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Fluctuations in alongshore wind stress r calculated from Fleet Numerical Oceanography Center 
geostrophic winds along the west coast of North America are relatively energetic at alongshore wave 
numbers III -< 1.1 x 10 -3 cpkm and frequencies 0.025 < co < 0.5 cpd, and they effectively drive a coastal 
sea level (0 response within this (l, co) band. Equatorward propagation (l < 0) dominates the winter r 
fluctuations for co < 0.35 cpd, and poleward propagation (l > 0) dominates the summer r fluctuations for 
co < 0.1 cpd. In contrast, poleward propagation strongly dominates the • fluctuations in both seasons, 
but more so in summer. The largest coherence between • and r is observed in that part of (l, co) space 
where z is most energetic: i.e., for 0 < I < 1.1 x 10 -3 cpkm in summer and - 1.1 x 10 -3 •< I < 0 cpkm in 
winter. Results are compared with predictions from theoretical models for wind-driven coastally trapped 
waves. The observed transfer functions show evidence for near-resonant ( response in both seasons, with 
the largest gain found along a single ridge of approximately constant poleward phase speed, along which 
the response is approximately in phase with r. This behavior is consistent with a response dominated by 
one coastally trapped wave mode governed by a forced, first-order wave equation with a linear friction 
term. The maximum gain tends to decrease along this ridge with increasing I and co in summer, and at 
least with increasing co in winter, during which we could not resolve the I dependence. This observed 
decrease in maximum gain is not predicted by a single wave equation. The contribution of higher wave 
modes to the total ( response may explain a part of this observed decrease. 

1. INTRODUCTION 

Considerable observational and theoretical evidence has ac- 

cumulated indicating that free perturbations in current and 
pressure over a continental shelf propagate alongshore with 
the coast to the right (left) in the northern (southern) hemi- 
sphere [e.g., Allen, 1980]. Based on scaling arguments in the 
equations of motion, the alongshore component of wind stress 
at the coast (r) is the most important atmospheric forcing 
variable for perturbations with large alongshore scales 
(>> shelf-slope width). Halliwell and Allen [1984] showed that 
the coastal ocean response tends to be larger for r distur- 
bances that propagate alongshore in the same direction as free 
coastal sea level (0 perturbations as opposed to r disturbances 
that occur at a fixed location along the coast or propagate 
alongshore in the opposite direction. The coastal ocean re- 
sponse therefore depends in part on the alongshore wave 
number and frequency domain properties of the r field. 

Since the observed properties of this response have never 
been studied in wave number-frequency space, we sought, as 
part of the large-scale component of the Coastal Ocean Dy- 
namics Experiment (CODE), to characterize wave number- 
frequency domain properties of the r and • fields, and of the • 
response to •:. We focus primarily on the large-scale (small- 
wave number) properties during four spring-summer upwell- 
ing seasons and four winter seasons between May 1980 and 
March 1984, primarily using wave number-frequency auto- 
spectrum and cross-spectrum analysis. We describe the ob- 
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served properties and relate them to properties predicted from 
simple coastal circulation models. 

The simplest linear models predict that the coastal circu- 
lation response to variable alongshore wind stress with large 
alongshore scales consists of an infinite number of coastally 
trapped wave modes, with the alongshore-time variability of 
each mode governed by a forced, first-order wave equation. 
Given an alongshore-time (y, t) coordinate system, where y is 
positive poleward along the west coast of North America, the 
wave equation for mode n of a given coastal circulation re- 
sponse variable Y,(y, t) is 

Cn-1rnt -1t- rny -1t- (cnrfn)- l rn = bnT (1) 

where c,are the free-wave phase speeds, Ts,are the friction 
time scales, and b, are the coupling coefficients. These modal 
equations (without the friction term) were first derived by Gill 
and Schumann [1974] tor a barotropic fluid over a continental 
shelf and by Gill and Clarke [1974] for coastal Kelvin waves 
in a stratified fluid. Clarke [1977] derived similar frictionless 
equations for a continental shelf with horizontally uniform 
basic stratification. Major simplifying assumptions, such as 
neglecting the alongshore dependence of bottom topography, 
must be made in these derivations. The linear friction term in 

(1) was added in an ad hoc manner in these early studies. 
Brink [1982] showed that if friction is sufficiently strong, each 
mode becomes frictionally coupled to all other modes. 

In previous studies where one mode was assumed to domi- 
nate the response, (1) was found to predict the • response at a 
given location along the coast with reasonably good accuracy 
[Hamon, 1976; Clarke, 1977; Halliwell and Allen, 1984]. It was 
also found to predict the nature of certain observed statistical 
relationships between the response and r [Allen and Denbo, 
1984]. In the present study, we determine that a single wave 
equation (1) qualitatively predicts many, but not all, of the 
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Fig. 1. The coastal points of the CODE analysis grid (left coastline), the wind measurement stations (middle coastline), 
and the coastal sea level stations (right coastline) used in this study. The longitude axis is correct for the middle coastline. 
Information on the stations and grid points is summarized in Tables 1 through 3. 

observed properties of the • response to r in wave number- 
frequency space. We show that the properties not predicted by 
a single wave equation can at least in part be explained by the 
contribution of higher modes to the total response. 

We first describe the z and c• data sets and discuss certain 
properties of these sets that may affect our analyses (section 2). 
We then discuss the basic statistical properties of the z and • 
fields in summer and winter, comparing them to observations 
reported by Halliwell and Allen [1984] for summer 1973 and 
to properties predicted from (1) by Allen and Denbo [1984] 
(section 3). We then present the • and r wave number- 
frequency autospectra (section 4) and discuss the observed 
properties of the • response to r in wave number-frequency 17 
space (section 5), emphasizing the similarities and differences 16 
in the observed properties of the forcing and response between 15 
summer and winter, plus the interannual variability in these 14 

13 

properties for each season. Finally, we compare the observed 12 
response properties in wave number-frequency space to those 11 
predicted by (1)(section 6). In all cases, when we refer to 10 
responses predicted from (1), we mean from a single wave 09 
equation unless we explicitly state otherwise. 08 07 

06 

2. THE DATA 05 
We analyze the response of • to r within a 2700 km domain 04 

along the west coast of North America, stretching approxi- 03 
02 

mately from San Diego (32.7øN) to near the Alaska-British 01 
Columbia border (54.1øN). We use an alongshore-time (y, t) 35 
coordinate system, with the y = 0 km coordinate located at 34 
the central line of the intensive CODE experiments (38.7øN, 33 

32 
hereinafter referred to as the CODE site) [Winant et al., 1987], 
and analyze data interpolated to points of the CODE analysis 
grid (Figure 1, Table 1). Grid point 7 is located at y = 0 km, 

and the alongshore spacing of the points is Ay = 180 km. Our 
common analysis domain for both • and r includes grid points 
2 through 17 (-900 < y < 1800 km) since no coastal sea level 
data were available from point 1 south. However, r is also 
available at grid points south to central Baja California (grid 
point 32; y = - 1800 km). We study the following four spring- 

TABLE 1. Coastal Points of the CODE Large-Scale Analysis Grid 

Coast 

Grid Latitude, Longitude, y, Orientation, 
Point øN øW km deg 

54009 ' 130o20 ' 1800 120 

52010 ' 128ø19 ' 1620 115 
50ø32 ' 127ø13 ' 1440 100 

49o23 ' 126ø06 ' 1260 128 
48<'11 ' 124ø42 ' 1080 120 
46"36' 124ø05 ' 900 95 

44o58 ' 124003 ' 720 85 

43ø21 ' 124ø20 ' 540 73 
41ø46 ' 124'•12 ' 360 103 

40ø12 ' 124ø18 ' 180 130 
38ø42 ' 123"27' 0 133 
37ø18 ' 122ø24 ' - 180 102 
35ø59 ' 121ø31 ' - 360 128 

34ø35 ' 120ø39 ' - 540 90 

34ø01 ' 118ø5Y -720 150 
33ø00 ' 117o21 ' --900 110 

31ø27 ' 116ø44 ' - 1080 110 
30ø00 ' 115ø54 ' - 1260 115 

28ø47 ' 114ø41 ' -- 1440 130 

27ø20 ' 113ø52 ' -- 1620 130 

26o07 ' 112040 ' - 1800 130 

Coast orientation is measured in degrees counterclockwise from 
due east. 
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TABLE 2. Coastal Sea Level Stations Used in This Analysis 

Abbrevi- Latitude, Longitude, y, 
Station ation øN øW km 

Prince Rupert, B.C. PRR 54ø19 ' 130ø20 ' 1883 
Bella Bella, B.C. BBL 52" 10' 128ø08 ' 1608 
Zeballos, B.C. ZBL 50001 ' 126ø47 ' 1349 
Torino, B.C. TOF 49ø09 ' 125ø55 ' 1232 
Neah Bay, Wash. NBA 48ø22 ' 124ø37 ' 1100 
Toke Point, Wash. TKP 46042 ' 123ø58 ' 911 
Astoria Oreg. AST 46ø10 ' 123ø46 ' 852 
South Beach, Oreg. SBC 44ø38 ' 124ø03 ' 683 
Charleston, Oreg. CHR 43ø20 ' 124 ø 19' 538 
Crescent City, Calif. CCY 41ø45 ' 124ø11' 359 
Trinidad Head, Calif. TRH 41ø03 ' 124ø09 ' 277 
North Spit, Calif. NSP 40ø45 ' 124ø14 ' 244 
Arena Cove, Calif. ARC 38ø55 ' 123ø43 ' 37 
Point Reyes, Calif. PRY 38ø00 ' 122ø58 ' -76 
San Francisco, Calif. SFO 37ø48 ' 122ø28 ' --126 
Monterey, Calif. MRY 36ø36 ' 121ø53 ' -276 
Port San Luis, Calif. PSL 35ø10 ' 120ø45 ' -473 
Santa Barbara, Calif. SBA 34ø25 ' 119ø41' -- 634 
Rincon Island, Calif. RIS 34ø21 ' 119027 ' -650 
Los Angeles, Calif. LOS 33ø43 ' 118ø16 ' -780 
San Diego, Calif. SDO 32ø45 ' 117ø10 ' --938 

summer (hereinafter referred to as summer) and four winter 
seasons, all of which are 121 days long: (1) May 1 to August 
29, 1980; (2) April 4 to August 2, 1981 (CODE 1 experiment); 
(3) May 1 to August 29, 1982 (CODE 2 experiment); (4) May 
1 to August 29, 1983; (5) November 25, 1980, to March 25, 
1981;(6) December 1, 1981, to March 31, 1982; (7) December 
1, 1982, to March 31, 1983; and (8) November 27, 1983, to 
March 26, 1984. We refer to the individual seasons as sum- 
mers 1980 through 1983 and winters 1980-1981 through 
1983-1984. All summer seasons begin after the spring transi- 
tion [Strub et al., 1987], which occurs between late March and 
mid-April. All winter seasons are chosen to terminate before 
the transition, which explains their staggered times. All 
summer seasons begin on May 1 except for summer 1981, 
which is shifted to coincide better with the extensive instru- 

ment deployments of the CODE 1 experiment [Winant et al., 
1987]. 

