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[1] Current climate model projections are uncertain. This uncertainty is partly driven by
the uncertainty in key model parameters such as climate sensitivity (CS), vertical ocean
diffusivity (Kv), and strength of anthropogenic sulfate aerosol forcing. These parameters
are commonly estimated using ensembles of model runs constrained by observations.
Here we obtain a probability density function (pdf) of these parameters using the
University of Victoria Earth System Climate Model (UVic ESCM) - an intermediate
complexity model with a dynamic three-dimensional ocean. Specifically, we run an
ensemble of UVic ESCM runs varying parameters that affect CS, ocean vertical
diffusion, and the effects of anthropogenic sulfate aerosols. We use a statistical emulator
that interpolates the UVic ESCM output to parameter settings where the model was not
evaluated. We adopt a Bayesian approach to constrain the model output with
instrumental surface temperature and ocean heat observations. Our approach accounts
for the uncertainties in the properties of model-data residuals. We use a Markov chain
Monte Carlo method to obtain a posterior pdf of these parameters. The mode of the
climate sensitivity estimate is 2.8°C, with the corresponding 95% credible interval
ranging from 1.8 to 4.9°C. These results are generally consistent with previous studies.
The CS pdf is sensitive to the assumptions about the priors, to the effects of
anthropogenic sulfate aerosols, and to the background vertical ocean diffusivity. Our
method can be used with more complex climate models.
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1. Introduction

[2] Climate hindcasts and projections are strongly affected
by two key climate model parameters: climate sensitivity
(CS) and vertical ocean diffusivity. Meridional overturning
circulation, global temperature, and ocean heat accumulation

that produces thermosteric sea level rise are good examples
of climate variables that depend on these parameters [Goes
et al., 2010; Knutti et al., 2002]. Better characterization of
the uncertainty in these parameters is thus critical for future
climate prediction.
[3] Climate sensitivity is defined as the equilibrium near-

surface temperature response to a doubling of atmospheric
CO2. CS is a measure of climate feedbacks that amplify or
dampen the direct response of near-surface temperature to
radiative forcings [Andronova et al., 2007]. Vertical ocean
diffusivity is a parameter that influences heat uptake by the
ocean. It parameterizes mixing processes below the grid
scale of climate models. For the same climate sensitivity,
at higher diffusivities the atmosphere will reach the equi-
librium temperature specified by CS more slowly, due to
more heat flux into the deep ocean [National Academy of
Sciences, 1979].
[4] In order to estimate these parameters from climate

models and observations, one needs to know past climate
forcings. Both parameter estimation studies and simple the-
oretical considerations show that assumptions about these
forcings influence climate sensitivity estimates and the
uncertainty surrounding them [Andreae et al., 2005; Tanaka
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et al., 2009; Urban and Keller, 2010]. For example, Andreae
et al. [2005] use a zero-dimensional climate model to illus-
trate that when they assume no aerosol effects, a climate
sensitivity of just 1.3°C is needed to explain the observed
1940–2000 warming. On the other hand, aerosol forcing of
�1.7 Wm�2 (a value that is within the IPCC range [Forster
et al., 2007]) requires a climate sensitivity of more than 10°C
[Andreae et al., 2005]. Out of the main climate forcings,
the forcings due to aerosols are especially uncertain. A large
part of this uncertainty is due to anthropogenic sulfate
aerosols [Forster et al., 2007].
[5] Parameters controlling climate sensitivity, vertical dif-

fusion in the ocean, and strength of anthropogenic sulfate
aerosols are commonly estimated using model runs and
observations [Knutti et al., 2002, 2003; Forest et al., 2002,
2006; Drignei et al., 2008; Tomassini et al., 2007; Edwards
et al., 2007; Sanso and Forest, 2009]. Typically, an ensem-
ble of model runs is used where the key parameters are sys-
tematically varied. The outputs from these runs are then
compared with the observations, and the posterior probability
distribution functions (pdfs) for model parameters are
derived.
[6] One conceptually simple methodology selects only the

model runs that are consistent with the observations using a
broad, heuristic approach [Knutti et al., 2003]. In this
framework all parameter combinations that pass the consis-
tency criterion are assigned a uniform probability, while
those that do not pass it receive a zero probability. These
probabilities are then used to construct the posterior pdfs.
[7] A more complex approach uses Bayesian statistics.

