variability, and considering their uncertainties that
they all are in rough agreement with an accumulation rate for this
depth range of about 0.4 μmol/kg.

The standard error of the slope parameter doesn't fully describe
the uncertainties in the rate at which anthropogenic carbon has
been increasing. Observational errors provide an additional source
of uncertainty. Another source is the uncertainty of the background
regression parameters, which manifests as uncertainty in the resid-
uals to which the temporal regression models are fitted. A third
source of uncertainty, which is more difficult to quantify, is the uncer-
tainty in the choice of regressors for quantifying carbon's background
variability. The next section addresses a fourth source of uncertainty,
that stemming from the available data's limited ability to characterize
the full spectrum of variability. Considering all sources of uncertainty,
it is clear that the standard error of the slope parameter provides at
best an optimistic view of the accuracy of the accumulation rate.
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6. Sensitivity to sampling

Two approaches to investigating the sensitivity of the local two-
regression estimates of rates of accumulation of anthropogenic CO2

to the particular data on which they are based are considered. Both
involve splitting the data into two sub-samples — one from P06 and
the other from P16, but they differ in how the treat the sub-
samples. The first follows the same procedure as used for the com-
bined sample, resulting in two independent estimates that can be
compared. The second differs in that the background-regression
model fitted to data from one sub-sample is applied to the data
from the other sample, accounting for environmental variability that
had not influenced the fit; so prediction errors rather than residuals
determine the slope of the temporal-regression line and thus provide
the estimate for the rate of accumulation of anthropogenic carbon.

The first approach is illustrated in Fig. 7. Different colors are used
to indicate that some residuals come from fitting to P06 data and the
.074)

0.164)

(0.657,0.045)

(0.609,0.093)

0.043)

0.043)

(0.627,0.044)

(0.261,0.057)

0.033)

0.037)

(0.386,0.033)

(0.433,0.037)

0.031)

.043)

(0.41,0.03)

(0.13,0.036)

ar

2005

ar  m1 200 dbar  m2

ar  m4

−40

−20

0

20

40

200 dbar  m5

ar  m1 400 dbar  m2

ar  m4

1991 2005

−40

−20

0

20

40

400 dbar  m5

ta from P06 and from P16 in order to explore sensitivity to sampling. Results for P06 are
el are (accumulation rate, standard error of accumulation rate) inferred from the slopes

image of Fig.�7


10 They then modify to estimate to correct for changes in apparent oxygen utilization,
which is similarly estimated using eMLR, but those corrections are insignificant in the
vicinity of 32.5°S.
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others come from fitting to P16 data. As data for each is only available
from two of the four surveys, the fitted lines pass through the crosses
indicating the means for the individual surveys. Thus the estimates
for the rates of accumulation benefit only from averaging residuals
for each survey but do not benefit from any further smoothing by
the temporal regression. Two values of estimated accumulation
rates and their standard errors are shown on each panel, once in
blue for P06 and again in magenta for P16.

The 200-dbar layer's models m3 and m5, which use silicate, yield
different estimates of accumulation rate for the two sections. As sili-
cate showed no effect in Fig. 6, this can be regarded as another indi-
cation that it is not a useful regressor for this region and this depth
range. On the other hand, models m2 and m4 give results when fitted
individually to the two sections that are mutually consistent and also
consistent with those based on the combined data. In the 400-dbar
layer silicate (m3 and m5) again is associated with the biggest differ-
ences between estimates from the separate data sets, and those from
m2 and m4 again appear to be mutually consistent and constant with
estimates based on the combined data. These results tend to confirm
the conclusion drawn from the estimates in Fig. 6 that the accumula-
tion rate is about 0.65 μmol/kg in the 200-dbar layer and about
0.4 μmol/kg in the 400-dbar layer. However, the differences in esti-
mates based on the two subsets of the data suggest that the standard
error of the slope parameter underestimates the uncertainty.