Coastal sea level data are obtained at several stations 

(Figure 1 and Table 2) for all eight seasons. Sea level time 
series are checked for bad values and datum shifts [Pittock et 
al., 1982]. Details of the remaining editorial procedure are 
given by Halliwell et al. [1986]. To create • time series, sea 
level heights are adjusted to represent coastal subsurface pres- 
sure by adding Fleet Numerical Oceanography Center 
(FNOC) surface atmospheric pressure in millibars from the 
nearest CODE grid point to sea level in centimeters if that 
point is within 30 km of the sea level station. If it is farther 
away, atmospheric pressure linearly interpolated between the 
two nearest grid points is used. The mean • is removed from 
all time series for each individual season. We use • as the 
response variable because it is available over a sufficiently 
large alongshore domain to resolve some of the large scales 
present in the coastal ocean response along the west coast of 
North America. 

We compute r time series using geostrophic winds obtained 
from FNOC [Bakun, 1975; Halliwell and Allen, 1987] and 
interpolated to the CODE analysis grid. Hereinafter, we refer 
to this field as calculated r. The coarse spatial resolution of 
calculated r effectively restricts its use to represent fluctuations 
with wavelengths greater than several hundred kilometers. 
Calculated r is used for the 4-year study interval because the 
highest-quality CODE large-scale measured wind data set 
spans the interval 1981-1982 and because calculated winds are 
readily obtainable over a larger alongshore domain than mea- 
sured winds. The properties of, and relationships between, the 
calculated and measured wind fields are discussed by Halliwell 
and Allen [1987]. To assess the effects of using calculated r in 
the present analysis, we study properties of wave number- 
frequency auto-spectra and cross-spectra of calculated r, mea- 
sured r, and • using measured winds from several stations 
(Figure 1 and Table 3)for summers 1981 and 1982, plus 
winter 1981-1982 (sections 4.3 and 5.3). Information on 
coastal stations, details of data processing, and basic visual 
and statistical summaries of the entire large-scale data set are 
presented by Halliwell and Allen [1983, 1985] and Halliwell et 
al. [ 1986]. 

Vector wind stress is computed from vector wind 10 m 

TABLE 3. Wind Measurement Stations Used in the Intercomparison With Calculated Winds 

Coast Time 

Abbrevi- Latitude, Longitude, y, Orientation, Periods 
Station ation øN øW km deg Used 

Quillayute, Wash. QUI 47ø57 ' 124ø32 ' 1055 110 All 
Grays Harbor, Wash. GRH 46ø55 ' 124ø06 ' 936 95 All 
Newport, Oreg. NEW 44ø38 ' 124003 ' 683 82 All 
North Bend, Oreg. NOB 43ø25 ' 124015 ' 547 73 All 
Crescent City, Calif. CCY 41 ø47' 124 ø 14' 362 103 All 
Humboldt Bay, Calif. HUM 40ø46 ' 124ø14 ' 246 75 S81 
NDBC 46022 B22 40ø46 ' 124031 ' 240 75 W81-2, S82 
NDBC 46014 B14 39ø13 ' 123058 ' 71 100 S81, S82 
Point Arena Light, Calif. ARL 38ø57 ' 123044 ' 41 110 W81-2 
NDBC 46013 B13 38ø14 ' 123ø18 ' -61 133 All 

NDBC 46012 B12 37ø22 ' 122ø39 ' - 171 105 All 

Point Sur, Calif. SUR 36ø18 ' 121ø53 ' - 301 115 All 
Diablo Canyon, Calif. DIA 35ø14 ' 120ø50 ' --464 120 W81-2 
NDBC 46011 Bll 34ø53 ' 120ø52 ' --506 90 S81, S82 
Point Mugu, Calif. MUG 34ø07 ' 119ø07 ' - 678 155 All 
San Diego, Calif. SDO 32ø44 ' 117010 ' --936 105 All 

Coast orientation is in degrees counterclockwise from due east. NDBC stands for National Data 
Buoy Center. 
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above the surface (V•o) in units of meters per second, using the 
bulk aerodynamic formula with the drag coefficient deter- 
mined from the regression formula of Large and Pond [1981]' 

with 

•--- p,CalVlolV•o (2) 

103Ca = 1.2 lysol < 11 

103Ca = 0.49 + 0.0651V•ol lysol > 
(3) 

where p, is the air density and Ca is the drag coefficient. 
Where necessary, measured winds are adjusted to represent 
10-m winds assuming neutral stability [Halliwell et al., 1986]. 
We assume that the calculated winds received from FNOC 

represent 10-m winds. Before computing the alongshore com- 
ponent of the wind stress, the calculated vector wind stress is 
rotated as was described by Halliwell and Allen [1987] to 
improve the boundary layer correction of Bakun [1975]. We 
use the geographical alongshore component of the measured 
vector wind stress. All z and • time series are low-pass filtered 
with a half-amplitude period of 40 hours, and the time sam- 
pling rate is At = 0.25 days. 

Wind velocity usually varies in the across-shore direction 
over the continental shelf, and may also be directly influenced 
by local topography at the coast. The measured wind set con- 
sists of a mixture of coastal land stations and offshore buoys. 
Because of these factors, the variance of measured and calcu- 
lated alongshore winds differs substantially at many locations 
along the coast. Halliwell and Allen [1987] found that it was 
not possible to adjust measured coastal land winds to repre- 
sent winds over the outer continental shelf within the CODE 

large-scale domain in a consistent manner. They also found, 
however, that properties of wave number-frequency auto- 
spectra and cross-spectra of alongshore wind were not sensi- 
tive to the distribution of wind variance along the coast. Since 
• is a nonlinear function of V 1 o, and since the drag coefficient 
is a function of wind speed if it exceeds 11 m s-•, any differ- 
ences in alongshore wind variance along the coast will be 
amplified in z. We therefore felt that it was necessary to repeat 
these tests in this paper for the z field. We do this by including 
analysis results for adjusted measured z wherever we compare 
analysis results for calculated r to those of measured z. To 
form adjusted measured z, we simply scale the amplitude of 
measured z so that its variance equals the calculated z vari- 
ance at that alongshore location. (We do not intend to imply 
by this choice that the calculated z field represents the along- 
shore distribution of z variance more accurately than the mea- 
sured z field.) Comparison of results obtained from the differ- 
ent r fields allows us to assess the effects of errors in mea- 

suring the alongshore distribution of r variance. 

3. BASIC STATISTICAL PROPERTIES OF THE 

r AND _• FIELDS 

3.1. Means and rms Amplitudes 

In all analyses presented in this paper, summer and winter 
statistics refer to statistics averaged over the four summer and 
four winter seasons. We will always use z to refer to calculated 
r and will use the phrase "calculated z" only when it must be 
distinguished from measured z. 

Substantial differences in the basic statistics of the z and • 
fields exist between summer and winter. The mean of r is 
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Fig. 2. The mean (solid line with squares) and rms amplitude 
envelopes of r and • for summer and winter. The means and rms 
amplitudes for both seasons are the averages of the means and rms 
amplitudes of the individual summer and winter seasons. The r statis- 
tics south of grid point 2 are also included, and • has been interpo- 
lated to the CODE grid points. The means of • have been removed. 

negative (equatorward) within the entire CODE large-scale 
domain in summer but is negative only for y < -360 km in 
winter (Figure 2). The magnitude of the summer mean is larg- 
est within the alongshore subdomain -720 < y < 180 km, 
where it typically exceeds 1 dyn cm -2 equatorward. The 
summer mean calculated z does not accurately represent the 
actual mean within the Southern California Bight (-1000 < 
y < -575 km), since calculated alongshore and vector wind 
means differ substantially from the corresponding measured 
wind means within the bight in summer [Halliwell and Allen, 
1987]. The winter equatorward means for y < -360 km are 
relatively small (l•l -< 0.35 dyn cm-2), but the poleward means 
are substantially larger for y > 180 km, exceeding 2 dyn cm-2 
at the northern end of the CODE large-scale domain. The 
observed properties of seasonal mean z generally agree with 
seasonal differences in the properties of the alongshore com- 
ponent of monthly mean wind stress near the coast computed 
from ship reports for 1 •' squares [Nelson, 1977]. The one 
major difference is that mean calculated r changes sign in 
winter near y- -360 km, while Nelson's data indicate the 
sign change is near Cape Mendocino (y • 200 km) during 
winter months. 

For summer, the largest rms amplitude of z exists in the 
subdomain -720 < y < 180 km, the same subdomain where 
mean equatorward z is largest (Figure 2). The maximum 
summer rms amplitude is 0.79 dyn cm -2 at y - 180 km (near 
Cape Mendocino). The rms amplitude generally increases for 
increasing y in winter. The winter rms amplitude increases 
substantially poleward from y - -900 km (0.32 dyn cm-2) to 
a relative maximum at y--360 km (1.72 dyn cm-2). It is 
approximately constant near 1.65 dyn cm-2 in the subdomain 
540 < y < 900 km. It then increases rapidly poleward of 
y = 900 km to 3.48 dyn cm-2 at y = 1800 km. The rms ampli- 
tude of • is also substantially greater in winter than in 
summer, but in contrast to z, similar patterns in the along- 
shore distributions of • rms amplitudes are observed in both 
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Fig. 3. The ratios of winter rms amplitude to summer rms ampli- 
tude for z (solid line with squares) and • (dashed line) which has been 
interpolated to the CODE grid. A ratio of 1.0 is indicated by the 
vertical solid line. 

seasons (Figure 2). In both summer and winter, the • ampli- 
tudes are roughly constant for y < -360 km, increase with 
increasing y for -360 < y < 900 km, and then decrease with 
increasing y for y > 900 km. The summer poleward increase is 
from 2.91 cm at y = -360 km to 6.10 cm at y = 900 km. The 
corresponding winter increase is from 4.27 to 10.15 cm. 

The strikingly different seasonal changes in the rms ampli- 
tudes of r and • are evident from the ratios of winter to 
summer rms amplitude plotted as a function of y (Figure 3). 

Equatorward of the CODE site, the amplitude of r is between 
1 and 1.6 times larger, and the amplitude of • is between 1.35 
and 1.5 larger, in winter than in summer. Poleward of the 
CODE site, the ratio for • increases slightly to values typically 
between 1.6 and 1.75, but the ratio for r increases very sharply, 
reaching 5.0 at a relative maximum at y = 1080 km, and then 
reaching 7.4 at y-- 1800 km. Therefore the increases in r and 
• rms amplitudes in winter over summer have similar mag- 
nitudes equatorward of the CODE site, but the r increase 
becomes much larger than the • increase poleward of the 
CODE site. This winter increase depends substantially on the 
choice of C a. Calculated wind speeds exceeding 11 m s -•, 
above which C a from (3) increases with wind speed, are un- 
common in summer but occur more frequently in winter, es- 
pecially to the north of the CODE site. The ratio plotted in 
Figure 3 for z decreases by about 50% at grid point 17 
(y -- 1800 km) if a constant Ca is used. This winter increase is 
statistically significant whether C a is constant or increases 
with wind speed, but the magnitude of the ratio does depend 
on Ca. We address possible causes of this y-dependent season- 
al change in our discussion of the wave number-frequency 
spectrum analyses. 

