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for 1993–2015 are 0.19 (±0.09) W m−2 from 700 to 
2000 m, 0.24 (±0.04) W m−2 from 700 to 1800 m, 
and 0.19 (±0.08) W m−2 from 700 to 2000 m for the 
MRI/JMA, PMEL/JPL/JIMAR, and NCEI estimates, 
respectively. Here, 5%–95% uncertainty estimates for 
the trends are based on the residuals, taking their tem-
poral correlation into account when estimating degrees 
of freedom (Von Storch and Zwiers 1999). For 2000–
6000 m, the linear trends are about 0.07 (±0.04) W m−2 
(again at 5%–95% uncertainty) from 1992 to 2009 
(update of Purkey and Johnson 2010; D. Desbruyères 
and S. G. Purkey, 2016, personal communication). 

Summing the three layers, the full-depth ocean heat 
gain rate ranges from 0.52 to 0.74 W m−2.

d. Salinity—G. C. Johnson, J. Reagan, J. M. Lyman, T. Boyer,  
C. Schmid, and R. Locarnini
1) INTRODUCTION—G. C. Johnson and J. Reagan
Salinity patterns, both long-term means and their 

variations, ref lect ocean storage and transport of 
freshwater, a key aspect of global climate (e.g., Rhein 
et al. 2013). Ocean salinity distributions are largely 
determined by patterns of evaporation, precipitation, 
and river runoff (e.g., Schanze et al. 2010), and in 
some high-latitude regions, sea ice formation, advec-
tion, and melt (e.g., Petty et al. 2014). The result is 
relatively salty sea surface salinity (SSS) values in the 
subtropics, where evaporation dominates, and fresher 
SSS values under the intertropical convergence zones 
(ITCZs) and in the subpolar regions, where precipi-
tation dominates. These fields are further modified 
by ocean advection (e.g., Yu 2011). In the subsurface, 
fresher subpolar waters slide along isopycnals to 
intermediate depths, underneath saltier subtropical 
waters, which are in turn capped at low latitudes 
by fresher tropical waters (e.g., Skliris et al. 2014). 
Salinity changes in these layers quantify the increase 
of the hydrological cycle with global warming over 
the recent decades, likely more accurately and directly 
than evaporation and precipitation estimates (Skliris 
et al. 2014). Below that, the salty North Atlantic Deep 
Waters formed mostly by open ocean convection are 
found, with salinities that vary over decades (e.g., 
van Aken et al. 2011). Fresher and colder Antarctic 
Bottom Waters, formed mostly in proximity to ice 
shelves, fill the abyss of much of the ocean (Johnson 
2008), freshening in recent decades (e.g., Purkey and 
Johnson 2013). Salinity changes also have an effect on 
sea level (e.g., Durack et al. 2014) and the thermoha-
line circulation (e.g., Kuhlbrodt et al. 2007).

To investigate interannual changes of subsurface 
salinity, all available subsurface salinity profile data 
are quality controlled following Boyer et al. (2013) and 
then used to derive 1° monthly mean gridded salinity 
anomalies relative to a long-term monthly mean for 
years 1955–2006 (World Ocean Atlas 2009; Antonov 
et al. 2010) at standard depths from the surface to 
2000 m (Boyer et al. 2012). In recent years, the single 
largest source of salinity profiles for the world’s ocean 
is the Argo program with its fleet of profiling floats 
(Riser et al. 2016). These data are a mix of real-time 
(preliminary) and delayed-mode (scientific quality 
controlled). Hence, the estimates presented here could 
change after all data have been subjected to scientific 
quality control. The SSS analysis relies on Argo in situ 

