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roughly 20° and 25° in latitude are signatures of the 
predominance of evaporation over precipitation. 
Conversely, in most regions where climatological 
surface salinities are relatively fresh, such as the 
high latitudes and the Inter Tropical Convergence 
Zones (ITCZs), precipitation generally dominates 
over evaporation.

The 2010 SSS anomalies from WOA 2001 (Fig. 
3.12a) reveal some large-scale patterns that also hold 
in 2004 through 2009. The regions around the sub-
tropical salinity maxima are mostly salty with respect 
to WOA 2001. Most of the high-latitude climatologi-
cally fresh regions appear fresher than WOA 2001, 
including most of the Antarctic circumpolar current 
near 50°S and the subpolar gyre of the North Pacific. 
These patterns are consistent with an increase in the 
hydrological cycle (that is, more evaporation in drier 
locations and more precipitation in rainy areas), as 
seen in simulations of global warming. These simula-

tions suggest this signal might be discernible over the 
last two decades of the 20th century (Held and Soden 
2006), consistent with the multiyear nature of these 
anomalies. While anomalous ocean advection could 
influence the SSS pattern over decadal time scales, 
changes observed at the local extrema are presum-
ably relatively insensitive to such effects. The analysis 
presented here for SSS anomalies is supported by 
others: difference of maps of 2003–07 Argo data and 
historical 1960–89 ocean data prepared in the same 
fashion show a similar pattern (Hosoda et al. 2009), 
as do estimates of linear trends from 1950 to 2008 
(Durack and Wijffels 2010; see Sidebar 3.1 for further 
discussion, including interior ocean trends).

In contrast to the other high latitude areas, the 
subpolar North Atlantic and Nordic seas in 2010 
are mostly anomalously salty (except east of Green-
land) with respect to WOA 2001 (Fig. 3.12a), as they 
have been since at least 2004 (see previous State of 
the Climate reports). On the basin scale the North 
Atlantic loses some freshwater to the atmosphere 
whereas the North Pacific gains some (Schanze et al. 
2010), thus the changes here may again be consistent 
with an increased hydrological cycle. In addition, 
the salty anomaly in this region is consistent with a 
stronger influence of subtropical gyre waters in the 
northeastern North Atlantic in recent years coupled 
with a reduced extent of the subpolar gyre (Häkkinen 
et al. 2011). 

Sea surface salinity changes from 2009 to 2010 
(Fig. 3.12b) strongly reflect 2010 anomalies in pre-
cipitation (Plate 2.1g), as well as year-to-year changes 
in evaporation, with the latter being closely related 
to latent plus sensible heat flux anomalies (Fig. 3.9b). 
Advection by anomalous ocean currents (Fig. 3.19) 
also plays a strong role in year-to-year variability of 
sea surface salinity. For instance, the western equa-
torial Pacific became considerably saltier from 2009 
to 2010 while the central-eastern equatorial Pacific 
became fresher (Fig. 3.12b). This shift is likely par-
tially owing to advection of salty water from the east 
by the anomalously westward surface currents on the 
Equator during that time, but an eastward shift in 
convection and precipitation in the equatorial Pacific 
during the strong El Niño in boreal winter 2009/10 
also plays a large role. This pattern appears only 
partly compensated by the onset of La Niña later in 
2010. The portion of the southwestern tropical region 
that became saltier in 2010 relative to 2009 may also 
have changed partly owing to anomalous westward 
surface currents. The eastern Pacific and Atlantic 
ITCZs also became fresher during this time period, 

FIG. 3.12. (a) Map of the 2010 annual surface salinity 
anomaly estimated from Argo data [colors in 1978 
Practical Salinity Scale (PSS-78)] with respect to a 
climatological salinity field from WOA 2001 (gray 
contours at 0.5 PSS-78 intervals). (b) The difference 
of 2010 and 2009 surface salinity maps estimated 
from Argo data [colors in PSS-78 yr-1 to allow direct 
comparison with (a)]. Gray areas are too data-poor to 
map. While salinity is often reported in practical salin-
ity units (PSU), it is actually a dimensionless quantity 
reported on the PSS-78.
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at least partly owing to anomalously strong precipita-
tion in these regions during 2010. Anomalous vertical 
advection may also play a role in these changes, but is 
not analyzed here. There are strong correspondences 
between the surface salinity changes from 2009 to 
2010 and subsurface changes over the same period 
(Figs. 3.14–3.16), with some of the surface changes 
apparently penetrating deep into the water column, 
suggesting influences of shifting ocean currents and 
fronts.