3.2. Correlation/Coherence Scales and 
Alongshore Propagation 

We estimate the correlation space and times scales, plus the 
alongshore propagation properties, of the z and • fluctuations 
using the spatially averaged, space-time auto-correlation and 

cross-correlation functions R**(rln, tl), R;;(q n, tl), and Rc,(rln, tl), 
calculated for both summer (grid points 4 through 17) and 
winter (grid points 2 through 17) (Figure 4). We use the cir- 
cumflex to signify quantities estimated from the data. Grid 
points 2 and 3 are not included in summer, since calculated 
winds poorly represent coastal winds in the Southern Califor- 
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Fig. 4. The space-time correlation functions •rr(/?n, Z/), •(/?n' '•/)' and/•(r/, rt), calculated from space-averaged covari- 
ances as described in Appendix A and ensemble averaged over the four summers (grid points 4 through 17) and four 
winters (grid points 2 through 17). 
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TABLE 4. Integral Space and Time Correlation Scales for Summer 
(Grid Points 4 Through 17) and Winter (Grid Points 2 Through 17) 
Determined From the Space-Time Correlation Functions Described 

in Appendix A 

Space Scale, km Time Scale, days 

Season 

All summers 699 1085 1.36 3.48 
All winters 988 1324 1.21 3.51 

nia Bight [Halliwell and Allen, 1987]. The methods used to 
calculate these functions and the integral correlation space 
and time scales are presented in Appendix A. The correlation 
space scales of z are 699 km in summer and 988 km in winter 
(Table 4). The correlation time scales of z are 1.36 days in 
summer and 1.21 days in winter. The z space scale is 41% 
greater in winter than in summer, and the z time scale is 11% 
greater in summer than in winter. The space and time scales of 
• are both substantially larger than those of z. The space scale 
of • is 1085 (1324) km in summer (winter), and the time scale 
of • is 3.48 (3.51) days in summer (winter). The • space scale is 
22% greater in winter than in summer, but the • time scale is 
nearly equal in both seasons, 

The orientation of the central correlation ridge of /• is 
determined by the propagation characteristics of the r field 
(Figure 4). This ridge is symmetric about the lag time and lag 
distance axes in summer, and therefore no preferred propaga- 
tion direction is evident. Along the major axis of the ridge in 
winter, the ratio of space lag to time lag is about -2500 cm 
s-x, indicating that equatorward propagation of z fluctuations 
is dominant in winter. The central correlation ridges of/• 
indicate that poleward propagation of • fluctuations is domi- 
nant in both summer and winter (Figure 4). The • ridges are 
insufficiently elongated to make accurate estimates of propa- 
gation speeds, but since • fluctuations are partly a forced re- 

sponse, these estimates do not represent free-wave phase 
speeds [Allen and Denbo, 1984]. 

The maxima of the cross-correlation functions Rc• are 0.51 
(0.55) in summer (winter), and they occur at a space lag of 
-360 km in both seasons and at a time lag of -1.25 (-0.75) 
days in summer (winter). Thus • fluctuations at a given lo- 
cation along the coast are most highly correlated with z fluc- 
tuations that occur equatorward and earlier in time in both 
summer and winter, consistent with the summer 1973 observa- 
tions of Halliwell and Allen [1984]. This correlation displace- 
ment results if one coastally trapped wave mode governed by 
(1) dominates the • response [Allen and Denbo, 1984]. Free- 
wave phase speeds of • can be determined from the slope of 
the line connecting the origin (zero space and time lags) with 
the peak of /•c• [Allen and Denbo. 1984], yielding estimates 
here of 330 (230-460) cm s- a in summer and 560 (360-830) cm 
s-1 in winter. The error ranges for these estimates are based 
on an uncertainty of +_90 km in lag distance and +_0.125 day 
in lag time of the location of the Rc• peak. The estimated 
free-wave phase speed is substantially larger in winter, but 
owing to the large uncertainty in these estimates, we cannot 
conclude that this difference is statistically significant. 

The summer and winter correlation ridges of fi• also have 
distinctly different shapes (Figure 4). In winter, the ridge has 
an extension from the correlation peak toward positive space 
lag and negative time lag, giving the full ridge a teardrop 
shape. The slope of this extension is negative and approxi- 
mately equals the slope of/•,• in winter of -2500 cm s- •. This 
indicates that at least part of the winter • response propagates 
alongshore at the same speed as r disturbances. 

Coherence scales and propagation characteristics of the z 
and • fields can be studied in the frequency domain using the 

space-lagged coherences squared 7•2(r/,, (Dl) , •2(f/n , (Dl) , and 
37•r 2(f/n , Wl) and phase functions 0•,(r/,, O)l) , 0•(f/n , (.Ol) , and OcT(r/,, 
cot). These functions are contoured in Figures 5 and 6, and the 
methods of calculating them are presented in Appendix A. We 
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use the alongshore separation at which •;2 decreases to its 
minimum significant value (0.041' see Appendix A) as the co- 
herence scale. It exceeds 2000 km for z at all co in both sea- 

sons, for • at co < 0.15 cycles per day (cpd) in both seasons, 
and for • near co = 0.26 cpd in summer (Figure 5). The scale 
for • decreases to < 1000 km for co > 0.34 cpd. These scales 
are substantially smaller for measured z than for calculated z. 
Halliwell and Allen [1987] calculated •;•2 for measured and 
calculated alongshore wind v and determined that measured v 
alongshore coherence scales were 30-50% smaller than those 
for calculated v. The same calculation made using measured 
and calculated r (not shown) shows a similar decrease. 

The width of the central coherence ridge for •;,,2 is nearly 
constant over the entire co band (0.041-0.48 cpd) in summer 
(Figure 5). If we define the coherence ridge as that part of (y, 
co) space where the coherence squared exceeds 0.4, then the 
half-width of this ridge is about 400 km in summer. In winter, 
the half-width is larger and decreases from about 700 km to 
500 km with increasing co over the entire co band. In contrast, 
the half-widths of the central coherence ridges for •2 vary 
with co by a large amount, decreasing from about 750 to 150 
km with increasing co in both seasons. A decrease such as this 
is qualitatively predicted by (1) for one mode [Allen and 
Denbo, 1984]. 

The maximum coherence ridges for •,2 are displaced 
toward negative space lag. In summer, the maximum coher- 
ence is at r/, - -360 km for co < 0.11 cpd, at r/, = -180 km 
for 0,11 < co < 0.26 cpd, and at r/, - 0 km for co • 0.34 cpd. 
The maximum coherence is small (<0.1) for co > 0.34 cpd. 
This decrease in space lag with increasing co is predicted by (1) 
[Allen and Denbo, 1984]. In winter, however, the largest coher- 
ences are observed at r/, - -360 km for co < 0.19 cpd and at 
r/• = -180 km for co > 0.19 cpd. The maximum winter coher- 
ences squared decrease to 0.1 only at the largest co resolved 
(0.48 cpd). 

The propagation characteristics of the r field, as illustrated 
by the phase function Orr(/•n , COl) and propagation speed func- 
tion d**(r/,, rot) (appendix A) differ substantially between 
summer and winter (Figure 6). Poleward propagation domi- 
nates in summer for co < 0.11 cpd, and d** decreases from 
> 1000 cm s- • at co- 0.11 cpd to about 400 cm s- • at the 
smallest co resolved (0.041 cpd). In winter, however, equator- 
ward propagation exists for co < 0.34 cpd, with d•, approxi- 
mately constant at -2500 cm s- x (the same speed estimated 
from the correlation function /•**). The winter • fluctuations 
are evidently due to spatially coherent propagating distur- 
bances (cyclones, anticyclones, and fronts) that generate z fluc- 
tuations over a broad co band, consistent with the results from 
the wind analysis of Halliwell and Allen [1987]. This does not 
seem to be true in summer, since d• is strongly frequency- 
dependent. 

The propagation characteristics of the • field differ substan- 
tially from those of the • field in both summer and winter. 

Poleward propagation dominates at all co, and dec (not to be 
interpreted as a free-wave phase speed) increases with increas- 
ing co from about 500 cm s- • (1000 cm s-•) at co = 0.041 cpd 
to about 900 cm s -• (1800 cm s -•) near co = 0.19 cpd in 
summer (winter). Increasing dec with increasing co is predicted 
from (1) by Allen and Denbo [1984]. 

From the phase function 0c,, we can quantify the local phase 
lag of • to r in units of time or degrees. In summer, the local 
time lag (Figure 6) is near 1 day for co < 0.26 cpd. In winter, 
however, the local lag time decreases substantially with in- 
creasing co, from about 2 days to <0.5 days over the entire co 
band. It is interesting to note that the constant local time lag 
in summer corresponds to a local phase lag in degrees that 
increases with increasing co, an effect predicted by Allen and 
Denbo [1984] from (1). In winter, however, the decreasing 
local time lag with increasing co corresponds to a local phase 
lag that is approximately constant near 60 ø over all co except 
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TABLE 5. Total Variance, Percentage of Total Variance with Ill •< 1.1 x 10-3 cpkm, and Percentage 
of Total Variance Due to Poleward Propagating Fluctuations for Summer (Grid Points 4 Through 17) 

and Winter (Grid Points 2 Through 17) Seasons 

Total Variance Ill • 1.1 x 10 -3, % Poleward Propagating, % 

Season dyn 2 cm -• cm 2 z • z • 

All Summers 16.0 1252 93.7 93.5 52.2 58.2 
All Winters 190 3519 88.9 94.1 46.8 54.3 

Summer 1980 3.63 169 93.2 94.5 48.5 59.2 
Summer 1981 5.18 337 93.5 90.4 53.6 57.3 
Summer 1982 3.94 286 94.1 93.9 55.2 61.9 
Summer 1983 3.29 460 94.1 94.0 53.9 59.9 

Winter 1980-1981 54.0 738 91.1 93.5 46.6 55.1 
Winter 1981-1982 44.9 776 84.2 94.4 45.9 52.4 
Winter 1982-1983 69.0 1393 90.0 95.9 46.4 54.9 
Winter 1983-1984 22.0 612 89.2 92.4 47.5 57.5 

more red. The c0 autospectra for • are more red than those for 
r in both seasons, which was predicted from (1) by Allen and 
Denbo [1984]. In winter, the autospectrum for • is more red 
for c0 < 0.15 cpd than it is for larger 

4.2. Interannual Variability in the Autospectra 
of r and • 

The (l, co) autospectra for the individual four summers (grid 
points 4 through 17) and four winters (grid points 2 through 
17) are contoured for r in Figure 9 and • in Figure 10, and 
propagating autospectra of both r and • for the individual 
seasons are contoured in Figure 11. Although the summer and 
winter distributions of variance density for both r and • 
appear qualitatively similar from year to year in Figures 9 and 
10, some interannual variability does exist for both seasons. 