This approach requires: (1) a model ensemble, (2) observa-
tions, (3) a statistical model that relates climate model output
to the observations, and (4) prior information about the
model parameters (priors). In this framework, each parame-
ter combination is associated with a likelihood that depends
on how well the corresponding model output matches the
observations [Tomassini et al., 2007; Sanso and Forest,
2009]. The likelihood, L(Y∣Q), describes the degree of
belief that the physical observations Y came from a climate
model and a statistical model (describing the properties of
data-model residuals) with unknown parameters Q. Once the
statistical model is defined, the likelihood L(Y∣Q) can be
calculated from the residuals between the model output and
the observations. In the Bayesian framework, the posterior
probability of the unknown parameters given the observa-
tions is proportional to L(Y∣Q), and to the prior probability
of the parameters:

p Q∣Yð Þ / L Y ∣Qð Þ � p Qð Þ: ð1Þ

[8] While the posterior probability p(Q∣Y) can be evalu-
ated on a grid of parameter values, this can become too
computationally expensive if the parameter space is multi-
dimensional. In such cases Markov Chain Monte Carlo
(MCMC) methods [Metropolis et al., 1953; Hastings, 1970]
can be used. The MCMC generates a sequence of parameter
values (a Markov chain) which may be treated approxi-
mately as samples from the posterior distribution. Hence,
virtually any property of the posterior distribution can be
approximated by a corresponding sample property of this
sequence.

[9] Intermediate Complexity Earth System models are
frequently used for this analysis [Forest et al., 2002, 2006;
Knutti et al., 2003; Tomassini et al., 2007; Sanso and Forest,
2009]. The appeal of these models is that they can be run at
many parameter settings with relative ease. At the same time
these models still represent many relevant physical pro-
cesses. While the models can be run hundreds of times,
many more runs at arbitrary parameter values are needed for
the MCMC sampling. To approximate model output at these
values, emulators (statistical approximators of climate
models) can be used [e.g., Drignei et al., 2008; Holden et al.,
2010; Edwards et al., 2011]. The emulators draw on infor-
mation about model outputs at known parameter settings to
interpolate the output to any desired parameter setting.
[10] In this study, we use the University of Victoria Earth

System Climate Model (UVic ESCM) to estimate these
important climate parameters. We constrain the ensemble of
model runs with atmospheric surface temperature and ocean
heat content observations to present probability distribution
functions for key model parameters controlling the processes
described above: climate sensitivity CS, background vertical
ocean diffusivity Kbg, and a scaling parameter for the direct
effects of anthropogenic sulfate aerosols Asc. The use of the
full 3D ocean allows for the representation of the non-linear
effects of Kbg on ocean dynamics and currents (e.g., on the
Meridional Overturning Circulation). We present posterior
joint and marginal pdfs for the parameters, and explore the
sensitivity of the results to prior assumptions.

2. Earth System Model, Its Emulator, and
Observational Constraints

2.1. Model Description

[11] We use the University of Victoria Earth System Cli-
mate Model (UVic ESCM) [Weaver et al., 2001] for our
analysis. The atmospheric component is a one-layer energy-
moisture balance model, with winds prescribed using the
NCAR/NCEP climatology. The oceanic component is a
three-dimensional model MOM2 [Pacanowski, 1995]. Both
the atmospheric and the oceanic components have horizontal
resolution of 1.8° (lat) � 3.6° (lon). The ocean has 19 depth
levels. The model also includes terrestrial vegetation and
carbon cycle [Cox, 2001], oceanic biogeochemistry based on
work by Schmittner et al. [2005], and thermodynamic sea
ice. We use the modified 2.8 version of the model. Specifi-
cally, we use a newer solar forcing, and include new tran-
sient forcings. The new forcings are described in section 2.3.

2.2. Model Parameters

2.2.1. Climate Sensitivity (CS)
[12] Climate sensitivity is defined as the equilibrium

response of global average near-surface temperature to a
doubling of atmospheric CO2. Climate sensitivity is a diag-
nosed parameter in the UVic ESCM. We vary CS through an
additional parameter f * that perturbs local outgoing long-
wave radiation:

Q∗
PLW ¼ QPLW þ f ∗ Tt � T0ð Þ: ð2Þ

[13] Here To is temperature at equilibrium (i.e. at the start
of the transient run), Tt is a temperature at time t, QPLW is the
planetary outgoing longwave radiation as calculated in the
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standard 2.8 version of the model and Q*PLW represents the
modified outgoing longwave radiation. This approach is
similar to that ofMatthews and Caldeira [2007] and Zickfeld
et al. [2009], but here the temperature terms are functions of
latitude and longitude.
[14] While f * is the input parameter to the model, we

want to know the CS values for each ensemble model run
(section 2.3). We determine the relationship between f * and
CS using a small number of CO2 doubling experiments with
varying f * values at Kbg = 0.1 cm2 s�1. The runs continue for
2250 years to capture the equilibrium response of the model
to CO2. The CS is diagnosed as the average global tempera-
ture during the last 50 years of the runs minus the 50 year
average prior to doubling. This mapping neglects a potential
dependency of CS on Kbg at the same value of f *. We adopt a
prior range for CS from 1.1 to 11.2 (Table 1).
2.2.2. Background Vertical Ocean Diffusivity (Kbg)
[15] The rate at which surface temperatures adjust to

radiative forcings is controlled by the rate at which heat is
absorbed by the ocean. The vertical mixing of heat in the
ocean is parameterized in UVic ESCM by a vertical diffu-
sivity parameter Kv, which has contributions from tidal and
background diffusivities [Schmittner et al., 2009]:

Kv ¼ Ktidal þ Kbg: ð3Þ

Ktidal uses the parameterization of St. Laurent et al. [2002]
following the methodology of Simmons et al. [2004]. The
background diffusivity Kbg is assumed to be globally uni-
form. We vary Kbg to obtain different vertical ocean diffu-
sivities (Kv), while keeping standard parameters for Ktidal. In
our model, Kbg largely determines the total diffusivity in
most areas of the pelagic pycnocline since the tidal compo-
nent is small in those areas [St. Laurent et al., 2002;
Schmittner et al., 2009]. As in work by Schmittner et al.
[2009] and Goes et al. [2010], the model is modified to
limit Kv to ≥ 1 cm2 s�1 in the Southern Ocean below 500 m
for better agreement with observations. Following Goes
et al. [2010], we adopt the prior range for Kbg from 0.1
to 0.5 cm2 s�1 (Table 1).
2.2.3. Anthropogenic Aerosol Scaling Factor (Asc)
[16] Direct anthropogenic sulfate effects are modeled

through spatially resolved sulfate albedos Das following
Matthews et al. [2004] and Charlson et al. [1991] according
to:

Das ¼ Asc
bt 1� asð Þ2
cos Zeff
� � : ð4Þ

Here b = 0.29 is the upward scattering parameter, t is the
aerosol optical depth field, as is surface albedo, and Zeff is
the effective solar zenith angle. The strength of anthropo-
genic sulfate aerosol effects is modulated via the scaling
parameter (Asc). This parameterization does not account for
the indirect effects of the sulfates on clouds. However, the
indirect effects were found to be roughly proportional to the
direct effects on major components of the Earth’s radiation
budget and climate on the global scale under idealized cli-
mate in a study by Bauer et al. [2008]. We use the prior
range for Asc from 0 to 3 (Table 1).

2.3. Hindcast Model Runs

[17] We run an ensemble of UVic ESCM model runs
where we systematically vary the three parameters over their
prior ranges. Specifically, Kbg is varied on a uniform grid
with values of (0.1, 0.2, 0.3, 0.4, 0.5) cm2 s�1. We sample
CS at (1.14, 1.64, 2.15, 2.62, 3.11, 3.98, 5.36, 6.51, 8.20,
11.2) °C. The samples for Asc are (0, 0.75, 1.5, 2.25, 3).
These values form a quasi-cubic grid.
[18] We spin the model up from observed data fields for

3,500 years with forcings set at year 1800 values. The
transient runs continue from year 1800 to the present using
historic radiative forcings. Volcanic aerosols, anthropogenic
sulfate aerosols, changes in solar constant, and additional
greenhouse gases such as CH4, N2O and CFCs, are imple-
mented following Goes et al. [2010]. Specifically, the vol-
canic radiative forcing anomalies are from Crowley [2000a,
2000b] for the period from 1800–1850, and from GISS
[2007] and Sato et al. [1993] for years 1850 to 2000. We
update the solar forcing using the data of Krivova et al.
[2007]. The atmospheric CO2 concentration forcing is from
Etheridge et al. [1998] and Keeling et al. [2004], com-
plemented by the RCP8.5 scenario data after year 2002
[Moss et al., 2010; Riahi et al., 2007].

2.4. Observational Constraints

[19] We use two observational constraints. The first is
global average atmospheric surface/ocean surface tempera-
tures (T) from the HadCRUT3 data set of the Hadley Center
[Brohan et al., 2006]. These observations are defined as
anomalies with respect to the 1850–1899 period average.
The observations cover the time period from 1850 to 2006
(Figure 1). The second constraint is global total ocean heat
content (OHC) in the 0–700 m layer [Domingues et al.,
2008]. These observations span the period from 1950 to
2003, and are calculated as anomalies with respect to the
whole observation period (Figure 1). Modeled temperature

Table 1. Prior Ranges for the Parameters Used in the NON-UNIF Experimenta

Parameter Units Lower Bound Upper Bound Prior Form

Kbg cm2 s�1 0.1 0.5 Lognormal(�1.55, 0.59)
CS °C per CO2 doubling 1.1 11.2 NIG(a = 1.8, d = 2.3, b = 1.2, m = 1.7) �

NIG(a = 1.9, d = 3.3, b = 1.0, m = 1.3)
Asc unitless 0 3 uniform
sT °C 0.01 inf uniform
sOHC 1 � 1022 J 0.01 inf uniform
rT unitless 0.01 0.99 uniform
rOHC unitless 0.01 0.99 uniform
bT °C �0.51 0.50 uniform

aSubscript T refers to the temperature data, and OHC refers to the ocean heat content data.
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and ocean heat content are converted to anomalies to be
consistent with the observational constraints.