It is interesting to note that the estimates for accumulation rates
computed individually for the separate sections (Fig. 7) do not neces-
sarily bracket the corresponding estimates based on the combined
data (Fig. 6). In the 200-dbar layer they do so only for m0, m2, and
m4, and in the 400-dbar layer, only for m6. The reason is that in addi-
tion to the slope parameters, which provide the estimates of accumula-
tion rate, the regressions also determine intercept parameters, which
reflect the sample means of the variables. In fact, for m4 in the 400-
dbar layer, the slopes are essentially the same, but the intercepts are
different. Observe that the crosses marking the survey means of the
m4 residuals in Figs. 7 and 6 follow different temporal progressions:
down–up–up–down versus up–down–down–up. This change in the
character of the residuals indicates that accidental trends in the back-
ground variables due to inadequate temporal sampling can make a dif-
ference. In this case, it manifests very visibly in the intercept estimates,
but in general it affects both intercept and slope.

The second approach to checking the sensitivity of the estimates
of rates of accumulation of anthropogenic carbon to the peculiarities
of the sample is more demanding, as it exposes the fitted models to
entirely independent data. It uses the background-regression models
that have been fitted to data from one section to predict what the en-
vironmental component of the variability in the other section. So,
rather than fitting the temporal-regression model to residuals, they
are fitted to prediction errors, which being differences from the mea-
sured values are similar to residuals but based on independent data.
These prediction errors are plotted in Fig. 8 where color is used to
indicate the section supplying the verification data. The greater sepa-
ration between temporal-regression lines compared to what is seen
in Fig. 7 suggests that, models fitted to data from one section have a
predictive bias when applied to the other section, and that this bias
is fairly consistent over the decadal inter-survey interval, leaving
the estimates of slope relatively unchanged. The prediction errors
also show an increased spread in comparison with the residuals of
Fig. 7, and this increase is reflected in somewhat higher uncertainties
in the estimates for the rates of accumulation.

Note that, for the null model m0, both approaches compare exact-
ly the same accumulation rates with exactly the same uncertainties.
Because the residuals of m0 in Fig. 7 are simply differences between
measured values of carbon and their mean and the prediction errors
in Fig. 8 are just differences between measured values and the
mean of the other sample, corresponding points differ only by an off-
set. As the points are all shifted by the same amount, the slopes of the
regression lines and their standard errors can't differ. However, as
expected, the two approaches do produce different estimates for the
accumulation rate when accounting for background variability. Some-
times the order of which estimate, blue or magenta, is higher
switches, and sometimes it is the same for the two approaches.
Taken together, they seem to agree that m3 and m5 might be the
most sensitive to sampling in both layers, as each approach produces
a pair of quite different estimates, suggesting that silicate is not a use-
ful regressor for these two layers. Model m4 appears to give relatively
consistent estimates in Figs. 6, 7, and 8 for both layers. In the 200-
dbar layer where apparent oxygen utilization is strongly correlated
with carbon, this consistency suggests that it is a useful regressor,
but uncertainties render m4 accumulation rates indistinguishable
from those of m2. On the other hand, in the 400-dbar layer where ap-
parent oxygen utilization is uncorrelated with carbon, its use as a re-
gressor has relatively little effect on the results.

Overall, the conclusions about sensitivity to sampling are the same
whether based on temporal-regression models fitted to background-
regression residuals or on those fitted to errors in predicting the back-
ground variability of independent data: the available data are suffi-
cient to account for the effects of environmental variations to a
reasonable degree of uncertainty, but considering the magnitude of
this uncertainty both as characterized by the standard errors of the
slope parameters and as indicated by sampling differences, the avail-
able data are not sufficient for selecting a best set of regressors.
7. Comparison with previous estimates

Panel-to-panel differences in the uptake rates of Fig. 6 indicate un-
certainty associated with the choice of model used to account for
background variability, and the within panel differences of Figs. 7
and 8 indicate uncertainties associated with sampling. Clearly, put-
ting all of this information together to get a precise interval estimate
of the rate at which anthropogenic carbon has been accumulating in
the two layers is difficult. Nevertheless, here is a subjective summary:
The accumulation rate within the 200-dbar layer is most likely in
the range of 0.5–0.8 μmol/kg/yr and in the 400-dbar layer, 0.35–
0.5 μmol/kg/yr.