FIG. 3.6. (a) Time series of annual average global inte-
grals of in situ estimates of upper (0–700 m) OHCA  
(1 ZJ = 1021 J) for 1993–2015 with standard errors of the 
mean. The MRI/JMA estimate is an update of Ishii and 
Kimoto (2009). The CSIRO/ACE CRC/IMAS-UTAS 
estimate is an update of Domingues et al. (2008). The 
PMEL/JPL/JIMAR estimate is an update of Lyman and 
Johnson (2014). The NCEI estimate follows Levitus 
et al. (2012). The Met Office Hadley Centre estimate is 
computed from gridded monthly temperature anoma-
lies (relative to 1950–2015) following Palmer et al. 
(2007). See Johnson et al. (2014) for more details on 
uncertainties, methods, and datasets. For comparison, 
all estimates have been individually offset (vertically 
on the plot), first to their individual 2005–15 means 
(the best sampled time period), and then to their col-
lective 1993 mean. (b) Time series of annual average 
global integrals of in situ estimates of intermediate 
(700–2000 m for MRI/JMA and NCEI, 700–1800 m for 
PMEL/JPL/JIMAR) OHCA for 1993–2015 with standard 
errors of the mean, and a long-term trend with one 
standard error uncertainty shown from 1992–2009 
for deep and abyssal (z > 2000 m) OHCA updated 
(D. Desbruyères and S. G. Purkey, 2016, personal 
communication) following Purkey and Johnson (2010). 
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data downloaded in January 2016, with annual maps 
generated following Johnson and Lyman (2012) as 
well as monthly maps from BASS (Xie et al. 2014), a 
bulk (as opposed to skin) SSS data product that blends 
in situ SSS data with data from the Aquarius (Le Vine 
et al. 2014) and SMOS (Soil Moisture and Ocean 
Salinity; Font et al. 2013) satellite missions. The 
Aquarius mission ended in June 2015, leaving SMOS 
as the sole source for satellite SSS for the rest of 2015. 
BASS maps can be biased fresh around land (includ-
ing islands) and should be compared carefully with in 
situ data-based maps at high latitudes before trusting 
features there. Salinity is measured as a dimensionless 
quantity and reported on the 1978 Practical Salinity 
Scale, or PSS-78 (Fofonoff and Lewis 1979). Surface 
salinity values in the open ocean range from about 
32 to 37.5, with seasonal variations exceeding 1 in a 
few locations (Johnson et al. 2012).

 
2) SEA SURFACE SALINITY (SSS)—G. C. Johnson and 

J. M. Lyman
The 2015 SSS anomalies (Fig. 3.7a, colors) reveal 

some large-scale patterns that largely held from 2004 
to 2014 (e.g., Johnson et al. 2015b, and previous State 
of the Climate reports.). Regions around the subtropi-
cal salinity maxima are generally salty with respect to 
World Ocean Atlas (WOA) 2009 (Antonov et al. 2010). 
Most of the high latitude, low-salinity regions appear 
fresher overall than WOA 2009, both in the vicinity of 
much of the Antarctic Circumpolar Current near 50°S 
and in portions of the subpolar gyres of the North Pa-
cific and North Atlantic. These multiyear patterns are 
consistent with an increase in the hydrological cycle 
(that is, more evaporation in drier locations and more 
precipitation in rainy areas) over the ocean expected 
in a warming climate (Rhein et al. 2013). The large, 
relatively fresh patch in 2015 west of Australia and 
the Indonesian Throughflow was more prominent 
in previous years back to 2011 (Johnson and Lyman 
2012). Its origin is associated with the strong 2010–12 
La Niña and other climate indices (Fasullo et al. 2013; 
Johnson et al. 2015b).

Sea surface salinity changes from 2014 to 2015 
(Fig. 3.7b, colors) strongly ref lect 2014 anomalies 
in evaporation minus precipitation (see Fig. 3.12). 
Advection by anomalous ocean currents (see Fig. 3.19) 
also plays a role in SSS changes. The most prominent 
large-scale SSS changes from 2014 to 2015 were fresh-
ening under the Pacific ITCZ and salinification in the 
tropical warm pool around the Maritime Continent 
(Fig. 3.7b). The freshening is associated with stronger-
than-usual freshwater fluxes into the ocean under the 
ITCZ (see Fig. 3.12) and anomalous eastward flow 