For r in summer, the total variance over grid points 4 
through 17 ranges from 3.29 (dyn cm-2)2 in summer 1983 to 
5.18 (dyn cm-2) 2 in summer 1981 (CODE 1) (Table 5). Well 
over 90% of the total variance is due to fluctuations with 

I < 1.1 x 10-3 cpkm in all four summers (Table 5). The large 
excess of poleward propagating variance observed for co < 0.1 
cpd in the ensemble-averaged propagating autospectra (Figure 
7b) results primarily from the large excess observed in sum- 
mers 1981 and 1982 (CODE 1 and CODE 2)(Figure 11). 
Most of the excess poleward propagating variance at small I is 
distributed over a larger co band (co < 0.35 cpd) in summer 
1983. Only 48.5% of the total variance propagates poleward 
in summer 1980, while between 53.6% and 55.2% propagates 
poleward in the other summers. The largest excess is observed 
in summer 1982 (CODE 2) (Table 5). 

For c[ in summer, the total variance over grid points 4 
through 17 ranges from 169 cm 2 in summer 1980 to 460 cm 2 
in summer 1983 (Table 5). The total variance does not appear 
to be related to either the total r variance or the percentage of 
r variance that propagates poleward. For example, the largest 
• variance and the smallest r variance both occur in summer 
1983, and the largest percentage of poleward propagating r 
variance and the second-smallest • variance both occur in 
summer 1982. The percentage of total variance due to fluctu- 

ations with Ill • 1.1 x 10 -3 cpkm ranges from 90.4 during 
summer 1981 (CODE 1) to 94.5 during summer 1980. The 
largest excess of poleward propagating • variance exists at the 
smallest l resolved (0.40 x 10 -3 cpkm in summer and 0.35 
x 10 -3 cpkm in winter) and essentially for c0 < 0.19 cpd in 

all four years (Figure 11). The largest excess is observed during 
summer 1982 (CODE 2), where 61.9% of the total variance 
propagates poleward (Table 5). The smallest excess (57.3%) 
occurs during summer 1981 (CODE 1). 
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Fig. 8. (left) Integrated wave number autospectra and (right) inte- 
grated frequency autospectra for (top) ß and (bottom) •, ensemble 
averaged over the four summers (grid points 4 through 17; solid lines) 
and four winters (grid points 2 through 17; dashed lines). The wave 
number autospectra have 480 degrees of freedom in both seasons, and 
the frequency autospectra have 600 (680) degrees of freedom for 
summer (winter). The 95% confidence band is shown. 
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Fig. 7. (a) Wave number-frequency autospectra and (b) propagating autospectra of z and • ensemble averaged over 
the four summers (grid points 4 through 17) and four winters (grid points 2 through 17). The contours are of log•o [S(1 m, 
%)] (Figure 7a) and P[•(+/,,, %)- •(-l,,, %)] (Figure 7b), with •in (units) 2 cpd -1 cpkm -1, where P = 10 -2 for •: in 
summer, P = 10-3 for r in winter, P = 10 -'• for • in summer, and P = 10-5 for • in winter. Spectrum estimates have been 
averaged over five frequency bands, excluding % = 0, and four seasons, so the number of degrees of freedom is 40 
(Appendix B). The 95ø/,, confidence limits are between log•o •- 0.17 and 1Og•o • + 0.21 at all l,, and %. The autospectra 
in Figure 7a are shaded where S'• > 10 '• and •c > 10 '•'8. Negative propagating autospectra (equatorward propagating 
variance exceeds poleward propagating variance) are shaded in Figure 7b. The l,, and % at which estimates are made are 
shown in Figure 8. 

the smallest (0.041 cpd), where it is near 30 ø. The time lag 
increases with increasing equatorward space lags (r/, < 0 km) 
in both seasons, consistent with a • response that tends to 
propagate poleward. 

4. WAVE NUMBER--FREQUENCY AUTOSPECTRA OF 'r AND • 

4.1. Summer and Winter Autospectra of z and • 

Autospectra of r and • [•(/,•, to,) and •c(l,•, ro,)] for summer 
(grid points 4 through 17) and winter (grid points 2 through 
i7) (Figure 7a) are calculated using the two-dimensional Fou- 
rier transform method described in Appendix B. To correct for 
the possible effects of leakage in the wave number domain, we 
prewhitened all data sets in the alongshore domain using the 
first-difference method, and then postcolored all spectrum 
functions in the wave number domain to recover the true 

spectrum estimates [e.g., Frankiqnoul, 1974]. The motivation 
behind this correction is discussed in Appendix B. The spec- 
trum estimates for positive I represent poleward propagating 
variance, and those for negative I represent equatorward prop- 
agating variance. The total variance of the r and • fields in 
summer and winter, calculated by adding the total variances 
of the individual seasons, is listed in Table 5. 

Most of the variance of r and • exists for Ill-< 1.1 x 10 -3 
cpkm (wavelengths of > 900 km) (Figure 7a). For r, the vari- 
ance density decreases by about a factor of 10 for Ill increasing 
from 0 to 1.1 x 10 -3 cpkm over all frequencies resolved 
(0.025-0.48 cpd) in both seasons. For •, the corresponding 
decrease is greater for negative I than for positive I and be- 
comes smaller for increasing co. It exceeds a factor of 10 only 
for •o < 0.27 (<0.15) cpd for negative (positive) I in summer, 
and only for ro < 0.36 (<0.15) cpd for negative (positive) I in 
winter. This wave number asymmetry results from the strong 
tendency for • fluctuations to propagate poleward. The pre- 
ferred propagation direction in (/, to) space is best illustrated 

by contouring the propagating autospectra [•(+ l, co)- •(-l, 
co)] of 5 and r (Figure 7b). In summer, poleward propagation 
dominates for r over all 1 for co < 0.066 cpd, and the excess of 
poleward propagating variance is greatest for I < 10-3 cpkm. 
Equatorward propagating variance slightly exceeds poleward 
propagating variance at higher frequencies. In winter, equator- 
ward propagation dominates for r in most of (l, co) space, with 
the largest excess of variance existing for I < 0.6 x 10-3 cpkm 
and ro < 0.36 cpd. In contrast to r, poleward propagation 
dominates • fluctuations in both summer and winter at nearly 
all I and to, with the greatest excess existing for I < 1.1 x 10 -3 
cpkm and ro < 0.19 cpd in summer and <0.15 cpd in winter. 
The largest excess of poleward propagating • variance for 
both seasons is found at the smallest I resolved (0.40 x 10 -3 
cpkm in summer and 0.35 x 10 -3 cpkm in winter), and at 
co = 0.025 cpd in summer and 0.066 cpd in winter. 

The overall distributions of variance density as functions of 
I and ro separately are illustrated by integrating •(/,•, to,) and 
•(/,, to,) over to,and l,, respectively. It is evident from the 
resulting 1 and ro autospectra (Figure 8) that the increase of r 
variance in winter over summer is much greater than the cor- 
responding increase of • variance (Table 5). We noted earlier 
that this winter increase is a function of y (section 3.1, Figure 
3). 

The I autospectra illustrate the dominance of large wave- 
lengths for the r and • fluctuations. In summer, 93.7% (93.5%) 
of the r (cj) variance is at Ill < 1.1 x 10 -3 cpkm (Table 5). In 
winter, this percentage of r variance decreases to 88.9, while 
the percentage of • variance is 94.1. The asymmetry of the l 
autospectra illustrates the preferred propagation direction of 
the fluctuations. In summer, 52.2% (58.2%) of the total r (•) 
variance is due to poleward propagating fluctuations (Table 
5). In winter, this percentage of r variance decreases to 46.8, 
and this percentage of • variance decreases to 54.3. The ro 
autospectra for r decrease monotonically with increasing ro in 
both seasons, with the summer autospectrum being slightly 
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Fig. 9. Wave number-frequency autospectra of z for the individual four summers (grid points 4 through 17) and four 
winters (grid points 2 through 17). The contours are of 1Og•o [•(/m, to,)], with • in (dyn cm-2) 2 cpd-• cpkm-•. Spectrum 
estimates have been averaged over nine frequency bands, excluding to, = 0, so the number of degrees of freedom is 18. The 
95ø/,, confidence limits are between 1Og•o •- 0.24 and log•o • + 0.34 at all lm and %. The autospectra are shaded where 
•(l•, %) > 104. The 1•(%) at which estimates are made are shown in Figure 8 (Figure 13). 

For r in winter, the total variance over grid points 2 
through 17 ranges from 22.0 (dyn cm-2) 2 in winter 1983-1984 
to 69.0 (dyn cm-2) 2 in winter 1982-1983. The percentage of 
total variance due to fluctuations with Ill-< 1.1 x 10 -3 cpkm 
ranges from 84.2 during winter 1981-1982 to 91.1 during 
winter 1980-1981. Equatorward propagating variance exceeds 
poleward propagating variance in all four winters, and the 
excess is largest for the smallest nonzero Ill resolved. The fre- 
quency bands where the excess is greatest shift substantially 
from year to year. During winter 1980-1981, a small excess of 
poleward propagating variance exists for co > 0.25 cpd. 
During winters 1982-1983 and 1983-1984, small excesses of 
poleward propagating variance existed only at the smallest co 
resolved (0.041 cpd). The percentage of total variance that 
propagates poleward ranges from 45.9 in winter 1981-1982 to 
47.5 in winter 1983-1984 (Table 5). 

For • in winter, the total variance over grid points 2 
through 17 ranges from 612 cm 2 in winter 1983-1984 to 1393 
cm 2 in winter 1982-1983. These are the same winters when the 

• variance is smallest and largest, respectively. The total vari- 
ance does not appear to be related to the percentage of z 
variance that propagates poleward. The percentage of total 
variance due to fluctuations with Ill < 1.1 x 10-3 cpkm ranges 
from 92.4 in winter 1983-1984 to 95.9 in winter 1982-1983. 

The excess of poleward propagating variance is largest at the 
smallest nonzero Ill resolved and spans all or nearly all of the 

entire frequency band resolved in all winters except 1981- 
1982, where equatorward propagation dominates for co > 0.2 
cpd. This indicates that a substantial part of the ( response 
propagated alongshore along with the •: disturbances during 
this winter, which also had the largest percentage excess of 
equatorward propagating •: variance. The percentage of total 
variance that propagates poleward ranges from 52.4 in winter 
1981-1982 to 57.5 in winter 1983-84 (Table 5). 

4.3. Comparison of Measured and Calculated 
z Autospectra 

We test the reliability of calculated r autospectra by com- 
paring them to measured r autospectra for summers 1981 and 
1982, plus winter 1981-1982 (Figure 12), calculated over grid 
points 4 through 13 only. Since calculated and measured r 
have substantially different variance at many locations along 
the coast, it is important to assess how much this problem will 
contribute to observed differences between calculated and 

measured z autospectra. We therefore also compare auto- 
spectra of measured r to autospectra of adjusted measured r 
(section 2). 

