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SIDEBAR 3.1: OCEAN SALINITY: A WATER CYCLE DIAGNOSTIC?—P. J. 
DURACK, S. E. WIJFFELS, AND N. L. BINDOFF

Present-day civilizations thrive in a wide range of tempera-
tures at different latitudes across the Earth, but cannot cope 
without available freshwater. Changes to global water distri-
bution are anticipated in the 21st century as anthropogenic 
climate change signatures become more apparent from natural 
variability of the climate system; future projections of surface 
moisture fluxes suggest that regions dominated by evaporation 
(over rainfall over the course of a year), will become drier, 
while regions dominated by rainfall (over evaporation) will 
become wetter (Allen and Ingram 2002; Held and Soden 2006; 
Meehl et al. 2007; Wentz et al. 2007; Seager et al. 2010). In 
water-stressed areas the human population and surrounding 
ecosystems are particularly vulnerable to decreasing or more 
variable rainfall due to climate change. Therefore, understand-
ing probable future changes to the global water cycle are vital, 
as the projections of future climate show considerable changes 
to the water cycle are likely to significantly impact much of the 
world’s population.

The global oceans cover 71% of the global surface, expe-
rience 75%–90% of global surface water fluxes, and contain 
97% of the global freshwater volume (Schmitt 1995). As the 
ocean and land surface warms, so will the lower troposphere, 
and the amount of water vapor it can carry increases; this 
simple effect is anticipated to drive a stronger water cycle, 
with arid regions becoming drier and wet regions wetter 
(Held and Soden 2006). As the oceans are the engine room of 
the global water cycle, ocean salinity 
changes can be used to provide an 
estimate of broad-scale global wa-
ter cycle changes and their regional 
patterns. Here, we review some of 
the major progress in understanding 
observed global water cycle changes 
in the ocean since the publication of 
the IPCC Fourth Assessment Report 
(AR4; Bindoff et al. 2007).

Global surface salinity is strongly 
correlated with the spatial patterns of 
E-P [evaporation (E) minus precipita-
tion (P)] in the climatological mean. 
This relationship—where regions of 
low salinity correspond with regions 
of low (or negative) E-P and regions 
of high salinity with high E-P—provide 
some confidence in using salinity as a 
marker of global water cycle changes. 
Over long-timescales, the ocean inte-

grates and smoothes high frequency and spatially patchy E-P 
fluxes at the ocean surface and provides a smoothed salinity 
anomaly field that facilitates detection of large-scale changes.

Patterns of long-term changes to surface salinity are now 
available, based on both trend fits directly to ocean data (e.g., 
Freeland et al. 1997; Curry et al. 2003; Boyer et al. 2005; 
Gordon and Giulivi 2008; Durack and Wijffels 2010) and com-
parisons of Argo era (2003–present) modern- to historical-
ocean climatologies (e.g., Johnson and Lyman 2007; Hosoda et 
al. 2009; Roemmich and Gilson 2009; von Schuckmann et al. 
2009; Helm et al. 2010). The patterns of multidecadal salin-
ity change from these analyses show remarkable similarities 
between the mean E-P field and mean salinity field (Fig. 3.17). 
Rainfall-dominated regions such as the western Pacific warm 
pool, for example, have undergone a long-term freshening, and 
arid regions in the subtropical, evaporation-dominated ‘desert 
latitudes’ have generally increased in salinity (e.g., Fig. 3.17b).

Observed surface salinity changes suggest that changes in 
the global water cycle have occurred. The mean surface salinity 
climatology and the pattern of multidecadal (50-year) linear sur-
face salinity changes (Durack and Wijffels 2010) have a spatial 
correlation of 0.7 (Fig. 3.18). Using this spatial relationship the 
amount of salinity pattern amplification can be obtained, with 
these data implying an amplification of the mean ocean surface 
salinity pattern of 8.0% has occurred between 1950 and 2000 
(Fig. 3.18). In order to enhance the signal-to-noise for pattern 