Trends from 2004 through 2010 are estimated 
by local linear fits to annual average SSS maps (Fig. 
3.13a). The ratio of these trends to their 95% signifi-
cance are also assessed (Fig. 3.13b). The starting year 
is 2004 because Argo coverage became near global 
then. The most striking trend patterns are in the Pa-
cific. Saltier surface values in the western and central 
tropical Pacific extend into the eastern Pacific sub-
tropics in both hemispheres. A strong freshening also 
occurs in the western subtropics of each hemisphere 
in the Pacific and the far western tropical Pacific, ex-
tending into the Indian Ocean northwest of Australia. 

Large-scale freshening is also evident in the tropical 
Southeast Pacific. These recent trends differ from 
the 50-year trends discussed in the salinity sidebar 
of this chapter. These differences are not surprising 
given the very different time periods over which the 
trends are computed.

f. Subsurface salinity—S. Levitus, J. Antonov, T. Boyer, J. Reagan, 
and C. Schmid
Levitus (1989a, 1989b, 1989c), Antonov et al. 

(2002), Boyer et al. (2005), and Durack and Wijffels 
(2010) documented basin-scale changes of salinity 
for all or part of the world ocean on interpentadal 
or interdecadal time scales. Salinity changes reflect 
changes in the Earth’s hydrological cycle and also 
contribute to change in sea level and ocean currents 
(Levitus 1990; Greatbatch et al. 1991; Sidebar 3.1). 

The World Ocean Database 2009 (Boyer et al. 
2009) updated through December 2010 has been used 
as the source of subsurface salinity data used in the 
analyses of 2009 and 2010 and climatological salinity 
conditions presented here. For 2009–10 it is primar-
ily data from Argo profiling f loats (approximately 
109 000 profiles) that extend as deep as 2000 m and 
provide near-global coverage for the region within 
60° of the Equator. Data from the TAO/TRITON, 
PIRATA, and RAMA arrays of tropical moored buoys 
provide important data in the upper 500 m of the 
water column. Approximately 13 000 ship-based con-
ductivity/temperature/depth casts and 52 635 glider 
casts (these were highly localized in space) were also 
used. Final quality control has not been performed on 
some of the most recent observations used here, but 
it is not believed that additional quality control will 
substantially affect the results presented here. All data 
are available at http://www.nodc.noaa.gov.

The analysis procedure is as follows. First, monthly 
global analyses of salinity anomalies at standard 
depth levels from the sea surface to 2000 m depth are 
computed for years 2009 and 2010. For initial fields 
in the objective analyses the monthly salinity clima-
tologies from the World Ocean Atlas 2009 (WOA09; 
Antonov et al. 2010) are used. Then observed data 
averaged on a 1° square grid at each standard depth 
are subtracted from the appropriate 1° climatological 
monthly mean. The next step is to objectively analyze 
(Antonov et al. 2010) these anomaly fields to gener-
ate a monthly anomaly field with an anomaly value 
defined at each grid point. The monthly anomaly 
fields are time averaged at each depth and gridpoint 
to define an annual mean anomaly field for each 

FIG. 3.13. (a) Map of local linear trends estimated from 
annual surface salinity anomalies for the years 2004 
through 2010 estimated from Argo data (colors in PSS-
78 yr-1). (b) Signed ratio of the linear trend to its 95% 
uncertainty estimate, with increasing color intensity 
showing regions with increasingly statistically signifi-
cant trends. Gray areas are too data-poor to map.
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standard depth level. This is 
done for 2009 and 2010.

