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(although apparently not in the South Indian Ocean 
this year) are typical of the seasonal cycle and most 
likely owing to entrainment of fresher water from 
below in the winter (Johnson et al. 2012b).

f. Subsurface salinity—T. Boyer, S. Levitus, J. Antonov, J. Reagan, 
C. Schmid, and R. Locarnini
Evaporation minus precipitation (E–P) is well 

correlated with mixed layer salinity over much of the 
world’s ocean (Yu 2011). It is difficult to accurately 
measure evaporation and precipitation over the ocean, 
so near-surface salinity can be used to constrain E–P 
estimates (Schmitt 2008; Yu 2011). E–P surface forcing 
has led to an intensification of the global hydrological 
cycle over the last 50 years, increasing salinity at the 
sea surface in areas dominated by evaporation and de-
creasing salinity in areas dominated by precipitation 
(Durack and Wijffels 2010; Durack et al. 2012). These 
surface changes are advected to the subsurface ocean. 
Globally, near-surface salt content has increased in 
recent times compared to long-term means, while 
intermediate waters have decreased in salinity (Roem-
mich and Gilson 2009; Helm et al. 2010; Boyer et al. 
2012). These changes are reflected in changes to ocean 
water mass composition and circulation patterns. 

To investigate changes to subsurface salinity, all 
available subsurface salinity profile data for year 
2012 were used to calculate gridded 1° mean salin-
ity anomalies at different depths from the surface to 
2000 m. Anomalies were calculated as differences 
from a long-term mean for 1955–2006 (Antonov et al. 
2010). Differences from similarly calculated salinity 
anomaly fields for 2011 are also used to investigate 
year-to-year variations in salinity. A full description 
of the method can be found in Boyer et al. (2012).

Currently, the single largest source of salinity 
profiles is the Argo program with its fleet of profil-
ing floats (Roemmich et al. 2009a; Sidebar 3.1). Sub-
surface salinity anomalies for 2012 were calculated 
from 130 985 salinity profiles recorded on 4108 floats 
from this program. Of these, 16 713 passed through 
the higher level of delayed-mode quality control, in-
cluding a correction of the salinity drift if necessary 
(Wong et al. 2003; Owens and Wong 2009). Because 
one year of data is needed to perform the salinity drift 
correction, real-time salinity data with basic quality 
control were also used in this study. Of the real-time 
data, 62 409 profiles include salinity drift adjustments 
calculated for earlier cycles in a floats lifetime.

In addition to the Argo data, another major source 
of salinity data is 27 743 daily mean profiles from 
tropical moored buoys (http://www.pmel.noaa.gov/

tao/; TAO/TRITON, PIRATA, and RAMA). This 
analysis also used 11 947 CTD casts concentrated in 
the northwest Pacific (Japanese sources) and north-
west Atlantic (Canadian and US sources). These salin-
ity profiles came through the Global Temperature and 
Salinity Profile Project (GTSPP). Finally, GTSPP also 
made available 7337 profiles from gliders, localized 
geographically in the Gulf of Mexico, far western 
Pacific, and coastal eastern Pacific.

In order to examine the year-to-year change in 
salinity, salinity anomaly fields for 2011 were recal-
culated based on updated quality control provided 
by Argo. This study used 56 555 of the 123 471 Argo 
salinity profiles recorded in 2011, which have now 
been delayed-mode quality controlled. All salinity 
and salinity anomaly data were examined using qual-
ity control procedures outlined in Boyer et al. (2009) 
and are available through the World Ocean Database. 
All calculated fields and figures are available at http://
www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/. 
Mean salinity anomalies for the upper 100 m on a 1° 
grid are also computed. The geographic distribution 
of these fields is similar to sea surface salinity (SSS) 
anomaly fields as presented in section 3e.

The zonal mean difference between salinities in 
the Pacific Ocean in 2012 and the long-term mean 
are shown in Fig. 3.14a. Much of the Southern Hemi-
sphere Pacific was fresher in 2012 compared to the 
long-term mean, with the exception of the upper 250 
m in the subtropics. South of 40°S there was signifi-
cant freshening relative to the long-term mean below 
1500 m. Meijers et al. (2011) attributes the freshening 
in the high latitude South Pacific to southward move-
ment of the Antarctic Circumpolar Current and water 
mass changes possibly due to increased precipitation 
and ice melt. The differences between 2012 salinity in 
the South Pacific and the long-term mean are simi-
lar to the differences between 2011 salinity and the 
long-term mean (Boyer et al. 2012), with the patterns 
strengthened between 2011 and 2012 (Fig. 3.14b), 
particularly with increased freshening along 30°S 
above 500-m depth. Similar to 2011, 2012 differed 
from the long-term mean in the North Pacific, with 
saltier conditions in the upper 250-m near the equator 
and freshening at midlatitudes down to 750 m depth, 
consistent with the thermocline freshening described 
by Ren and Riser (2010). Freshening exceeding 0.06 at 
subsurface levels near 50°N occurred in 2012 relative 
to 2011. In the Bering Sea area, the salinity relative 
to 2011 decreased strongly enough that the salinity 
anomaly relative to the long-term mean changed from 
positive/saltier (2011) to negative/fresher (2012). Mean 
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salinity in the upper 100 m (not shown, but closely 
resembles Fig. 3.11a) shows a large positive salinity 
anomaly relative to the long-term mean under the 
South Pacific convergence zone (SPCZ), although this 
feature has weakened compared to 2011 (not shown, 
but closely resembles Fig. 3.11b). The western equato-
rial Pacific south of the equator has freshened since 
2011, but otherwise the tropical Pacific waters in the 
upper 100 m are saltier than the long-term mean and 
this positive salinity anomaly increased from 2011 to 
2012 between the equator and 15°N (not shown, but 
closely resembles Fig. 3.11b). 