FIG. 3.17. (a) Ocean-atmosphere freshwater flux (E-P; m3 yr-1) averaged over 
1980–93 (Josey et al. 1998). Contours every 1 m3 yr-1 in white. (b) The 50-year 
linear surface salinity trend (PSS-78 50 yr-1). Contours every 0.25 (PSS-78) are 
plotted in white. On both panels, the 1975 surface mean salinity is contoured 
black [contour interval 0.5 (PSS-78) for thin lines, 1 for thick lines]. Due to 
limited observational E-P coverage a direct 1950–2000 climatology is not 
currently available, however the field produced by Josey et al. 1998 closely 
matches climatological means developed from many varied products over dif-
fering time periods (e.g. da Silva et al. 1994; Schanze et al. 2010) and provide a 
very similar spatial E-P pattern of correspondence with surface climatological 
mean salinity. Reproduced from Durack and Wijffels (2010).
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FIG. 3.18. Observed surface salinity changes versus 
mean salinity anomalies—fresh gets fresher and salty 
waters saltier. The x-axis is the basin zonally-averaged 
anomaly from the mean surface salinity (34.8 PSS-78), 
and the y-axis is the associated basin zonally-averaged 
multidecadal linear salinity change trend (PSS-78 50 
yr-1). The blue and red ellipses are representative of 
regions where fresh (compared to the global surface 
mean salinity) are getting fresher and salty getting 
saltier, respectively. Using the full global surface salin-
ity analysis (Durack and Wijffels 2010), and basin-zonal 
mean averaging to enhance the signal-to-noise, yields 
a mean salinity climatology pattern amplification of 
8%. 

SIDEBAR 3.1: OCEAN SALINITY: A WATER CYCLE DIAGNOSTIC?—
P. J. DURACK, S. E. WIJFFELS, AND N. L. BINDOFF

cont.

amplification a spatial smoothing technique is applied to the 
global data; this develops basin-bound zonal means for both 
climatological mean salinity anomalies (compared with the 
global surface climatological mean salinity) and their associated 
50-year salinity trends, and are termed basin-zonally-averaged 
means and anomalies, respectively. This robust global tendency 
towards an enhanced surface salinity pattern provides broad-
scale agreement with the regional studies of Cravatte et al. 
(2009) and Curry et al. (2003), and numerous global analyses 
of surface salinity change (e.g., Boyer et al. 2005; Hosoda et 
al. 2009; Roemmich and Gilson 2009). These ocean surface 
salinity changes demonstrate that wet regions get fresher and 
dry regions saltier, following the expected response of an 
amplified water cycle.

Patterns of long-term subsurface salinity changes on pres-
sure surfaces also largely follow an enhancement of the existing 
mean pattern. The interbasin contrast between the Atlantic 
(salty) and Pacific (fresh) intensifies over the observed record 
(e.g., Boyer et al. 2005; Johnson and Lyman 2007; Gordon 
and Giulivi 2008; Hosoda et al. 2009; Roemmich and Gilson 
2009; von Schuckmann et al. 2009; Durack and Wijffels 2010). 
These deep-reaching salinity changes suggest that past water 
cycle changes have propagated into the ocean interior, with a 
clear enhancement to the high-salinity subtropical waters, and 
freshening of the high-latitude waters. A particularly strong and 
coherent freshening expressed in the Antarctic intermediate 
water subduction pathway centered around 50°S has also been 
detected (Johnson and Orsi 1997; Wong et al. 1999; Bindoff 
and McDougall 2000; Antonov et al. 2002; Curry et al. 2003; 

freshening has occurred in the upper 100 m. A region 
of salinification occurs centered at 48°N. Freshening 
occurs in the 30°N–45°N belt extending to 1000 m 
depth. Salinification occurs in the upper 50 m of the 
10°N–30°N belt. At 12°N, freshening occurs centered 
about a depth of 100 m. A belt of salinification occurs 
centered at 20°N between 150 m and 800 m depth. In 
the 0°–10°S, belt there is a region of relatively large 
salinification limited to approximately the upper 50 
m. In the 10°S–20°S region, there is salinification sug-
gesting an increase in SMW production or an increase 
in its salinity. In the region 25°S–30°S, freshening 
has occurred. Centered at 40°S, salinification has 
occurred in the 125 m–700 m layer.

g. Surface currents—R. Lumpkin, K. Dohan, and G. Goni
Near-surface currents are measured in situ by 

drogued satellite-tracked drifting buoys and by cur-
rent meters on moored Autonomous Temperature 

Line Acquisition System (ATLAS) buoys.1 During 
2010, the drifter array ranged in size from a minimum 
of 887 drogued buoys to a maximum of 1184, with 
a median size of 1129 drogued buoys (undrogued 
drifters continue to measure SST, but are subject 
to significant wind slippage; Niiler et al. 1987). The 
moored array included 37 buoys with current meters, 
all between 12°S and 21°N. These tropical moorings 
compose the TAO/TRITON (Pacific; 16 buoys with 
current meters), PIRATA (Atlantic; 6 buoys) and 
RAMA (Indian; 15 buoys) arrays. 