Murata et al. (2007) use the isopycnal method of Peng et al.
(1998) to estimate the accumulation of anthropogenic carbon along
P06 using the same data as used in this study. As their results are
referenced to potential density rather than to pressure, it is necessary
to determine which densities correspond to the two layers of this
study. Fig. 3 shows the densities for the 200-dbar layer to be largely
in the range of 25.7–26.7 kg/m3 and Fig. 4 shows the densities for
the 400-dbar layer in the range of 26.4–26.9 kg/m3. In these density
ranges Murata et al. (2007) indicate at 150°W in their Fig. 5 accumu-
lations of 6–10 and 8–12 μmol/kg of anthropogenic carbon, respec-
tively, over the 11.2 years between the surveys. These translate into
accumulate rates of 0.55–0.9 μmol/kg/yr for the 200-dbar layer,
which are roughly in agreement with results found here. However,
their rates of 0.7–1.05 μmol/kg/yr for the 400-dbar layer are about
twice as high.

Sabine et al. (2008) have estimated the anthropogenic accumula-
tion using data from the two surveys along P16 using eMLR.10 Their
Fig. 4 shows an accumulation over the 13.4 year interval between sur-
veys of about 8–10 μmol/kg at 32.5°S in the depth range of this
study's 200-dbar layer and an accumulation of 6.5–8 μmol/kg for the
400-dbar layer. For the 200-dbar layer this amounts to an accumula-
tion rate of 0.6–0.75 μmol/kg/yr, which is quite similar to this
study's results. For the 400-dbar layer their accumulation of
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0.5–0.6 μmol/kg/yr is similar to but a bit higher than those found
here.

8. Discussion

The first conclusion of this work is that the MLR and eMLR
methods suffer from conceptual flaws. Both have problems with the
separation of background variability, anthropogenic change, and
noise. In addition, both generally treat data over a spatial range that
is too large to be consistent with their assumption of linearity, the ex-
tent of which can be inferred from scatter plots of the data. And both
methods attempt to estimate accumulation rates at individual points
without the benefit of spatial averaging to reduce noise. The second
conclusion is that, in light of these problems, an improved method
is needed, and guidelines for constructing a better method were
presented.
The local two-regression method for estimating the accumulation
of anthropogenic CO2 presented in Section 5 provides an alternative
to the MLR and eMLR methods that avoids their deficiencies. It direct-
ly addresses the problem of separating background variability from
anthropogenic signal and noise with the first regression, which iden-
tifies the co-variability of oceanic carbon with other environmental
variables. A second regression then extracts the anthropogenic signal
from the noise. The method is local in that the models are limited to a
region within which data exhibit linear relationships, and the rate of
accumulation is characteristic of the entire fitting region.

A particularly attractive feature of this approach is that it is suit-
able for inferring accumulation rates from improved sampling that
might be provided by autonomous profiling floats, if they were to
be deployed with suitable instruments. Its design allows data from
such floats to be used in combination with data from repeated hydro-
graphic surveys and data from fixed moorings. Even with such an
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enhanced observing system, an estimate of rate of accumulation of
anthropogenic carbon would still require the use of data collected
over roughly a decade to be detectable in the residuals from the back-
ground regression.

Given the presently available data, the strategy suggested here is
to concentrate on the region surrounding the intersection of two re-
peated surveys so that the temporal sampling is maximized and so
that variability can be sampled in orthogonal directions. The question
of the horizontal scope of the empirical relationships remains to be
explored. It would be nice to confirm that they are sufficiently slowly
varying that data from two sets of adjacent intersecting lines can be
analyzed jointly to provide estimates within larger regions based on
twice as many observations. Analysis within density intervals might
be appropriate away from the surface mixed layer and might help ex-
tend the horizontal scope of the analysis.

Another conclusion of this work is that any attempt to quantify the
uncertainty of estimated rates of accumulation should go beyond for-
mal measures based on how well coefficients have been determined
by fitting to the sample at hand. It is important to take into account
some measure of the adequacy of the sampling, which can be done
by exploring how well the model might explain independent data.
And given the well-known problem of over-fitting and the associated
difficulty in determine an optimal set of regressors, it is also impor-
tant to account for the uncertainty associated with their choice.

As the choice of regressors must be made for many layers within
each study region, the application of the local two-regression method
can be quite laborious. Still, considering the effort that has been made
to obtain the data, such labor is not unreasonable. Hopefully, after
considering a complete set of layers within several regions where re-
peating surveys intersect, a pattern will emerge that might guide the
model selection.
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