Subsurface changes in 
salinity for the three major 
basins of the world ocean are 
documented in two ways. 
The first is to zonally aver-
age the WOA09 climatology 
and the 2010 annual mean 
field for each basin and plot 
these difference fields as a 
function of depth and lati-
tude for the upper 1000 m of 
each basin as in Figs. 3.14a, 
3.15a, and 3.16a. Examining 
these figures allows docu-
mentation of the difference 
in salinity conditions be-
tween 2010 and the “long-term” mean as best as can 
be determined with the historical data available used 
to construct WOA09. We only document variability 
in the upper 1000 m where signals are the largest 
and the figures can clearly document the changes 
that have occurred. This does not imply that changes 
deeper than 1000 m have not occurred, especially for 
the Atlantic. The second way is to document changes 
between these two years by zonally averaging the 2009 
annual mean field by basins and plotting the 2010 
minus the 2009 fields. It should be noted that it is 
only the advent of the Argo profiling float observing 
system that allows such a computation.

Figure 3.14a shows the 2010 minus climatology 
changes in salinity for the Pacific Ocean. There is a 
strong region of freshening (negative values) located 
in the 50°S–70°S region extending to 1000 m depth. 
In the 0°–45°S region there is a region of strong salini-
fication (positive values) in the upper 200 m. This 
overlies a region of freshening that extends to about 
700 m depth. In the 10°N–28°N region salinity has 
increased in the upper 125 m indicating an increase 
in the salinity of subtropical mode water (SMW; Ya-
suda and Hanawa 1997), an increase in the amount 
of SMW formed or both. In the 30°N–40°N region 
freshening occurred with the freshening extending 
as far south as 10°N at subsurface depths.

Figure 3.14b shows the 2010 minus 2009 changes 
in salinity for the Pacific Ocean. Most changes in sub-
surface salinity occur in the upper 400 m of this basin. 
At the sea surface, the 15°N–32°N region has become 
more saline with the positive anomaly extending 
south to about 10°N with increasing depth. This sug-
gests changes in the properties of, or the amount of, 

SMW formed. A similar feature appears in the South 
Pacific centered around 20°S but with the more saline 
near-surface waters extending both further south and 
north. The subsurface high saline tongue extends 
northward to about 10°S. A surface freshening has 
occurred centered near 12°N that extends southward 
with increasing depth. This surface freshening may 
represent changes in rainfall in the Intertropical 
Convergence Zone (ITCZ). A relative maximum in 
freshening occurs centered at about 2°N at 125 m 
depth. This may not be directly related to changes in 
the ITCZ but could be linked to changes in upwelling 
or downwelling near the Equator which could be fur-
ther linked to changes in the equatorial and tropical 
wind fields. Another region of subsurface freshening 
is centered near 12°S at 225 m depth. This might be 
related to changes in the tropical wind field.

Figure 3.15a shows the 2010 minus climatology 
changes in salinity for the Indian Ocean. Similar 
to the Pacific a region of freshening located in the 
50°S–70°S region that extends to 1000 m depth. Im-
mediately to the north of this feature a region (30°S–
45°S) of salinification has occurred. Another region 
of salinification has occurred extending northward 
and downward from 30°S. Freshening has occurred in 
the 10°S–20°S region and salinification has occurred 
in the 10°S–12°N region.

Figure 3.15b shows the 2010 minus 2009 changes in 
salinity for the Indian Ocean. As in the Pacific, most 
changes in subsurface salinity occur in the upper 400 
m of this basin. A notable exception occurs at 50°S. At 
16°N and a depth of 50 m a relatively strong freshen-
ing occurred that extends to about 400 m depth. A 
possible explanation for this strong freshening at the 

FIG 3.14. (a) Zonal mean 2010 salinity anomaly vs. latitude and depth for the 
Pacific Ocean. (b) Salinity anomaly 2010 minus 2009 vs. latitude and depth 
for the Pacific Ocean. For both plots blue shading is for areas of negative 
(fresh) anomaly < -0.01. Red shading is for areas of positive (salty) anomaly 
> 0.01. Contour interval shown for anomalies is 0.02. In the background (thick 
blue contours) is the zonally averaged climatological mean salinity. Contour 
intervals for the background are 0.4. All values are on the Practical Salinity 
Scale. WOA09 was used as the reference climatology for anomalies and for 
background means. 
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surface and deeper depths could be the ENSO impact 
on the Asian summer monsoon. In 2009 a strong El 
Niño occurred, whereas in 2010 conditions changed 
to a moderate-to-strong La Niña. It has been shown by 
Lim and Kim (2007) that during warm ENSO events 
(e.g., 2009), the Walker circulation in the tropical 
Pacific is displaced eastward resulting in higher sea 
level pressure in the western tropical Pacific and con-
sequently results in subsidence over the western tropi-
cal Pacific and Indian Ocean. This pattern in turn, 
inhibits the ability for the monsoon to strengthen and 
thus less rainfall than normal falls (e.g., less fresh-
ening). Cold ENSO (e.g., 2010) events produce the 
reverse, with more lift in the Indian Ocean and west-
ern tropical Pacific resulting in stronger monsoons 
and more rainfall (e.g., more freshening). It should 
be noted that based on the 
work done by Kumar et al. 
(1999), this simple inverse 
relationship between ENSO 
and the Asian summer mon-
soon has weakened over the 
past two of decades. At 8°N 
a relatively strong increase 
in salinity has occurred ex-
tending to about 125 m with 
a similar increase in the 2°S–
12°S region within the top 
50 m of the water column. 
Another region of freshen-
ing is centered at 15°S and 
100 m depth.