1  Drifter data is distributed by NOAA/AOML at http://www.
aoml.noaa.gov/phod/dac/gdp.html. Moored data is distrib-
uted by NOAA/PMEL at http://www.pmel.noaa.gov/tao. 
OSCAR gridded currents are available at http://www.oscar.
noaa.gov/ and http://podaac.jpl.nasa.gov/. AVISO gridded al-
timetry is produced by SSALTO/DUACS and distributed with 
support from CNES, at http://www.aviso.oceanobs.com/. 
Analyses of altimetry-derived surface currents are available 
at http://www.aoml.noaa.gov/phod/altimetry/cvar.
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Boyer et al. 2005; Roemmich and Gilson 2009; Hosoda et al. 
2009; Durack and Wijffels 2010; Helm et al. 2010). Studies 
have also reported long-term and coherent salinity changes on 
subsurface density horizons (e.g., Wong et al. 1999; Curry et al. 
2003; Helm et al. 2010). In this framework Durack and Wijffels 
(2010), show that many changes are dominated by subduction 
into the deep ocean driven by a broad-scale warming, and thus 
are less useful in reflecting changes in the water cycle.

In summary, several recent studies employing different 
analysis techniques find a clear multidecadal ocean surface 
salinity change. Broad-scale changes can be characterized as an 
amplification of the climatological salinity pattern, a tendency 
also found in the subsurface. The consensus view of coherent 
salinity change arises, even though many different analysis 
techniques and ocean salinity observing platforms have been 
used—reflecting the robustness of the signal. To first order, 
this suggests that broad zonal changes to E-P have changed 
ocean surface salinity, and changes are propagating into the 
subsurface ocean following the mean circulation pathways. 
An enhancement to mean salinity patterns and basin contrasts 
are the result.

How rates of salinity changes translate into rates of water 
cycle change remains to be determined. The ocean mixing 
through circulation and subduction of salinity anomalies re-
duces the E-P surface flux changes expressed in surface ocean 
salinity. Global coupled ocean-atmosphere climate models are 
the best tools currently available to investigate salinity and E-P 

For homogeneous coverage and analyses such as 
the one presented here, ocean currents are estimated 
using two methodologies, both using the Archiving, 
Validation and Interpretation of Satellite Oceano-
graphic data (AVISO) multimission altimeter near-
real time gridded product. The first is a synthesis 
of AVISO with in situ drifter measurements and 
reanalysis winds (Niiler et al. 2003), which adjusts the 
altimeter-derived geostrophic velocity anomalies to 
match the observed in situ eddy kinetic energy. The 
second is the purely satellite-based OSCAR (Ocean 
Surface Current Analyses–Real time) product, which 
uses AVISO altimetry, winds, SST, and the Rio05 
mean dynamic topography (Rio and Hernandez 
2004) to create a 0.33°-resolution surface current 
maps averaged over the 0 m–30 m layer of the ocean 
(Bonjean and Lagerloef 2002). In both cases, anoma-
lies are calculated with respect to the time period 
1992–2007. 

Global zonal current anomalies, and changes in 

anomalies from 2009, are shown in Figs. 3.19 and 3.20 
and discussed below for individual ocean basins. In 
the analysis, an “eastward anomaly” is an increase 
in an eastward current, or a decrease in a westward 
current, and indicated as a positive zonal current 
anomaly. Similarly, negative anomalies are westward 
(decrease in an eastward current, or increase in a 
westward one).

1) PACIFIC OCEAN

In the equatorial Pacific, 2010 began with equato-
rial eastward anomalies of ~50 cm s-1 in the center 
and western side of the basin, associated with the El 
Niño event of 2009 (Fig. 3.20). By the end of January, 
eastward anomalies persisted west of the dateline, but 
strong (30 cm s-1– 50 cm s-1) westward anomalies had 
developed in the longitude band 130°W–160°W. The 
region of eastward anomalies propagated east across 
the Pacific during February through early March, 
while westward anomalies grew in their wake. By 

change relationships, as the current observed record is 
too temporally and spatially sparse.