2.5. Gaussian Process Emulator

[20] The MCMC sampling requires a large number of
model runs (>10000) at arbitrary parameter values. Since it
is computationally infeasible to run UVic ESCM at that
many parameter settings, we use a statistical emulator that
can approximate the model outputs at any parameter value.
We adopt Gaussian Process (GP) emulation. This technique
was previously used to approximate climate models by Bhat
[2010], Sanso and Forest [2009] and Rougier et al. [2009].
We emulate model output as a function of climate para-
meters separately for temperature and for ocean heat content.
For each tracer, we develop separate emulators for each time
step during the years for which the observations are avail-
able (section 2.4). Thus, we build a total of 157 emulators
for temperature, and 54 for the ocean heat content.

[21] We define model output of tracer k at time t as ft,k(q)
where q is a vector of model parameters (Kbg, CS, Asc). The
ft,k(q) is only defined on a discrete set of parameter values
where the model was run. The purpose of the emulator is to
estimate a function f̃ t,k(q) approximating model output on
the continuous parameter ranges specified in Table 1. In the
following discussion we will consider the emulator for
atmospheric surface temperature at time t0. The emulators
for all other times and for the second tracer (ocean heat
content) follow a similar statistical model. The indices t and
k will thus be dropped from the rest of the emulator
description.
[22] The emulator is developed in linearly rescaled coor-

dinates with transformed parameters q′ = (Kbg′ , CS′, Asc′ )
each taking on a range from zero to unity. The emulator
approximates the climate model output as:

f̃ q′
� � ¼ P q′

� �þ Z q′
� �

; ð5Þ

where P is a quadratic polynomial in model parameters, and
Z is a zero-mean Gaussian Process with an isotropic
covariance function. Specifically, the covariance between Z
at parameters qi′ and qj′ is modeled as mC(i, j) where m is a
scale multiplier and C is defined by:

C i; jð Þ ¼ exp
�Dij

l
: ð6Þ

Here Di,j is the Euclidean distance between the two model
parameter settings and l is a range parameter. Based on
exploratory data analysis, we choose l = 0.6. This formula-
tion ensures that model output at nearby parameter settings
is highly correlated (i.e. model output is a smooth function
of the parameters). We choose a nugget variance s�

2 of zero.
This implies that the emulator is equal to model output at the
points of the ensemble design grid.
[23] We estimate the polynomial parameters and m. The

polynomial parameters are the generalized linear squares
estimates adjusting for the covariance function of the
spatial process. They have a closed form solution that fol-
lows a standard formulation in Universal Kriging. m is
likewise found by maximum likelihood given the parameter
l = s�

2/m = 0, and it has a closed form solution given l
as well (D. Nychka, personal communication, 2011). The
optimized parameters provide the Best Linear Unbiased
Estimate (BLUE) of ~f (q′) (R. Furrer et al., Package ‘fields’
manual, 2010, retrieved from http://www.image.ucar.edu/
Software/Fields/).
[24] Emulators for other times and variables have different

P and m. Henceforth all the emulators for all time steps and
both tracers will be collectively referred to as the “emulator”.
[25] The emulator was extensively tested using the leave-

one-out cross validation analysis. The emulator is found to
perform adequately well (e.g., Figure 2) during the times
when the variability of model output across the parameter
space is high. The cross-validation errors are larger in the
relative sense during the times close to the midpoints for the
averaging periods for the anomalies (i.e. year 1870 for
temperature, and 1980 for ocean heat content). At such times
the signal is small and the model output is not a smooth
function of the parameters, therefore it is impossible to
accurately predict it based on the information from the

Figure 1. Probabilistic model hindcasts (grey shaded area),
maximum posterior probability model output (‘best fit’,
black line), and corresponding observations (red crosses)
for the NON-UNIF assimilation experiment: (top) global
average atmospheric surface temperature anomaly with
respect to 1850–1899 mean [K] with corresponding observa-
tions of above surface/ocean surface temperatures from the
HadCRUT3 data set [Brohan et al., 2006]; (bottom)
upper ocean (0–700 m) heat content anomaly with respect
to 1950–2003 mean [1 � 1022J], and observations from
Domingues et al. [2008]. The grey area denotes the
95% credible intervals for model output taken from a 1000-
member subsampled MCMC chain, with corresponding
AR1 error processes (and bias terms for temperature) added.
For the AR1 process simulations, the s and r parameters
were taken from the corresponding chain member. For the
best fit model output for temperature, the maximum posterior
probability model output was combined with the
corresponding bias term.
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remaining runs. We are unaware of any improvement in
emulation techniques that could overcome this problem. We
note that in this case the emulator errors are very low in the
absolute sense and they are not expected to affect the esti-
mation results. Overall, based on the cross-validation anal-
ysis, we are confident that the emulator provides a
reasonable tool to interpolate model output.