Similar distributions of variance density in (/, co) space are 
observed for both measured and adjusted measured r (Figure 
12). If the differences in total variance are taken into account, 
then based on the statistical F test as described by Halliwell 
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Fig. 10. Wavenumber-frequency autospectra of • for the individual four summers (grid points 4 through 17) and four 
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(Figure 13). 

and Allen [1987], adjusted measured z spectrum estimates do 
not differ significantly (to 95% confidence) from those of mea- 
sured r throughout (l, co) space in all three seasons, except for 
1 < -1.5 x 10 -3 and co > 0.35 cpd in winter 1981-1982. The 
similarities in the distributions of variance density are evident 
by inspecting integrated I and co autospectra (Figure 13). The 
variance of measured and calculated r differs by an order of 
magnitude at some locations along the coast, yet the shape of 
the (l, co) autospectra of measured r are not significantly dis- 
torted when the variance of this field is adjusted to equal that 
of calculated r. Uncertainties in the representation of r vari- 
ance by the calculated and measured z fields therefore do not 
significantly influence the results of our (l, co) autospectrum 
analyses. We can compare calculated z autospectra directly to 
those of either measured or adjusted measured r to 
characterize similarities and differences between (l, co) auto- 
spectra of the calculated and measured r fields. 

Significant differences do exist between the distributions of 
calculated and measured r variance densities in (l, co) space. 
Comparing the calculated and adjusted measured r auto- 
spectra in Figure 12, calculated r variance density decreases 
much more rapidly with increasing III than it does for mea- 
sured r. This difference is observed more clearly in the inte- 
grated l autospectra in Figure 13. The adjusted measured z 
spectrum estimates are smaller than the calculated z estimates 

at I- 0 in all seasons, but more so in both summers. These 
estimates are about equal at the smallest nonzero Ill resolved 
(0.55 x 10 -3 cpkm) in all seasons, but for larger III the esti- 
mates for calculated r decrease much more rapidly with in- 
creasing III than those for adjusted measured z. For III- 2.2 
x 10 -3, the differences are about a factor of 5 in summer 

1981, a factor of 3.5 in winter 1981-1982, and a factor of 10 in 
summer 1982. Typically, between 75% and 80% of measured 
and adjusted measured z variance, and over 90% of calculated 
r variance, is due to fluctuations with I11 <- 1.1 x 10 -3 cpkm 
(Table 6). In contrast, the distributions of variance density as a 
function of co are very similar for both calculated and adjusted 
measured r (Figure 13). Comparing the (/, co) autospectra of 
calculated and adjusted measured •: using the F test indicates 
that for all three seasons, the spectrum estimates are not sig- 
nificantly different (to 95% confidence) for III-< 1.1 x 10 -3 
cpkm within the frequency band co < 0.34 cpd, and for I/I-< 
0.55 x 10 -3 cpkm within the frequency band 0.34 < co < 0.48 
cpd. 

The calculated •: field underestimates the magnitude of 
poleward-propagating •: variance in summer, more so in 
summer 1982 than summer 1981 (Table 6). The probable cause 
is the relatively poor representation of wind fluctuations 
caused by coastally trapped, poleward propagating atmo- 
spheric pressure disturbances along the California coast 
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in (units) 2 cpd -• cpkm -1, where P = 10 -2 for 1; in summer, P -- 10 -3 for z in winter, P = 10 -'• for • in summer, and 
P = 10 -5 for • in winter. The number of degrees of freedom is 18 (see Figure 9). Negative propagating autospectra 
(equatorward propagating variance exceeds poleward propagating variance) are shaded. The l,, (co.) at which estimates are 
made are shown in Figure 8 (Figure 13). 

[Dorman, 1985, 1987] by the calculated wind field, as docu- 
mented by Halliwell and Allen [1987]. These disturbances 
were more common in summer 1982 than in summer 1981. 

Both adjusted measured and measured r are very coherent 
with calculated r at small Ill for the three seasons (Figure 14), 
with coherences squared >0.6 observed in that part of (l, co) 
space where the corresponding autospectra are large. (The 
method of calculating these coherence functions is presented 
in Appendix B.) Similar coherence patterns with calculated r 
are observed for both measured and adjusted measured r, with 
slightly larger coherence observed for adjusted measured r in 
both summer 1981 and winter 1981-1982, and for measured r 

in summer 1982. Consequently, the coherence between the 
calculated and measured r fields is not significantly influenced 
by large differences in the alongshore distribution of measured 
and calculated r variance. Coherence is larger for positive I in 
summer and for negative I in winter, so it tends to be largest at 
those l and co where r variance is largest. On the basis of these 
autospectrum and cross-spectrum analyses, we conclude that 
the calculated r field represents fluctuations with I/I-< 1.1 
x 10 -3 cpkm with reasonable accuracy for the purpose of 

(/, co) autospectrum analysis. 

5. OBSERVED • RESPONSE PROPERTIES IN (1, co) SPACE 

5.1. Summer and Winter Response of • to r 

Properties of the response of • to r in (/, co) space are illus- 

trated by the coherence squared between r and • [7•c2(/m, co,)I, 

and by the gain and phase of the transfer function of the • 

response to r [(•,c(/,,, co,) and O•c(l,,, co,)] (Figure 15). (The 
methods of calculating these functions are described in Appen- 
dix B.) In both seasons, relatively large coherence is observed 

only for I/I < 1.1 x 10-3 cpkm (Figure 15). In summer, •7•c 2 is 
relatively large for positive I and co < 0.3 cpd, while in winter, 
it is relatively large for negative l and co < 0.4 cpd. The shift of 
large coherence toward negative 1 in winter likely occurs be- 
cause equatorward propagation dominates the r fluctuations. 

In contrast, the gain of the • response tends to be larger for 
positive I in both seasons (Figure 15). The largest gain is ob- 
served for the smallest positive I resolved in both seasons 
(0.40 x 10 -3 cpkm in summer and 0.35 x 10 -3 cpkm in 
winter), but at the lowest frequency resolved (0.025 cpd) in 
summer and at the second-lowest frequency resolved (0.066 
cpd) in winter. These are the same values of 1 and co where the 
largest excesses of poleward propagating • variance are ob- 
served (Figure 7b). A ridge of relatively large gain extends 
approximately along a line of constant co/l, corresponding to 
• • 300 cm s-•. The gain decreases along this ridge for in- 
creasing I and co to < 50% of the maximum at approximately 
co = 0.25 cpd and l= 0.75 x 10 -3 cpkm in summer. It de- 
creases more rapidly with increasing 1 and co in winter, causing 
the largest gain to be concentrated at smaller I and co than it is 
in summer. The gain is substantially larger in summer than in 
winter. For a given total variance of r fluctuations, the winter 
• response will be smaller than in summer for two reasons: the 
smaller gain throughout (l, co) space, and the dominance of 
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Fig. 12. Wave number-frequency autospectra of calculated, adjusted measured, and measured z at grid points 4 
through 13 for two summers and one winter. The contours are of loglo [g(l,,, %)], with • in units of m 2 s -2 cpd -• 
cpkm-•. Spectrum estimates have been averaged over nine frequency bands, excluding % = 0, so the number of degrees of 
freedom is 18. The 95% confidence limits are between loglo •- 0.24 and loglo • + 0.34 at all 1,• and co,. The autospectra 
are shaded where •(1 m, %) > 103'6. The I m and % at which estimates are made are shown in Figure 13. 

equatorward propagation in the z fluctuations, which causes z 
variance in winter to exist farther from the ridge of large gain 
in (l, co) space. 

The corresponding phase functions for both summer and 
winter change sign on either side of an approximately straight 
line that roughly follows the ridges of maximum gain in (1, co) 
space, so the ( response is nearly in phase with z at those I and 
co where the largest gain is observed. The zero-phase contour 
is not as well defined in winter as it is in summer, but this is 
largely because the winter coherence is small in that part of (1, 
co) space. The largest possible response for a given z distur- 
bance will therefore occur if that disturbance propagates 
alongshore at speed d = coil as defined by the ridge of large 
gain, and this response will be nearly in phase with the forc- 
ing. Most z and ( variance is found in that part of (1, co) space 
where the phase is negative, so that the ( response at a given y 
will lag the z forcing in time. 

Integrated I and co coherence squared, gain, and phase func- 
tions (Figure 16) are calculated from the (1, co) autospectra and 
cross-spectra that have been integrated over co and 1, respec- 
tively. The integrated I coherence is larger for positive I in 
summer and negative 1 in winter and is relatively small for 
I1[ > 1.1 x 10-3 cpkm. In contrast, the gain is larger for posi- 
tive I in both seasons, relatively more so in summer, and is 
substantially larger for all 1 in summer. For 1 _< 0, the phase 
generally ranges between -45 ø and -90 ø (( lags z) in both 
seasons. As 1 increases from 0, the phase increases rapidly to 
exceed 0 ø (( leads z) in summer and to appoximately equal 0 
in winter. The integrated co coherence tends to decrease with 
increasing co (Figure 16). The strong bias toward small co in 

the ( response is evident in the gain for both seasons. In 
summer it decreases rapidly with co to 0.35 cpd and then is 
approximately constant for larger co. In winter it decreases 
rapidly with co to 0.23 cpd and then is approximately constant 
for larger co. The phase for both seasons is generally negative 
over all co, tends to decrease with increasing co to 0.19 cpd, 
and is roughly constant for larger co. In summer it is near 0 ø at 
the smallest co resolved (0.025 cpd). 

5.2. Interannual Variability in the Response 
of C to • 

The coherence squared between z and •, and the gain and 
phase of the • response to z, are contoured in Figures 17 
through 19 for the eight individual seasons. While there are 
some differences in the details of the coherence patterns from 
year to year, the fundamental seasonal differences between the 
ensemble-averaged summer and winter patterns observed in 
Figure 15 are also observed for the individual seasons in 
Figure 17. The largest summer coherence is observed for posi- 
tive 1 in all summers except for 1981 (CODE 1). The largest 
winter coherence is observed for negative 1, but much less so 
during winter 1980-1981 than during the other winters. 

The gain functions (Figure 18) show substantial year-to- 
year variability, while the phase functions (Figure 19) gener- 
ally do not. In particular, the rate of decrease of maximum 
gain with increasing I and co differs among the individual sea- 
sons. During summer 1980, the gain first increases with in- 
creasing I and co following the ridge, and then decreases. The 
gain generally decreases along the ridge in the other three 
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Fig. 13. (left) Integrated wave number autospectra and (right) integrated frequency autospectra for calculated r (solid 
lines), adjusted measured z (short-dashed lines), and measured z (long-dashed lines) at grid points 4 through 13 for two 
summers and one winter. The integrated wave number (frequency) autospectra have 126 (198) degrees of freedom. The 
95% confidence bands are shown. 

summers, with the largest decrease observed during summer 
1983. The decrease is smaller during winter 1980-1981 than in 
the other winters. The change in the sign of the phase near the 
dispersion curve is present in all eight seasons, although it is 
poorly detected during the winters owing to poor coherence in 
that part of (1, •o) space. 