(see Fig. 3.19) of relatively fresh water in the tropical 
Pacific. The salinification over the tropical warm 
pool is associated with reduction in freshwater flux 
anomalies there. These changes are related to the 
strong El Niño event of 2015 (section 4b). In the subpo-
lar North Atlantic, there was widespread freshening, 
strongest south of Iceland, but north of Iceland SSS 
becomes saltier. In the Indian Ocean, SSS decreased 
south of India from 2014 to 2015, consistent with the 

FIG 3.7. (a) Map of the 2015 annual surface salinity 
anomaly (colors in PSS-78) with respect to monthly 
climatological salinity fields from WOA 2009 (yearly 
average—gray contours at 0.5 PSS-78 intervals). (b) 
Difference of 2015 and 2014 surface salinity maps 
[colors in PSS-78 yr–1 to allow direct comparison with 
(a)]. White ocean areas are too data-poor (retaining 
< 80% of a large-scale signal) to map. (c) Map of local 
linear trends estimated from annual surface salinity 
anomalies for 2005–15 (colors in PSS-78 yr–1). Areas 
with statistically insignificant trends are stippled. All 
maps are made using Argo data.
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westward spreading and weakening 
of the prominent fresh anomaly gen-
erated west of Australia circa 2011.

Seasonal variations of SSS anom-
alies in 2015 (Fig. 3.8) from BASS 
(Xie et al. 2014) show the buildup of 
anomalously fresh water associated 
with the tropical Pacific and west-
ern tropical Atlantic ITCZs (includ-
ing just offshore of the Orinoco and 
Amazon Rivers), the increase in SSS 
in the tropical warm pool, and the 
decrease in fresh anomalies under 
the South Pacific convergence zone 
(SPCZ). Despite the lower accura-
cies of the satellite data relative to 
that of the Argo data, their higher 
spatial and temporal sampling al-
lows higher spatial and temporal 
resolution maps than are possible 
using in situ data alone.

Sea surface salinity trends for 2005–15 exhibit 
striking patterns in all three oceans (Fig. 3.7c). These 
trends are estimated by local linear fits to annual av-
erage SSS maps from Argo data with a starting year 
of 2005, because that is when Argo coverage became 
near-global. Near the salinity maxima in each basin 
(mostly in the subtropics but closer to 30°S in the In-
dian Ocean), there are regions of increasing salinity, 
especially in the North Pacific to the west of Hawaii. 
In contrast, there are regions in the Southern Ocean 
where the trend is toward freshening. Again, these 
patterns are reminiscent of the multidecadal changes 
discussed above and suggest an intensification of the 
hydrological cycle over the ocean, even over the last 
11 years. There is a strong freshening trend in much 
of the subpolar North Atlantic, roughly coincident 
with anomalously low upper ocean heat content there 
(see Fig. 3.4) suggesting an eastward expansion of the 
subpolar gyre that may be linked to reductions in the 
AMOC over the past decade (section 3h). In addition 
to these patterns there is a freshening trend in the 
eastern Indian Ocean, probably owing to a lingering 
signature of the strong 2010–12 La Niña, as discussed 
above. Freshening trends are also apparent in the 
eastern tropical Pacific and the South China Sea. The 
region to the northwest of the Gulf Stream is trending 
saltier, as well as warmer (section 3c).

3) SUBSURFACE SALINITY—J. Reagan, T. Boyer, C. Schmid, 
and R. Locarnini

Atlantic Ocean basin-average monthly salinity 
anomalies for 0–1500 m depth displayed a pattern 