3. Statistical Model and Markov Chain Monte
Carlo

[26] We use a Bayesian parameter estimation method. In
order to be able to evaluate the likelihood of observations
given the unknown parameters L(Y∣Q), we need a statistical
model that defines the relationship between the model (and
the emulator) output and the observations. We refer to the
emulator output by f̃ t,k(q) (for time t, tracer k, and parameter
combination q). The observations are denoted by yt,k. We
denote each observational time series by yk = y1,k, …, yNk,k

where Nk is the number of observations for tracer k. The set
of all observations is referred to as Y = (yT, yOHC).
[27] We assume that the discrepancy between the emulator

and the observations is due to the time constant bias bk and
time-varying error �t,k. Thus, our statistical model is:

yt;k ¼ f̃ t;k þ bk þ �t;k : ð7Þ

�t,k results from (1) model error, (2) natural climate vari-
ability, (3) emulator error, and (4) observational error. We

assume that �t,k is an autoregressive process of order 1 (AR1)
with unknown AR1 parameters sk

2 and rk. sk
2 represents the

variance of the AR(1) innovations while rk represents the
autocorrelation of lag1 (i.e. correlation of �t,k with �t�1,k).
This form is chosen both for its simplicity and the ability to
account for the uncertain autocorrelation in the error terms.
The bias term bk represents time-independent biases. Note
that for ocean heat content we use anomalies with respect to
the entire observational period. As a result, the average
modeled and observed OHC is 0 by definition and we set
bOHC to 0. Our statistical model is similar to that of Urban
and Keller [2010], although they do not incorporate bias
terms.
[28] For this statistical model, the likelihood of each

observational time series yk given the UVic ESCM model
output and the statistical parameters L(yk∣q, sk, bk, rk) is
given by Bence [1995] and is provided in Appendix A. We
assume independence between the model-data residuals for
different tracers. Under this assumption, the likelihood of
both observations is equal to the product of the individual
likelihoods: L(Y) = L(y1) � L(y2). Denote the set of all
parameters by Q = (Kbg, CS, Asc, sT, rT, bT, sOHC, rOHC).
Using Bayes Theorem, the posterior probability of the
parameters can be calculated as:

p Q∣Yð Þ / L Y ∣Qð Þ � p Qð Þ ð8Þ

where p(Q) is the prior for the parameters (section 4).

Figure 2. (top) Scatterplot of the temperature anomaly (with respect to the 1850–2006 mean, [K]) emu-
lator predictions vs. actual model output values for years 1870, 1940, and 2000. Specifically, each of the
parameter combinations of the ensemble was taken out one at a time, and the emulator was trained on the
remaining 249 ensemble members. Then the emulator was used to predict the missing value. The 1:1 line
is also shown. Note that Y axis limits are different for each subplot. (bottom) Same for the ocean heat con-
tent anomalies (with respect to the 1950–2003 mean, [1 � 1022 J]), for years 1960, 1980, and 2000. The
emulator performance, of course, will be different for other times not shown here.
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[29] Two distinct approaches to estimate the properties of
the error process � are (1) from the observations or models
[Forest et al., 2006; Tomassini et al., 2007], or (2) directly
from the model-data residuals together with the physical
parameters [Urban and Keller, 2010; Goes et al., 2010;
Tonkonojenkov, 2010]. Here we use the second approach
and estimate all parameters together in the MCMC step.
[30] We draw samples from the joint posterior p(Q∣Y)

using the MCMC algorithm [Metropolis et al., 1953;
Hastings, 1970] and generate the posterior probability dis-
tribution of Q. Our MCMC prechains are 50,000 members
long, while the final chain has 300,000 members. We use
information from previous chain covariance to construct the
proposal distribution for each subsequent chain following
Roberts and Rosenthal [2009]. We test the chains for con-
vergence using the MCMC standard errors from the con-
sistent batch means procedure [Flegal et al., 2008; Jones
et al., 2006], and by repeating the assimilation with differ-
ent starting values of the parameters for the final chain.
Neither of these checks suggest any issues with convergence.
Hence, we are satisfied that our MCMC-based inference
provides reasonable estimates of the posterior pdfs.

4. Priors

[31] We run two assimilation experiments. In the base case
experiment we use non-uniform priors for climate sensitivity

and background vertical ocean diffusivity. We refer to this
experiment as NON-UNIF. The priors for this experiment
are listed in Table 1 and plotted in Figure 3. For Kbg the prior
is Lognormal (�1.55, 0.59) cm2 s�1 [Bhat, 2010]. This prior
has a mode of 0.15 cm2 s�1 and a mean of 0.24 cm2 s�1. The
prior represents our prior belief that the values of 0.1–
0.2 cm2 s�1 are more likely than 0.4–0.5 cm2 s�1 which is
suggested by Goes et al. [2010] who use vertical oceanic
tracer distributions to constrain Kbg. The climate sensitivity
prior incorporates weak prior information derived from
current mean climate and Last Glacial Maximum con-
straints. Specifically, we use a product of normal inverse
Gaussian distributions (NIG) of NIG(a = 1.8, d = 2.3, b =
1.2, m = 1.7) and NIG(a = 1.9, d = 3.3, b = 1.0, m = 1.3). We
choose these distributions for their empirical ability to
simultaneously fit the lower, upper, and best estimates from
Knutti and Hegerl [2008], not because we have any theo-
retical motivation for the NIG distribution. While the central
tendencies of the two NIG pdfs are generally compatible
with past studies, the distributions are not based on any
specific pdf from any of these studies. The combined prior
distribution for CS is shown in Figure 3. It has a mean of
3.25°C, and the 90% interval from 1.7 to 5.2°C. We use
uniform priors for Asc and for all statistical parameters over
the ranges specified in Table 1.
[32] To explore the sensitivity of the results to priors, we