For the most part, 2012 salinity anomalies with 
respect to the long-term mean (Fig. 3.15a) in the 
subtropical and sub-polar North Atlantic agree with 
the salinity increase reported by Boyer et al. (2007) 
and Wang et al. (2010), with the exception of a reversal 
around 45°N. However, most of the North Atlantic 
freshened between 2011 and 2012 (Fig. 3.15b). North 
of 40°N, this freshening was consistent down to 
500 depth. South of 40°N, freshening was generally 
exceeding 0.02 above 200-m depth, with anomalies 
exceeding 0.01 m to 500-m depth in the tropics. 2012 
experienced a mostly negative North Atlantic Oscil-
lation (NAO) index, while 2011 had mostly a positive 
NAO index, with the exception of the months May–
July; Tropical Rainfall Measuring Mission (TRMM) 
recorded greater precipitation in 2012 than in 2011 
from 30°N to 40°N, while from the equator to 25°N 
less precipitation was recorded. (No data are available 
outside 40°S–40°N.) These factors could contribute to 
the observed freshening, at least in the mixed layer. 
Another factor could be changes in the ice melt (both 

Arctic Ocean and Greenland). It remains to be seen 
if this freshening is a short-term phenomenon or a 
reversal of the signal present over the last 15 years. 
In contrast, the southern Atlantic salinity signal for 
2012, compared to the long-term trend, strengthened 
with respect to the same signal for 2011. Positive 
salinity anomalies exceeding 0.04, compared to the 
long-term trend, are found for 2012 down to 250 m 
in depth from the equator to 40°S, with anomalies 
exceeding 0.02 down below 500 m between 30°S and 
40°S. South of 40°S in the Atlantic Ocean, a deep 
freshening is observed, to depths exceeding 700 m, 
shoaling to the south, where the freshening is lim-
ited to the upper 200-m depth. These trends were 
strengthened and deepened between 2011 and 2012 
(Fig. 3.15b) over most of the South Atlantic, with the 
exception of the high latitudes, where conditions were 
saltier in the upper 200 m in 2012 than 2011.

In the Indian Ocean, the difference between 2012 
salinity zonal means and the long-term mean (Fig. 
3.16a) includes deep (below 1000 m) freshening south 
of the equator, interrupted by increased salinity in the 
midlatitude South Indian Ocean from the surface to 
at least 250-m depth. In the upper 100 m (not shown, 
but closely resembles Fig. 3.11a), the positive/salty 
anomaly at latitudes north of 30°S is confined to the 
western half of the Indian Ocean, with freshening in 
the eastern Indian Ocean. South of 30°S, the positive 
anomaly extends across the entire basin. The salinity 
change from 2011 to 2012 in the South Indian Ocean 
was small (Fig. 3.16b). Most of the North Indian 
Ocean zonal mean anomalies for 2012 are positive/
salty compared to the long-term mean to depths ex-

FIG. 3.14. Zonally averaged (a) 2012 salinity anomaly 
and (b) 2012 minus 2011 salinity f ield for the Pa-
cific Ocean. Blue shading represents negative (fresh) 
anomalies <-0.01, red shading represents positive 
(salty) anomalies >0.01. The contour interval for the 
anomalies is 0.02. In the background of each figure 
(thick blue contours) is the zonally-averaged clima-
tological mean salinity (WOA09). Contour intervals 
for the background are 0.4. All values are on the PSS.

FIG. 3.15. Zonally averaged (a) 2012 salinity anomaly 
and (b) 2012 minus 2011 salinity field for the Atlan-
tic Ocean. Blue shading represents negative (fresh) 
anomalies <-0.01, red shading represents positive 
(salty) anomalies >0.01. The contour interval for the 
anomalies is 0.02. In the background of each figure 
(thick blue contours) is the zonally-averaged clima-
tological mean salinity (WOA09). Contour intervals 
for the background are 0.4. All values are on the PSS.