during 2015 similar to the previous 10 years, with 
salty anomalies above 700 m and fresh anomalies 
below (Fig. 3.9a). From 2014 to 2015 salinity increased 
in the upper 300 m of the Atlantic, reaching a maxi-
mum increase of ~0.01 near the surface (Fig. 3.9b). 
The Pacific Ocean has exhibited fresh anomalies 
of about −0.02 from 200 to 500 m over the last five 
years (Fig. 3.9c). However, the upper 75 m was about 
−0.04 fresher in 2015, in contrast to salty condi-
tions there from mid-2008 to mid-2014. This change 
reflects the enhanced precipitation along the ITCZ 
(see Fig. 3.12d) and anomalous eastward equatorial 
currents (see Fig. 3.19) during the 2015 El Niño (see 
section 4b). Salty anomalies from 100 to 200 m have 
been present since 2011. From 2014 to 2015 the Pacific 
(Fig. 3.9d) freshened in the upper 75 m, approaching 
about −0.03 at 30 m, and became saltier from 100 
to 200 m, approaching ~0.01 at 125 m. The Indian 
Ocean continued to show similar salinity anomaly 
structure to that of the previous two years, with a 
fresh surface anomaly from 0 to 75 m, salty subsurface 
anomaly from 100 to 300 m, a slightly fresh anomaly 
(maximum of about −0.01) from 400 to 600 m, and a 
slightly salty anomaly (maximum of ~0.01) from 600 
to 800 m (Fig. 3.9e). From 2014 to 2015 there was weak 
freshening (maximum of about −0.01 at 50 m) near 
the surface and salinification from 100 to 200 m, with 
a maximum of ~0.014 at 150 m (Fig. 3.9f).

North Atlantic 2015 volume-weighted salinity 
anomalies from 0 to 1500 m (Fig. 3.10a) were mostly 
positive, with values >0.10 along the Gulf Stream. 
The eastern portion of the subpolar gyre in the North 

FIG. 3.8. Seasonal maps of SSS anomalies (colors) from monthly blended 
maps of satellite and in situ salinity data (BASS; Xie et al. 2014) relative 
to monthly climatological salinity fields from WOA 2009 for (a) Dec–Feb 
2014/15, (b) Mar–May 2015, (c) Jun–Aug 2015, and (d) Sep–Nov 2015. Ar-
eas with maximum monthly errors exceeding 10 PSS-78 are left white.
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Atlantic exhibited a large (about −0.10) fresh anomaly. 
This fresh feature coincided with anomalously cool up-
per ocean heat content (see Fig. 3.4). The South Atlantic 
was dominated by positive salinity anomalies in 2015, 
with fresh anomalies south of 40°S, perhaps reflecting 
an anomalously northward position of the low salinity 
subantarctic front. From 2014 to 2015, positive salinity 
anomalies in the subtropics persisted with little change 
in strength, while the freshening north of the Azores 
Islands continued to strengthen (Fig. 3.10b).

The Indian Ocean displayed a dipole of salinity 
anomalies north of the equator during 2015, with salty 
anomalies in the Arabian Sea and fresh anomalies in 
the Bay of Bengal (Fig. 3.10a). Salty anomalies along 
the equator transitioned to fresh anomalies across 
the entire basin south of 15°S to 30°S. These fresh 
anomalies strengthened east of Madagascar from 2014 
to 2015 but weakened west of Australia (Fig. 3.10b) as 
discussed in section 3d2. From 35°S to 50°S there was 
a transition from salty to fresh salinity anomalies, 
likely due to the position of the subantarctic front in 
2015 (Fig. 3.10a).

The North Pacific, north of 20°N, was dominated 
by fresh anomalies in 2015; however, in the northeast 

Pacific there was a salty anomaly (Fig. 3.10a) in close 
proximity to a region of anomalously warm SSTs (see 
Fig. 3.1). The warm SSTs were at least partly due to 
a persistent atmospheric ridge in the region (Bond 
et al. 2015). With ridging, less precipitation and 
more evaporation are expected. This expectation was 
partially met (see Fig. 3.12) and likely to have been 
partially responsible for the observed salty anomaly 
strengthening from 2014 to 2015 (Fig. 3.10b). The 
subtropical North Pacific was anomalously salty in 
2015, contrasting with fresh anomalies along the 
ITCZ, consistent with the 2015 P – E anomalies (see 
Fig. 3.12). Salty anomalies were present in the sub-
tropical South Pacific in 2015, with fresh anomalies 
along the SPCZ. These tropical and subtropical sa-
linity anomaly features were mostly enhanced when 
compared to 2014, with the exception of a weakening 

FIG. 3.9. Average monthly salinity anomalies from 
0–1500 m for the (a) Atlantic from 2005–15 and (b) 
the change from 2014 to 2015; (c) Pacific from 2005–15 
and (d) the change from 2014 to 2015; and (e) Indian 
from 2005–15 and (f) the change from 2014 to 2015. 
Data were smoothed using a 3-month running mean. 
Anomalies are relative to the long-term WOA 2009 
monthly salinity climatology (Antonov et al. 2010).