5.3. The Response of ( to Measured and 
Calculated z 

We test if the observed response properties are significantly 
biased in any manner because we use calculated z as the forc- 
ing function. We compare the ( response to calculated r with 
the ( response to both measured and adjusted measured z for 
three seasons, which also allows us to determine if differences 
in the alongshore distribution of r variance influences the ob- 
served response properties. The coherence squared, gain, and 
phase functions are computed from autospectrum and cross- 
spectrum functions for grid points 4 through 13. These func- 
tions are contoured for summer 1981, winter 1981-1982, and 
summer 1982 in Figures 20 through 22, respectively. 

The coherence squared, gain, and phase functions for the • 
response to measured z are very similar to those for the • 
response to adjusted measured •, the only notable exception 
being differences in the magnitude of the gain function, es- 
pecially in winter 1981-1982, where it is substantially larger 
for measured •. The large differences in the alongshore distri- 

bution of variance in the measured and calculated z fields only 
slightly influence the observed (I, •o)-dependent properties of 
the cj response. The uncertainty about which • field best repre- 
sents • variance along the coast affects only our ability to 
determine the magnitude of the gain, not our ability to deter- 
mine qualitatively the dependence of gain and other response 
properties on I and •o. In the subsequent discussion we there- 
fore compare the response of • to both calculated and mea- 
sured r without considering adjusted measured •. 

TABLE 6. Percentage of Total Variance With Wavelengths > 900 
km and Percentage of Total Variance Due to Poleward Propagating 
Fluctuations for Calculated, Adjusted Measured, and Measured z 
Over Grid Points 4 Through 13 for Summers 1981 and 1982 Plus 

Winter 1981-1982 

Season 
1-' _3 900 Poleward 

Wind Stress Set km, % Propagating, % 

Summer 1981 calculated 

adjusted measured 
measured 

Winter 1981-1982 calculated 

adjusted measured 
measured 

Summer 1982 calculated 

adjusted measured 
measured 

91.6 54.9 

78.1 57.5 

74.3 55.5 

90.9 48.0 

78.0 47.2 

80.2 46.5 

93.6 53.6 

76.9 58.8 

78.0 59.9 
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Fig. 14. Wave number-frequency coherence squared between ad- 
justed measured and calculated r, and between measured and calcu- 
lated r, at grid points 4 through 13 for two summers and one winter. 
The number of degrees of freedom is 18 (see Figure 12). Squared 
coherences of greater than 0.16 arc significant to a 95% level of 
confidence. Squared coherences of greater than 0.3 are shaded. The l,. 
and co, at which estimates are made are shown in Figure 13. 

The coherences squared between • and both calculated and 
measured r have similar patterns in (l, co) space for all three 
seasons, but coherence with measured z is somewhat larger 
(Figures 20 through 22). Although the coherence squared is 
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generally statistically significant (>0.16 to 95% confidence)in 
most of (l, co) space, it is relatively low for Ill > 1.1 x 10 -3 
cpkm, and little increase occurs at these Ill when measured r is 
used instead of calculated r, even though measured • is ex- 
pected to represent • fluctuations at these Ill much more accu- 
rately. The wind-driven response of • is apparantly weak at 
larger Ill and can at best be marginally detected. 

The patterns of the gain of the • response to both calculated 
and measured • are similar for each season, with the tendency 
for a ridge of large gain to exist on the positive I side of the 
spectrum (Figures 20 through 22). The decrease in gain along 
the ridge for increasing I and co exists whether calculated or 
measured • is used as the forcing function, and the decrease 
tends to be larger for measured wind. This decrease is there- 
fore not an artifact of using calculated r as the forcing func- 
tion, and if anything, the decreases observed for both summer 
and winter (Figure 15) are underestimated by using calculated 
r. The phase functions for calculated and measured z also 
have qualitatively similar patterns in each season. We con- 
clude that the results of our analyses have not been seriously 
distorted by using calculated r to represent the forcing. 

6. PREDICTED • RESPONSE PROPERTIES IN 
(1, co) SPACE 

6.1. Response Properties Predicted by 
for One Mode 

The fundamental properties of the • response to 
space predicted from basic coastally trapped wave theory can 
be studied using a transfer function derived by Fourier trans- 
formation of (1) in two dimensions, assuming constant param- 
eters along the coast (Appendix C). To illustrate the predicted 
response properties for one mode, we contour the gain and 

Winter 

-2 -1 0 1 2 -2 -1 0 1 2 

Wavenumber (10 -a cpkm) 

Fig. 15. Wave number-frequency coherence squared between r and •, and the transfer function (gain in cm (dyn 
cm-2) - • and phase in degrees) of the • response to r, calculated from autospectra and cross-spectra ensemble averaged 
over the four summers (grid points 4 through 17) and four winters (grid points 2 through 17). The number of degrees of 
freedom is 40 (see Figure 7). Squared coherences of greater than 0.074 are significant to a 95% level of confidence. Phase is 
contoured only in that part of (1, co) space where the coherence is statistically significant. Squared coherences greater than 
0.3, gain larger than 2 (summer) and 1 (winter), and positive phase are shaded. The 1 m and co, at which estimates are made 
are shown in Figure 8. 
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Fig. 16. (left) Integrated wave number and (right) frequency co- 
herences squared between z and • and the transfer function (gain in 
cm (dyn cm-2) -1 and phase in degrees) of the • response to z, en- 
semble averaged over four summers (grid points 4 through 17; solid 
lines) and four winters (grid points 2 through 17; dashed lines). The 
wave number autospectra have 480 degrees of freedom in both sea- 
sons, and the frequency autospectra have 600 (680) degrees of freedom 
for summer (winter). Wave number (frequency) coherences squared of 
>0.006 (>0.005) are statistically significant to a 95ø/,, level of confi- 
dence. Phase is graphed only where the coherence is significant. 

phase of this transfer function for two values of the friction 

coefficient: T s = 1 and 3 days (Figure 23). (The subscripts 
n- 1 are dropped for simplicity.) In these examples, we use 
c = 350 cm s-•, a typical value observed by Halliwell and 
Allen [1984] during summer 1973, and the coupling coefficient 
b = (cTs)-•, the latter resulting in a maximum gain of 1 (Ap- 
pendix C). The maximum gain and zero-phase contours both 
follow the linear dispersion curve, so the slope of these con- 
tours is c = coil = 350 cm s-•. All other gain and phase con- 
tours are parallel to this dispersion curve. If the long-wave 
assumption is not made, the dispersion curve will not be 
straight, but the deviation from a straight line is small within 
that part of (/, co) space resolved in this study [Brink et al., 
1987)]. 

The fundamental properties of the predicted response can 
be elucidated by considering the response generated by a r 
disturbance at a particular Ill > 0 and co > 0 (a pure sine wave 
that propagates alongshore). The • response is also a pure 
propagating sine wave with the same I and co as the forcing. 
The largest response will occur for a -c disturbance that propa- 

gates alongshore at speed coil = c,- c, and this response will 
be exactly in phase with the -c disturbance. If c, differs from c, 
the phase, which can be characterized as either a space or time 
lag, will be nonzero. Positive (negative) phase indicates that 
the response wave is displaced alongshore from the -c wave in 
the direction toward (opposite from) which the r wave is prop- 
agating, resulting in the • response leading (lagging) r in time 
at a given y. Positive phase is observed for 0 < c, < c, repre- 
senting poleward propagation of the ß wave at a speed slower 
than the free-wave phase speed and corresponding to the 
shaded regions of the phase plots in Figure 23. Negative phase 
is observed for c• > c, representing poleward propagation of 
the 'r wave at a speed faster than the free-wave phase speed 
and corresponding to the unshaded regions of the positive l 
side of the phase plots, and also for c, < 0, representing equa- 
torward propagation of the ß wave and corresponding to the 
negative I side of the phase plots. The response wave always 
propagates along the coast at the same speed as the 'r wave, 
but the spatial (and resulting temporal) lag of the response 
depends on the difference between c, and c, with the lag equal- 
ing zero if c, -- c. 

Increasing T• has several effects. The maximum gain in- 
creases, since it equals c T•b (Appendix C). The response far 
from the dispersion curve in (l, co) space becomes relatively 
smaller and has a larger phase lead or lag. In the limit as 

T•--> co, the gain approaches infinity along the dispersion 
curve and zero elsewhere in (/, co) space, and the phase ap- 
proaches _+ 90 ø everywhere in (/, co) space except on the disper- 
sion curve. Increasing c will increase the slopes of the contours 
in Figure 23 and will also increase the maximum gain, since it 
is a linear function of c. 

There are qualitative similarities between the observed gain 
and phase (Figure 15) and the gain and phase predicted by (1) 
for one mode. Both observed and predicted gains are largest 
along a ridge that follows a line of constant coil for positive l, 
and both observed and predicted phases change sign on op- 
posite sides of this ridge, although the observed winter sign 
change is poorly resolved owing to low coherence in that part 
of (l, co) space. The prediction that a near-resonant response 
can occur due to r disturbances that propagate poleward at 
speed c = coil is confirmed by the data. The good coherence 
between r and • at II < 1.1 x 10-3 cpkm, coupled with the 
qualitative similarities between observed and predicted re- 
sponse properties, indicates that large-scale wind forcing of • 
is very important along the west coast of North America in 
both summer and winter, and that the response to this forcing 
has many properties that are predicted for forced large-scale 
coastally trapped waves. 

At sufficiently small co, coastally trapped wave energy can 
be propagated offshore by planetary Rossby waves as is 
shown in a barotropic model by Dorr and Grimshaw [1986], 
so (1) becomes invalid as co--, 0. However, theoretical models 
that accurately describe the nature of this behavior for general 
stratified situations are not available. Thus it is not clear at 

precisely what frequencies or in what form this breakdown of 
(1) will occur. This process may influence the observed re- 
sponse properties in (l, co) space near the smallest co resolved 
(Figure 15). In particular, the decay rate of the forced wave 
response may be larger at these small co, tending to decrease 
the amplitude of the response. The observed maximum in gain 
near the dispersion curve increases with decreasing co down to 
the smallest co resolved (0.025 cpd) in summer, and to the 
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Fig. 17. Wave number-frequency coherence squared between r and ( for the individual four summers (grid points 4 
through 17) and four winters (grid points 2 through 17). The number of degrees of freedom is 18 (see Figure 9). Squared 
coherences of greater than 0.16 are statistically significant to a 95% level of confidence, and those of greater than 0.3 are 
shaded. The l m (%) at which estimates are made are shown in Figure 8 (Figure 13). 

second-smallest to resolved (0.066 cpd) in winter (Figure 15). 
In addition, the observed maximum winter gain decreases 
only slightly from to- 0.066 cpd to to = 0.025 cpd. Conse- 
quently, offshore propagation of energy due to Rossby waves 
apparently does not have a clearly identifiable effect on the 
observed response. 