run a second assimilation experiment, where all priors are

Figure 3. Posterior (top) pdfs and (bottom) cdfs for model parameters obtained using both temperature
and ocean heat content observations. Red: for the NON-UNIF experiment; blue: for the UNIF experiment.
The dashed probability distribution lines represent the priors used in the NON-UNIF experiment. The
dashed whiskers in the box-and-whisker plots extend to the most extreme data point which is no more than
1.5 interquartile ranges from the box.
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uniform over the ranges shown in Table 1. We refer to this
experiment as UNIF.

5. Results

5.1. Probabilistic Hindcasts

[33] The probabilistic hindcasts capture the overall tem-
poral structure of the observations (Figure 1). Specifically,
the emulator is able to correctly represent the trend due to
greenhouse warming (black line). We add an AR1 error
process (representing model, observational, and emulator
error, as well as the natural variability) to each emulator
from the sub-sampled MCMC chain to produce the 95%
credible intervals. In case of temperature, each emulator is
corrected by adding a corresponding bias term from the
chain. Overall, the method produces a reasonable surprise
index (e.g., 1.9% of the ocean heat content and 5.1% of the
temperature observations lie outside of the 95% hindcast
range).
[34] The surface air temperature from the best fit emulator

illustrates the effects of the stratospheric volcanic aerosols,
with several prominent short-term coolings associated with
the eruptions. For some of these eruptions, such as Agung
(1963) and Mount Pinatubo (1991), the modeled response
matches the observations relatively well, while for others,
such as Krakatoa (1883), the model displays considerable
cooling that is not present in the observations. Some of this
discrepancy might be due to the unresolved climate vari-
ability, and due to the uncertainty in the past volcanic radi-
ative effects [Ammann et al., 2003] and temperature
observations.

5.2. Parameter Estimates

[35] Under the baseline assumptions of non-uniform
priors, posterior pdfs for climate sensitivity and vertical
ocean diffusivity are broadly consistent with previous

studies. The mode of the climate sensitivity pdf is 2.8°C, and
the mean is 3.1°C. The 95% posterior credible interval ran-
ges from 1.8°C to 4.9°C (Table 2). These values are broadly
consistent with the likely range of 2 to 4.5°C, and the most
likely value of 3°C given by the IPCC [Solomon et al.,
2007]. The mode is similar to results from Forest et al.
[2006] and Knutti et al. [2003], and is slightly higher than
those of Tomassini et al. [2007].
[36] For Kbg, we estimate a mode of 0.11 cm2 s�1, and a

mean of 0.19 cm2 s�1 (Table 2 and Figure 3). The pdf for
Kbg was reported to depend on the tracers used to constrain
this parameter [Schmittner et al., 2009]. The mode of the Kbg

matches results of Schmittner et al. [2009] based on global
vertical ocean profiles of CFC11, and of D14C, and is
slightly lower than 0.15 cm2 s�1 reported by Goes et al.
[2010] based on profiles of three tracers. We stress that
Kbg is not directly comparable with vertical diffusivities in
other models [Tomassini et al., 2007; Kriegler, 2005]
because these parameters represent different processes. For
example, our Kbg excludes tidally induced and Southern
Ocean mixing, while the related Kv of Kriegler [2005]
accounts for all vertical mixing processes. Therefore, our
results should be interpreted as specific to our version of
UVic ESCM.
[37] The estimated aerosol scaling factor has the most

likely value of 1.2. This is broadly consistent with the
default assumptions on the aerosol effects in the UVic
ESCM (which imply the value of 1). Estimation of Asc

should be interpreted with caution because Asc implicitly
includes effects due to neglected forcings that might have
emission or concentrations patterns similar to the anthropo-
genic sulfates. To better constrain Asc it will be necessary to
include these neglected forcings. Otherwise, one could
interpret the value of Asc as representing the combined
effects of the aerosols as well as the neglected forcings.
Similar to the case of Kbg, Asc is a model specific parameter
and can not be readily compared to results from other
models [e.g., Tanaka et al., 2009].
[38] As in previous studies, the climate sensitivity pdf, and