Figure 3.16a shows the 
2010 minus cl imatolog y 

changes in salinity for the 
At lant ic Ocean. Simi lar 
to the Pacif ic and Indian 
oceans, a region of freshen-
ing occurs at high latitudes 
of the southern hemisphere 
extending to relatively deep 
depths (900 m). Immediately 
to the north is a region of 
salinification that is greater 
in magnitude than the cor-
responding region in the 
Indian Ocean. Unlike the 
North Pacif ic, the North 
Atlantic is characterized by 
an increase in salinity ex-
tending to several hundred 
meters depth. One exception 

is a very shallow region of freshening in the 0°–10°N 
region.

Figure 3.16b shows the 2010 minus 2009 changes 
in salinity for the Atlantic Ocean. Unlike the other 
two basins, changes in salinity have occurred to 
depths of 1000 m even on this one year time scale. 
This may be due in part to deep convection and the 
shifting position of large-scale fronts that have large 
vertical extension. Levitus (1989c) documented 
statistically significant large-scale changes at 1750 
m depth for this basin on time scales of 20 years. 
Yashayaev and Loder (2009) discuss the variability 
of production of convectively formed Labrador Sea 
water. In the 60°N–70°N region, salinification has oc-
curred that is strongest at the sea surface but extends 
vertically to 500 m depth. In the 50°N–60°N region, 

FIG 3.16. (a) Zonal mean 2010 salinity anomaly vs. latitude and depth for the 
Atlantic Ocean. (b) Salinity anomaly 2010 minus 2009 vs. latitude and depth 
for the Atlantic Ocean. For both plots blue shading is for areas of negative 
(fresh) anomaly < -0.01. Red shading is for areas of positive (salty) anomaly 
> 0.01. Contour interval shown for anomalies is 0.02. In the background (thick 
blue contours) is the zonally averaged climatological mean salinity. Contour 
intervals for the background are 0.4. All values are on the Practical Salinity 
Scale. WOA09 was used as the reference climatology for anomalies and for 
background means. 

FIG 3.15. (a) Zonal mean 2010 salinity anomaly vs. latitude and depth for the 
Indian Ocean. (b) Salinity anomaly 2010 minus 2009 vs. latitude and depth 
for the Indian Ocean. For both plots blue shading is for areas of negative 
(fresh) anomaly < -0.01. Red shading is for areas of positive (salty) anomaly 
> 0.01. Contour interval shown for anomalies is 0.02. In the background (thick 
blue contours) is the zonally averaged climatological mean salinity. Contour 
intervals for the background are 0.4. All values are on the Practical Salinity 
Scale. WOA09 was used as the reference climatology for anomalies and for 
background means. 
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SIDEBAR 3.1: OCEAN SALINITY: A WATER CYCLE DIAGNOSTIC?—P. J. 
DURACK, S. E. WIJFFELS, AND N. L. BINDOFF

Present-day civilizations thrive in a wide range of tempera-
tures at different latitudes across the Earth, but cannot cope 
without available freshwater. Changes to global water distri-
bution are anticipated in the 21st century as anthropogenic 
climate change signatures become more apparent from natural 
variability of the climate system; future projections of surface 
moisture fluxes suggest that regions dominated by evaporation 
(over rainfall over the course of a year), will become drier, 
while regions dominated by rainfall (over evaporation) will 
become wetter (Allen and Ingram 2002; Held and Soden 2006; 
Meehl et al. 2007; Wentz et al. 2007; Seager et al. 2010). In 
water-stressed areas the human population and surrounding 
ecosystems are particularly vulnerable to decreasing or more 
variable rainfall due to climate change. Therefore, understand-
ing probable future changes to the global water cycle are vital, 
as the projections of future climate show considerable changes 
to the water cycle are likely to significantly impact much of the 
world’s population.