We attempt to estimate free-wave parameters in (1) by com- 
paring the observed transfer functions (Figure 15) to the theo- 
retical transfer functions, but as we show in Appendix D, the 
presence of noise in the data limits our ability to do this. In 
particular, the observed gain functions are reduced in mag- 
nitude by the presence of noise in the r data set only. There- 
fore observed and theoretical gain functions should be com- 
pared only in those parts of (1, to) space where calculated r is 
reasonably accurate, i.e., where calculated and measured r are 
highly coherent with each other (Figure 14). This noise bias 
may be a major reason why the region of relatively large gain 
along the dispersion line is confined to smaller I and to in 
winter, since the winter coherence between measured and cal- 
culated z decreases rapidly with increasing I and to along this 
line (Figure 14). In contrast, noise in the z and • data sets has 
no effect on the observed phase functions (Appendix D), so 
direct comparisons of observed and theoretical phase func- 
tions will probably be more useful. 

Because of this noise effect, we do not try to obtain esti- 
mates of the parameters of (1) by statistically fitting the predic- 
ted to observed transfer functions. Instead, we make rough 
estimates by visual comparison of the phase functions in Fig- 
ures 15 and 23. In summer, d appears to be roughly 300 cm 

s-•, based on the slope of the zero-phase contour, and •œ 
appears to fall between 1 and 3 days, based on the phase 
gradient in the vicinity of the dispersion line. Estimates are 
more difficult to make for winter since the zero-phase con- 
tours are not as well defined as in summer, but d appears 

larger and •œ appears roughly the same in winter as opposed 
to summer. These d estimates agree with those made from the 
space-time correlation functions (section 3.2, Figure 4). We 
show later that the phase gradients can be substantially al- 
tered if more than one mode is present, so we cannot consider 
these estimates of T s to be accurate. We do not estimate b 
because we lack confidence in how well calculated r represents 
r variance along the coast. 

Since the gain is proportional to cbTœ, and since d does not 
appear to be smaller in winter, the observed winter decrease in 
gain must be caused by decreases in b or Tœ. The magnitude of 
the coupling coefficient b depends on the basic stratification 
[Brink, 1982], and this stratification changes substantially be- 
tween summer and winter. According to the analysis of Grant 
and Madsen [1979], the friction time scale Tœ will probably be 
smaller in winter because of larger bottom stress due to in- 
creased storminess in the northeast Pacific and the resulting 
increase in surface gravity wave energy over the continental 
shelf. The fact that r variance increases much more in winter 

than in summer poleward of the CODE site (y > 0) than does 
• variance (Figure 3) indicates that the winter decrease in gain 
may be y-dependent. Since winter storminess increases toward 
the north, larger bottom stress from increased surface gravity 
wave energy may produce a y-dependent winter decrease in •œ 
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Fig. 18. Wave number-frequency gain in cm (dyn cm-2) -• of the transfer function of the • response to z for the 
individual four summers (grid points 4 through 17) and four winters (grid points 2 through 17). The number of degrees of 
freedom is 18 (see Figure 9). Gain of greater than 2 (summer) and 1 (winter) is shaded. The I m (co.) at which estimates are 
made are shown in Figure 8 (Figure 13). 

that could at least partly explain this y-dependence of the 
seasonal change in gain. 

One major difference between the observed and predicted 
response properties does exist' The maximum predicted gain 
is constant along the dispersion curve co/1 = c, while the ob- 
served gain decreases substantially along this line as 1 and 
increase. This decrease is observed in parts of (l, co) space 
where coherence is large, so we believe that this phenomenon 
is real and does not depend on the noise effect. In summer, for 
example, 372= 0.46 and (• = 12.2 + 3.8 cm (dyn cm-2)-• at 
l= 0, co- 0.025 cpd, while 3;2= 0.49 and (J- 5.0 _+ 2.3 cm 
(dyn cm-2) -1 at l= 7.9 x 10 -4 cpkm, co- 0.19 cpd, where 
the 95% error bars for • are indicated. The fact that the 
coherence is not significantly different indicates that the frac- 
tion of noise in the r and ( data sets does not change much 
(Appendix C), yet the gain decreases by an amount that is 
large compared to the width of the error bars. We conclude 
that in summer, gain decreases significantly along the disper- 
sion line with increasing 1 and 

In winter, coherence decreases rapidly along the dispersion 
line, so we cannot make the same conclusion. However, coher- 
ence remains large for 1 = 0 while gain decreases with increas- 
ing co. For example, 372= 0.60 and (J = 5.7_+ 2.1 cm (dyn 
cm-2)-• at I - 0, co = 0.025 cpd 372 = 0.65 and (J = 2.1 _+ 0.5 
cm (dyn cm-2) -1 at l-0, co = 0.19 cpd. We therefore es- 
tablish that gain decreases with increasing co in winter, but 
cannot establish whether gain decreases with both I and 

Possible mechanisms that may cause this observed decrease 
in gain include the y-dependence of parameters in (1), an (l, 
ro)-dependent friction that may exist if the linear friction term 
in (1) is invalid, and a significant contribution to the response 
by higher modes. The effects of y-dependent parameters were 

explored by numerically integrating (1) for different c(y), Ts(y ), 
and b(y) with z from winter 1981-1982 and summer 1982 as 
the forcing functions, using the method described in Halliwell 
and Allen [1984] extended to handle y-dependent parameters, 
and then computing the transfer functions for the numerical 
solutions. Variable parameters distort the gain and phase by 
only a small amount (not shown), and this mechanism appears 
incapable of accounting for the large observed decrease in 
maximum gain. This result is in agreement with Chapman 
[1987], who found that in integrations of (1), predictions of a 
response variable at a given y show little difference in quality 
whether y-dependent or averaged parameters are used. 

The responses predicted by two recent models illustrate that 
the effect of friction can depend on 1 and co if the assumptions 
required to derive the linear friction term in (1) are relaxed. 
The two-layer Kelvin wave model of Allen [1984] predicts an 
increasing gain with decreasing 1 and co that is qualitatively 
consistent with observations, but most of the increase is con- 

fined to much smaller I/I and co than is observed. However, the 
stochastic model of the wind-driven response of a continu- 
ously stratified continental shelf and slope presented by Brink 
et al. [1987] predicts a decreasing resonant response with de- 
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Fig. 19. Wave number-frequency phase in degrees of the transfer function of the • response to r for the individual four 
summers (grid points 4 through 17) and four winters (grid points 2 through 17). The number of degrees of freedom is 18 
(see Figure 9). Phase is contoured only in that part of (l, co) space where the coherence is statistically significant. Phase 
greater than 0 ([ leads r) is shaded. The l,, (co,) at which estimates are made are shown in Figure 8 (Figure 13). 

creasing co, not the increasing resonant response that is ob- 
served. The (/, co) dependence of friction can therefore be 
strongly dependent on the model assumptions and must be 
further studied. 

6.2. Response Predicted by (1) for More Than 
One Mode 

We consider the properties of the total [ response in (l, m) 
space that result if more than one coastally trapped wave 
contributes significantly to this response. Parameters of (1) for 
[ as the response variable, calculated using the model of Brink 
[1982] for the CODE site (K. H. Brink, personal communi- 
cation, 1986) and also averaged along the west coast of the 
United States between San Diego (y =-938 km) and the 
CODE site (y- 0) [Chapman, 1987], are listed in Table 7 
along with the maximum gain for each mode. In calculating 
these parameters, Brink and Chapman used a bottom friction 
coefficient r - 0.05 cm s-x at all locations along the coast. For 
the CODE site, the maximum gain of modes 2 through 4 are 
33%, 11%, and 6% of the maximum gain of mode 1. For the 
west coast, the corresponding percentages for modes 2 and 3 
are 32% and 17%. These estimates indicate that modes 2 and 

3 may make a substantial contribution to the total observed [ 
response in the CODE large-scale domain. 

The predicted response properties for multiple uncoupled 
modes can be readily studied since the (/, co) transfer function 
of the total response is simply the sum of the individual trans- 
fer functions. These total transfer functions are calculated for 

the CODE site and the west coast using the parameters for all 
modes listed in Table 7, and the gain and phase of these 
functions are contoured in Figure 24. Individual ridges of 
large gain are evident at large positive l, each following a line 
given by coil = %. At very small co and l, the ridges merge into 
one broader ridge and become indistinct from each other. 
Sharp phase changes are observed near the dispersion curves. 

The ridges of large gain are substantially narrower, and the 
phase changes are sharper, than are observed for the single 
mode (Figure 23) because the Tœ, values in Table 7 are much 
larger than the Tœ values used for the single-mode cases. These 
theoretically estimated Tœ values are also much larger than 
both the estimate of 1 to 3 days made using Figure 15 and the 
estimate of 4.25 days made by Halliwell and Allen [1984] for 

summer 1973. To illustrate the effects of changing Tœ, on the 
multiple-mode response, we calculate gain and phase using the 
parameters in Table 7, but with Tœx set to 2.5 days (reduced to 
45% of its estimated theoretical value for the CODE site and 

26% of its estimated theoretical value for the west coast) and 

with the ratios Tœ,/Tœ• preserved (Figure 25). With Tœ reduced, 
the individual ridges of large gain are substantially broader 
and therefore more nearly blend together to appear as one 
broad ridge. The single ridge dominates for l< 1.1 x 10 -3 
cpkm, and the only apparent contribution from higher modes 
is to cause the gain to decrease with increasing co and l, as 
observed in the data. Contributions to the [ response from 
higher modes may therefore contribute to the observed de- 
crease in gain with increasing co and I. The phase functions in 
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Fig. 20. Wave number-frequency coherence squared between z and •, and transfer functions (gain in cm (dyn cm-2)-• 
and phase in degrees) of the • response to z, at grid points 4 through 13 for calculated, adjusted measured, and measured z 
during summer 1981. The number of degrees of freedom is 18 (see Figure 12). Squared coherences of greater than 0.16 are 
significant to the 95% level of confidence. Phase is contoured only in that part of (l, w) space where the coherence is 
statistically significant. Squared coherences greater than 0.3, gain larger than 2, and positive phase (• leads z) are shaded. 
The l,, and to, at which estimates are made are shown in Figure 13. 

Figure 25 also better resemble the observed phase functions in 
Figure 15 than do those in Figure 24. 

With more than one mode present, phase contours can be 
substantially distorted from those predicted for a single mode, 
so it is hazardous to estimate T s for the dominant first mode 
from an observed phase function if higher modes are signifi- 

cant. Also, the (/, w) resolution in the data analyses is too 
coarse to resolve the narrow ridges of large gain and the very 
large phase gradients predicted when large Ts, are assumed. 
Because of these considerations, the crude estimate of 1 to 3 
days that we made earlier cannot be used to invalidate the 
larger values determined by theory. In contrast, higher modes 
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Fig. 21. Same as Figure 20, but for winter 1981-1982. 
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Fig. 22. Same as Figure 20, but for summer 1982. 

appear to have little effect on the slope of the zero-phase 
contour that follows the first-mode dispersion line, so phase 
speed estimates made from Figure 15 may be reasonably accu- 
rate estimates of an effective first-mode phase speed. 