Many previous studies have used regional and global 
estimates of ocean salinity changes to infer water cycle 
changes. Hosoda et al. (2009) presented estimates of 
water cycle enhancement, derived from ocean salinity 
change trends by comparing the Argo period (2003–07) 
against the World Ocean Database (~1960–89). They 
reported an inferred global E-P enhancement of 3.7 ± 
4.6% over their 30-year comparison, which considered 
surface salinity layer changes to 100 m depth. This 
enhancement is supported by the results of Trenberth 
et al. (2007) and Yu (2007), obtained from correlations 
with SST 1970–2005 (4%) and evaporation estimates 
1978–2005 (~10%) respectively.

This ocean footprint of a strengthening water 
cycle captured in surface (and subsurface) salinity 
changes suggests that the remaining 29% of the global 
terrestrial surface has also likely experienced changes 
over the 1950–2000 period. Continued monitoring of 
future ocean property changes are necessary to effec-
tively monitor and diagnose the effect of anthropogenic 
change and the rate of its evolution on our global climate 
system.
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FIG. 3.19. Global zonal geostrophic anomalies for 2010 
(top) and 2010 minus 2009 (bottom), cm s-1, derived 
from a synthesis of drifters, altimetry, and winds. 

April, westward anomalies were found across the en-
tire equatorial Pacific. These anomalies reached their 
maximum amplitudes in mid-to-late May, with values 
of 60 cm s-1–70 cm s-1 in the longitude band 110°W–
140°W. This La Niña pattern persisted through boreal 
summer, although its amplitude diminished through 
this time period. The anomalous westward advec-
tion of salty water likely contributed to salty surface 
anomalies in the western equatorial Pacific (Fig. 
3.12b). By October, the westward anomaly pattern was 
sufficiently weak that mesoscale patterns associated 

with tropical instability waves began dominating the 
surface current anomaly field in the region.

Surface current anomalies in the equatorial Pa-
cific typically lead SST anomalies by several months, 
with a magnitude that scales with the SST anomaly 
magnitude. Recovery to normal current conditions 
is also typically seen before SST returns to normal. 
Thus, current anomalies in this region are a valuable 
predictor of the evolution of SST anomalies and their 
related climate impacts. This leading nature can be 
seen clearly in the first principal empirical orthogo-
nal function (EOF) of surface current anomaly and 
separately of SST anomaly in the tropical Pacific basin 
(Fig. 3.20). In mid-2010, the values of the normalized 
surface current and SST EOFs exceeded those of the 
2000 and 2008 La Niñas, and hence by this metric, 
this year’s La Nina was the strongest such event in 
the last decade.

In 2010, the Kuroshio Current exhibited a more 
stable path than in the last several years, with a nar-
rower and stronger annual mean signature and a 
reduced area of enhanced eddy kinetic energy. Com-
pared to 2006–09, the Kuroshio shifted approximately 
1° in latitude to the north (Fig. 3.21). This shift may 
be related to the Kuroshio extension jet entering the 
strong phase of a decadal-scale f luctuation associ-
ated with the strength of the Kuroshio recirculation 
gyre and stability of the jet (Qiu and Chen 2005). Qiu 
and Chen (2005) hypothesized that this fluctuation 
is driven by the Pacific Decadal Oscillation (PDO), 
which in its negative (positive) phase generates nega-
tive (positive) sea height anomalies in the northeast 
Pacific which propagate to the western boundary 
and weaken (strengthen) the Kuroshio jet. Possibly 
consistent with this hypothesis, the PDO index gener-
ally dropped from 2004 to 2008 but rapidly increased 
through the latter part of 2009 and early 2010 (Yu 
and Weller 2010). However, it subsequently dropped 
precipitously in July 2010 (see the “Monthly Ocean 
Briefing” presentation by NOAA’s Climate Prediction 
Center at http://www.cpc.ncep.noaa.gov/products/
GODAS), suggesting that the northward shift may 
not persist through 2011.

2) INDIAN OCEAN

Westward equatorial anomalies began developing 
in the western Indian Ocean in January, and by mid-
February exceeded 50 cm s-1 at 50°E–65°E, with weak-
er westward anomalies from 80°E to the West African 
coast. This short-lived anomaly pattern was gone by 
the end of March. In July, weaker eastward anomalies 
began developing in the center and eastern side of the 

FIG. 3.20. Principal empirical orthogonal functions 
(EOF) of surface current (SC) and of SST anomaly vari-
ations in the tropical Pacific from the OSCAR model. 
Top: Amplitude time series of the EOFs normalized by 
their respective standard deviations. Bottom: Spatial 
structures of the EOFs. 