The global oceans cover 71% of the global surface, expe-
rience 75%–90% of global surface water fluxes, and contain 
97% of the global freshwater volume (Schmitt 1995). As the 
ocean and land surface warms, so will the lower troposphere, 
and the amount of water vapor it can carry increases; this 
simple effect is anticipated to drive a stronger water cycle, 
with arid regions becoming drier and wet regions wetter 
(Held and Soden 2006). As the oceans are the engine room of 
the global water cycle, ocean salinity 
changes can be used to provide an 
estimate of broad-scale global wa-
ter cycle changes and their regional 
patterns. Here, we review some of 
the major progress in understanding 
observed global water cycle changes 
in the ocean since the publication of 
the IPCC Fourth Assessment Report 
(AR4; Bindoff et al. 2007).

Global surface salinity is strongly 
correlated with the spatial patterns of 
E-P [evaporation (E) minus precipita-
tion (P)] in the climatological mean. 
This relationship—where regions of 
low salinity correspond with regions 
of low (or negative) E-P and regions 
of high salinity with high E-P—provide 
some confidence in using salinity as a 
marker of global water cycle changes. 
Over long-timescales, the ocean inte-

grates and smoothes high frequency and spatially patchy E-P 
fluxes at the ocean surface and provides a smoothed salinity 
anomaly field that facilitates detection of large-scale changes.

Patterns of long-term changes to surface salinity are now 
available, based on both trend fits directly to ocean data (e.g., 
Freeland et al. 1997; Curry et al. 2003; Boyer et al. 2005; 
Gordon and Giulivi 2008; Durack and Wijffels 2010) and com-
parisons of Argo era (2003–present) modern- to historical-
ocean climatologies (e.g., Johnson and Lyman 2007; Hosoda et 
al. 2009; Roemmich and Gilson 2009; von Schuckmann et al. 
2009; Helm et al. 2010). The patterns of multidecadal salin-
ity change from these analyses show remarkable similarities 
between the mean E-P field and mean salinity field (Fig. 3.17). 
Rainfall-dominated regions such as the western Pacific warm 
pool, for example, have undergone a long-term freshening, and 
arid regions in the subtropical, evaporation-dominated ‘desert 
latitudes’ have generally increased in salinity (e.g., Fig. 3.17b).

Observed surface salinity changes suggest that changes in 
the global water cycle have occurred. The mean surface salinity 
climatology and the pattern of multidecadal (50-year) linear sur-
face salinity changes (Durack and Wijffels 2010) have a spatial 
correlation of 0.7 (Fig. 3.18). Using this spatial relationship the 
amount of salinity pattern amplification can be obtained, with 
these data implying an amplification of the mean ocean surface 
salinity pattern of 8.0% has occurred between 1950 and 2000 
(Fig. 3.18). In order to enhance the signal-to-noise for pattern 

FIG. 3.17. (a) Ocean-atmosphere freshwater flux (E-P; m3 yr-1) averaged over 
1980–93 (Josey et al. 1998). Contours every 1 m3 yr-1 in white. (b) The 50-year 
linear surface salinity trend (PSS-78 50 yr-1). Contours every 0.25 (PSS-78) are 
plotted in white. On both panels, the 1975 surface mean salinity is contoured 
black [contour interval 0.5 (PSS-78) for thin lines, 1 for thick lines]. Due to 
limited observational E-P coverage a direct 1950–2000 climatology is not 
currently available, however the field produced by Josey et al. 1998 closely 
matches climatological means developed from many varied products over dif-
fering time periods (e.g. da Silva et al. 1994; Schanze et al. 2010) and provide a 
very similar spatial E-P pattern of correspondence with surface climatological 
mean salinity. Reproduced from Durack and Wijffels (2010).