its upper tail in particular, are sensitive to the assumptions
about the priors [e.g., Forest et al., 2002, 2006; Sanso and
Forest, 2009; Tomassini et al., 2007; Annan and
Hargreaves, 2011] (Figure 3). For example, replacing the
expert prior with the uniform prior moves the upper bound
of the 95% credible interval for CS to 10.2°C (Table 2). This
is in agreement with the results from Forest et al. [2006], but
considerably higher than those of Annan and Hargreaves
[2011]. This discrepancy might be at least in part because
Annan and Hargreaves [2011] consider a different type of
constraint - Earth Radiation Budget Experiment (ERBE)
data analyzed by Forster and Gregory [2006]. For the uni-
form prior, there is a considerable probability mass above
the upper bound of the IPCC likely range of 4.5°C
(Figure 3), similar to previous studies [e.g., Forest et al.,
2006; Knutti et al., 2003].
[39] The use of uniform priors for climate sensitivity can

be problematic as the posterior estimates are sensitive to the
upper bound for the prior [Annan and Hargreaves, 2011]. In
addition, such priors do not take independently collected
evidence from other studies into account. High climate
sensitivities become possible in this case because the flat
prior assigns them high weight to begin with, while the

Table 2. Properties of the Posterior pdfs of All Estimated
Parameters

Parameter Experiment Mode Mean 95% Credible Interval

Kbg NON-UNIF 0.11 0.19 [0.10, 0.45]
UNIF 0.11 0.30 [0.10, 0.50]

CS NON-UNIF 2.8 3.1 [1.8, 4.9]
UNIF 3.0 4.8 [1.6, 10.2]

Asc NON-UNIF 1.2 1.1 [0.35, 1.5]
UNIF 1.6 1.2 [0.25, 1.8]

sT NON-UNIF 0.10 0.10 [0.091, 0.11]
UNIF 0.10 0.10 [0.091, 0.11]

sOHC NON-UNIF 2.6 2.7 [2.2, 3.3]
UNIF 2.6 2.7 [2.2, 3.3]

rT NON-UNIF 0.58 0.58 [0.44, 0.72]
UNIF 0.58 0.58 [0.44, 0.72]

rOHC NON-UNIF 0.079 0.17 [0.018, 0.43]
UNIF 0.091 0.17 [0.018, 0.42]

bT NON-UNIF �0.031 �0.031 [�0.079, 0.021]
UNIF �0.034 �0.033 [�0.083, 0.022]
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constraint provided by the observations can be relatively
weak. This suggests that it is crucial to use independent prior
information during CS estimation whenever possible.
[40] In addition, in the UNIF experiment the posterior pdf

of Kbg is bimodal (Figure 3). Multimodal pdfs for Kbg have
been previously reported by Forest et al. [2002] and
Tomassini et al. [2007]. It is, thus far, unclear which phys-
ical mechanisms, if any, are driving this bimodality. Note

that here we withhold information on vertical tracer dis-
tributions that is needed to constrain Kbg and that the
bimodality essentially disappears once that constraint is
introduced as a prior in the NON-UNIF case.
[41] Joint bivariate pdfs for parameter pairs exhibit a

complex structure (Figure 4), similar to the results from
Tomassini et al. [2007]. Although this is not visibly evident,
there is some correlation between Kbg and CS. Specifically,

Figure 4. Bivariate joint pdfs for model parameters: (left) for the NON-UNIF experiment and (right)
for the UNIF experiment. The contour lines delineate the 90% and 95% posterior credible intervals. A
1000-member thinned MCMC chain is plotted using red dots. Parameters used for the UVic ESCM
ensemble are shown in thick black circles.
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the correlation is 0.24 in the NON-UNIF experiment, and
0.44 in the UNIF experiment. This is in agreement with 0.4
given by Urban and Keller [2010] even though the two
studies differ in terms of climate models, observational
constraints, and priors. It is difficult to compare these results
with other studies [e.g., Tomassini et al., 2007; Forest et al.,
2002, 2006] because they do not report the numerical value
for the correlation coefficient while the pairs plots of the
parameters can underestimate the correlation [Urban and
Keller, 2010].
[42] Climate sensitivity is even more strongly correlated

with Asc, meaning that for higher climate sensitivity, higher
aerosol effects are needed to explain historical climate
change. This agrees with results from Andreae et al. [2005]
and Tanaka et al. [2009] and implies that reducing uncer-
tainty in Asc will help reduce uncertainty in climate sensi-
tivity. Ruling out high values of Asc is especially important,
because this is where climate sensitivity pdf appears to be
most sensitive to Asc (Figure 4).
[43] When the uniform priors on Kbg and CS are used,

higher aerosol scaling values become possible, even though
the prior on Asc is the same in both cases. Because Asc and
CS are correlated, higher aerosol scalings are necessary to
counteract higher warming due to larger climate sensitivities
in the uniform prior case to match the observations.
[44] Climate parameter estimation using a model with a