FIG. 3.10. Near-global 0–1500 m volume-weighted 
salinity anomalies (a) for 2015, (b) change from 2014 
to 2015, and (c) linear trend from 2005 to 2015 (yr–1). 
Anomalies are relative to the long-term WOA 2009 
monthly salinity climatology (Antonov et al. 2010). 
Annual figures were computed by averaging the 12 
monthly salinity anomalies over calendar years.
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positive salinity anomaly over the central subtropical 
North Pacific in 2015 (Fig. 3.10b). The South Pacific 
enhancement from 2014 to 2015 is inconsistent with 
2015 P – E anomalies (see Fig. 3.12).

The 2005–15 linear trends of the 0–1500 m salin-
ity anomalies (Fig. 3.10c) reveal strong similarities 
to SSS trends over the same 
time period (see Fig. 3.7c and 
discussion above). This match 
is not surprising as most of 
the salinity variability from 
0 to 1500 m over the global 
ocean occurs in the upper 
300 m (Fig. 3.9). The large 
(> −0.01 yr−1) freshening trend 
in the North Atlantic subpolar 
gyre could be partially respon-
sible for the observed decline 
in the strength of the AMOC 
(Smeed et al. 2014).

e. Ocean surface heat, freshwa-
ter, and momentum fluxes— 
L. Yu, R. F. Adler, G. J. Huffman, X. Jin,  
S. Kato, N. G. Loeb, P. W. Stackhouse, 
R. A. Weller, and A. C. Wilber
The ocean and atmosphere 

communicate via interfacial 
exchanges of heat, freshwater, 
and momentum. These air–sea 

fluxes are the primary mecha-
nisms for keeping the global 
climate system in balance with 
the incoming insolation at 
Earth’s surface. Most of the 
shortwave radiation (SW) ab-
sorbed by the ocean’s surface 
is vented into the atmosphere 
by three processes: longwave 
radiation (LW), turbulent heat 
loss by evaporation (latent 
heat flux, or LH), and turbu-
lent heat loss by conduction 
(sensible heat f lux, or SH). 
The residual heat is stored in 
the ocean and transported 
away by the ocean’s surface 
circulation, forced primarily 
by the momentum transferred 
to the ocean by wind stress. 
Evaporation connects heat 
and moisture transfers, and 
the latter, together with pre-

cipitation, determines the local surface freshwater flux. 
Identifying changes in the air–sea fluxes is essential 
in deciphering observed changes in ocean circulation 
and its transport of heat and salt from the tropics to 
the poles. In particular, 2015 witnessed the interplay 
of three different warmings: the warm “Blob” in the 

FIG. 3.11. (a) Surface heat flux (Qnet) anomalies for 2015 relative to a 5-year 
(2010–14) mean. Positive values denote ocean heat gain. Panels (b), (c), and (d) 
are the 2015–2014 anomaly tendencies for Qnet, surface radiation (SW+LW), 
and turbulent heat fluxes (LH+SH), respectively. Positive anomalies denote 
that the ocean gained more heat in 2015 than in 2014. LH+SH are produced 
by the OAFlux high-resolution satellite-based analysis, and SW+LW by the 
NASA FLASHFlux project.

FIG. 3.12. (a) Surface freshwater (P – E) flux anomalies for 2015 relative to a 27-
year (1988–2014) climatology. 2015–2014 anomaly tendencies for (b) P – E, (c) 
evaporation (E), and (d) precipitation (P), respectively. Green colors denote 
anomalous ocean moisture gain, and browns denote loss, consistent with the 
reversal of the color scheme in (c). P is computed from the GPCP version 
2.2 product, and E from OAFlux high-resolution satellite-based analysis.
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