3D ocean (GENIE-1) has been previously performed by
Holden et al. [2010] so it might be interesting to compare
our methodology and results with that study. Holden et al.
[2010] vary a much larger set of parameters and derive a
pdf for climate sensitivity using a Last Glacial Maximum
(LGM) tropical Sea Surface Temperature (SST) anomaly as
a main constraint. They also indirectly use information from
several global climate metrics through a pre-calibration
procedure. In our study we consider an orthogonal set of
constraints that includes information about the time-resolved
response of climate to modern forcings. We also provide a
probabilistic estimate of vertical ocean diffusivity Kbg. In
terms of the ocean models used, Holden et al. [2010] employ
a coarse resolution frictional geostrophic model. On the
other hand, the resolution of UVic ESCM is much higher
and the dynamics is based on the Navier-Stokes equations,
subject to the hydrostatic and Boussinesq approximations.
The statistical methodologies are different as well. In par-
ticular, our approach is fully Bayesian and we use explicit
priors for all model parameters. Also, the statistical proper-
ties of the error process are assumed by Holden et al. [2010],
while here we estimate them together with the physical
model parameters. The mode of climate sensitivity given by
Holden et al. [2010] is 3.6°C under the favored set of
assumptions, which is substantially higher than 2.8°C in our
baseline case of non-uniform priors. We cannot attribute this
gap with certainty to any specific factor due to the number of
differences between the studies.

6. Caveats

[45] Our forthcoming conclusions are subject to several
caveats. The first set of caveats deals with the Earth System
model. Our model does not include all forcings (such as,
sulfate effects on clouds or tropospheric ozone [Forster

et al., 2007]). The patterns of some of excluded forcings
might be similar to anthropogenic sulfates, thereby biasing
the Asc estimates. Including thus far neglected forcings is the
subject of future research. Also, we only consider a subset of
uncertain climate parameters. Our results would change if
these additional uncertainties were considered. The model
relies on a number of simplifications. The representation of
open ocean mixing is highly parameterized and ignores, for
example, effects of transient upper ocean mixing processes,
such as tropical cyclones, that have been shown capable of
influencing upper-ocean temperature patterns through mix-
ing of heat [Sriver et al., 2010]. We vary the longwave
radiation feedbacks to change climate sensitivity. In reality,
the uncertainty in shortwave radiative feedbacks also con-
tributes to the CS uncertainty [Bony et al., 2006]. Also, we
only use a single model and neglect the uncertainty in model
response to external forcings [Stouffer et al., 2006]. Finally,
we do not fully account for past climate forcings
uncertainties.
[46] The second set of caveats is concerned with obser-

vations. When a short instrumental record is used, the results
of our method can be influenced by natural climate vari-
ability and by observational errors comprising the residuals
between the model and observations [Tonkonojenkov, 2010].
Adding more observations can improve the parameter esti-
mates, as could using spatially resolved information.
[47] Finally, limitations of the parameter estimation

method deserve mentioning. We use a simplified likelihood
function that does not account for the spectral complexity of
the residuals, nor for the decrease of observational errors
with time. Incorporating a more comprehensive likelihood
function that captures a cross-correlation between the resi-
duals for different tracers is the subject of future research.

7. Conclusions

[48] Using a Bayesian approach, we fuse the UVic ESCM
model with global observations to estimate background
vertical ocean diffusivity (Kbg), climate sensitivity (CS), and
the scaling parameter for the effects of anthropogenic sulfate
aerosols (Asc). Our methodology incorporates the effects of
Kbg on 3D ocean dynamics. We use a Gaussian Process
emulator to provide a fast surrogate for the climate model at
arbitrary parameter combinations. The parameter estimates
can be used to make climate projections using the UVic
ESCM in future studies.
[49] The mode for Kbg is similar to previous results

obtained using oceanic tracers such as CFC11, temperature,
and D14C as constraints. The Kbg pdf is sensitive to the
assumptions about the priors. If a uniform prior is used, then
the results appear to show a bimodality, which is a poten-
tially important result that might need further investigation.
[50] Under the default assumptions of informative priors,

the mode of climate sensitivity is 2.8°C, with the 95%
credible interval from 1.8°C to 4.9°C. This mode is consis-
tent with many previous studies but lower than reported by
Holden et al. [2010], who also use a 3D ocean model. As in
previous studies, the upper tail of the CS pdf is sensitive to
priors. The CS pdf depends critically on Asc, with much
higher climate sensitivities likely at high values of Asc. The
agreement with previous studies that use simpler climate
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models gives more confidence to using these models to
estimate climate sensitivity.

Appendix A

[51] When the statistical model is defined as in section 3,
the likelihood of observational time series yk coming from
the model is given by [Bence, 1995]:

L ykjq;sk ; bk ; rkð Þ ¼ 2ps2
p;k

� ��1=2
exp � 1

2

�21;k
s2
p;k

 !

� 2ps2
k

� �� Nk�1ð Þ=2 � exp � 1

2s2
k

XNk

j¼2

w2
j;k

 !
:

Here sp,k
2 = sk

2/(1 � rk
2) is stationary process variance, Nk

is the number of observational data points for tracer k, and
wt,k = �t,k � rk�t�1,k, t > 1 are whitened errors.
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