We also tested if frictional coupling among the modes 
[Brink, 1982; Chapman, 1987] might also act to smooth out 
the gain and phase functions in Figure 24 near the dispersion 
lines and perhaps contribute to the observed decrease of gain 
with increasing I and co. The influence of frictional coupling on 
the theoretical transfer function is discussed in Appendix C, 
along with the method we used to test this effect. We calcu- 
lated transfer functions using fl = 0.3 and fl = 0.6 in (C12) to 

generate mode coupling coefficients with magnitudes typical 
of those observed by Chapman [1987]. The results (not shown) 
indicate that mode coupling does not smooth the gain and 
phase functions significantly, nor does it cause the gain to 
decrease with increasing I and co. We can therefore conclude 
that although frictional coupling coefficients may have signifi- 
cant magnitude, this coupling has a small influence on the 
predicted properties of the response in (/, co) space. This is 
consistent with the results of Chapman [1987], who noted that 
the inclusion of mode coupling effects in integrations of first- 
order wave equations did not significantly change the predic- 
ted coastal circulation response. 
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Fig. 23. Transfer functions (gain and phase) of the • response to r in wave number-frequency space predicted by (1) for 
one coastally trapped wave mode calculated for two values of T/(1 and 3 days). The coupling coefficient b is chosen such 
that the maximum gain is 1 cm (dyn cm2) -'. Values of gain >0.5and positive phase are shaded. 



11,782 HALLIWELL AND ALLEN' SEA LEVEL RESPONSE TO WIND STRESS 

TABLE 7. Parameters of (1) Calculated by K. H. Brink (personal 
communication, 1986) for the CODE Site and D.C. Chapman and 

K. H. Brink (personal communication, 1986) for the West Coast 
Between San Diego and the CODE Site Using 

the Model of Brink [1982] 

Mode 

Location Parameter 1 2 3 4 

CODE site 

West coast 

c n, cm s -• 299 153 84 55 
108bn, (dyn cm-2) -• 5.85 3.41 1.34 0.92 
T/n, days 5.52 6.00 9.35 11.0 
maximum gain, cm (dyn 8.34 2.70 0.91 0.48 

cm -2)- 1 

c n, cm s - 1 350 176 111 
108b,, (dyn cm-2) -1 4.17 4.17 3.09 
T/n, days 9.45 6.26 6.82 
maximum gain, cm (dyn 11.9 3.97 2.02 

cm- 2)- 1 

The values for the west coast are averaged over 17 subdomains 
along the west coast of North America as was described by Chapman 
[1987]. 

6.3. One-Dimensional Response Properties 
Predicted by (1) 

Using the observed winter and summer (/, (o) autospectra of 
z (Figure 7), we calculate the one-dimensional coherence 
squared and gain as functions of 1 and (o predicted by (1) as 
described in Appendix C, assuming that one mode dominates 
the response. We calculate these functions using c = 350 cm 
s-2, and T/= 1 day (Figure 26) and T/= 3 days (Figure 27), 
the parameters used to predict (1, (o) transfer functions (Figure 
23). The coherence predicted by (1), which is a constant equal 
to one in (1, (o) space, is generally less than 1 when calculated 
as a function of I or (o (Appendix C). A similar reduction of 
coherence appears in the observed one-dimensional coherence 
functions (Figure 16). For example, summer •72(/m, (On) in 
Figure 15 is greater than 0.45 at (O=0.025 cpd for 
-1.5 x 10-3 < I < 1.5 x 10-3 cpkm, which contains most of 
the z and • variance at that (O, yet summer 72((O) in Figure 16 
is only 0.29 at (o- 0.025 cpd. The predicted one-dimensional 
coherence (Figure 26) is approximately constant as a function 
of (O, but it varies as a function of 1, with the smallest coher- 
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Fig. 25. Same as Figure 24, except that the T•, from Table 7 have 
been reduced in magnitude as shown. The maximum gain for each 
mode is the same as shown in Figure 24. Positive phase is shaded. 

ence found for 0 < I < 1.5 x 10-3 cpkm. Both the I and (O 
coherence functions decrease with increasing T•, with an es- 
pecially large decrease observed in the 1 coherence function for 

0 <l < 1.5 x 10-3 cpkm. Increasing T• increases the relative 
importance of distantly forced • fluctuations, thus decreasing 
the coherence between • and r, at all locations along the coast. 
The predicted and observed one-dimensional coherence func- 
tions differ substantially, presumably because noise in the z 
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Fig. 24. Transfer functions (gain and phase) of the • response to r in wave number-frequency space predicted by (1) for 
several coastally trapped wave modes calculated using the parameters in Table 7. Positive phase is shaded. 
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Fig. 26. (left) Integrated wave number and (right) frequency coherence squared between z and •, and the transfer 
function (gain in cm (dyn cm-2)-• and phase in degrees) of the • response to r, calculated from (1) as is described in 
Appendix C using the summer (solid lines) and winter (dashed lines) autospectra of r presented in Figure 7. For this 
calculation, we use c = 350 cm s -• and T/= 1 day to calculate the (/, w) transfer function from (1), and we choose b so 
that the I gain functions in both seasons at I = 0 have the same magnitudes as those for the corresponding observed gain 
functions in Figure 16. 

and • data sets substantially reduces the observed coherence 
(Appendix D), particularly for Ill > 1.1 x 10 -3 cpkm. 

The predicted I gain functions (Figures 26 and 27) tend to 
be relatively large for positive l, and the co gain functions 
decrease with increasing co. In general, there is a better resem- 
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Fig. 27. Same as Figure 26, except that T/= 3 days. 

blance between observed and predicted gain functions than 
between the corresponding coherence functions. However, the 
corresponding observed gain functions (Figure 16) are larger 
than the predicted gain functions for the smallest positive l 
resolved and for small co. This is consistent with the inability 

of (1) to predict the increase in maximum gain in (l, co) space 
for decreasing l and co observed in Figure 15. Increasing Tœ 
does not change the shape of the l gain functions very much. 
Increasing Tœ from 1 to 3 days introduces a relative maximum 
to the predicted summer co gain function for co- 0.15 cpd 
(Figure 27), where a relative maximum is found in the ob- 
served summer gain (Figure 16). Increasing T s also increases 
the magnitude of the slope of the predicted winter co gain 
function for small co, in better agreement with the observed 
winter gain. The predicted phase functions are qualitatively 
very similar to the observed phase functions, changing sign for 
small positive I and becoming increasingly negative for in- 
creasing co. Increasing Ts increases the slope of the I phase 
near the zero crossing and shifts the co phase toward larger 
negative values over all co. 

7. DISCUSSION 

Fluctuations in alongshore wind stress r calculated from 
FNOC geostrophic winds along the west coast of North 
America are relatively energetic at alongshore wavenumbers 
Ill < 1.1 x 10-3 cpkm and frequencies 0.025 < co < 0.5 cpd, 
and they effectively drive a coastal sea level • response within 
this (l, co) band. Winter z fluctuations are generated primarily 
by spatially coherent, propagating weather systems [Halliwell 
and Allen, 1987], and equatorward propagation dominates 
these fluctuations for co < 0.35 cpd. Poleward propagation 
strongly dominates the summer z fluctuations for co < 0.1 cpd, 
and equatorward propagating variance slightly exceeds pole- 
ward propagating variance for larger co. In contrast, poleward 
propagation dominates the • fluctuations in both seasons, but 
more so in summer. The • response at a given location is most 
highly correlated with ß time series at lag distances 300-400 
km equatorward of that location. Coherence analysis indicates 
that the lag distance is approximately -360 km for co < 0.11 
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cpd (co < 0.19 cpd) in summer (winter), and is approximately 
-180 km for larger co in both seasons, except near co = 0.34 
cpd in summer, where it is approximately 0. 

The largest coherence between • and r as a function of (/, co) 
is observed where z is most energetic, i.e., for positive 1 in 
summer and negative I in winter. The • response to r is appar- 
ently very weak for I11 > 1.1 x 10-3 cp km in both seasons 
since the coherence is small for all co at these large 1.. This 
result is not an artifact of using calculated r as the forcing 
function, because similar results are obtained using measured 
r. The observed transfer functions indicate that a resonance 

exists in both seasons, with the largest gain occurring along a 
single ridge that approximately follows a straight line (disper- 
sion curve) of constant poleward phase speed, and with •r ap- 
proximately in phase with r along this ridge. The gain along 
this ridge decreases substantially with increasing 1 and co in 
both seasons, with the largest response confined to even 
smaller I and co in winter than in summer. The decrease is also 

not an artifact of using calculated r as the forcing function, 
since it is also present, and even tends to be slightly larger, 
when measured r is used. The interannual variability in this 
observed pattern of gain is large, with only small decreases in 
maximum gain observed during some seasons and very large 
decreases observed in others. The phase patterns are more 
similar among individual summer and winter seasons. 

The • response is more effectively forced by r in summer 
than in winter. The ratio of total • variance to total r variance 
is nearly 4 times greater in summer. Two factors are evidently 
responsible for this: First, the magnitude of the gain is sub- 
stantially smaller in winter than in summer, which is probably 
due primarily to larger friction in winter. Second, the domi- 
nance of equatorward propagation in the winter r field causes 
substantially more r variance to exist in a region of (1, co) space 
away from the dispersion curve in locations where the gain is 
relatively small. 

A single forced, first-order wave equation model with a 
linear friction term governing the (y, t) dependence of the 
response due to one coastally trapped wave mode predicts 
that a resonant response exists. A constant maximum in the 
predicted gain follows the straight dispersion curve 
c= co/l > 0 in (/, co) space, and the predicted phase lag of the 
response is zero along this curve. These predicted patterns are 
qualitatively consistent with the observed patterns, except for 
the observed deceased in maximum gain with increasing 1 and 
co along the dispersion curve. Relatively good agreement exists 
between observed and predicted phases. Since this decrease in 
gain is not predicted by one wave equation, we attempted to 
identify possible causes. Alongshore variations in the parame- 
ters for one wave equation (phase speed, friction time scale, 
and coupling coefficient) did not distort the predicted gain and 
phase patterns very much. Models with (l, (,))-dependent fric- 
tion did not successfully predict properties of the observed 
transfer functions. A significant contribution to the response 
from additional coastally trapped wave modes can incease the 
predicted maximum gain at small I and •o. This occurs because 
the individual ridges of large gain merge and become indis- 
tinguishable at small I and co, and within this part of (/, co) 
space, the gain decreases with increasing I and co as observed. 
The presence of higher modes may therefore contribute to the 
observed decrease. The possible existence of frictional cou- 
pling among the first several modes does not contribute to the 
observed decrease. 

APPENDIX A' SPACE-LAGGED CORRELATION, COHERENCE, 
AND PHASE FUNCTIONS 

Given a set of N evenly spaced time series sampled during 
M seasons, the space-lagged autocorrelation function for the r 
field (/•) and the space-lagged cross-correlation function be- 
tween the r and • fields (Re0 , both seasonally averaged over 
the M seasons, are calculated, respectively, as follows' 

/•(r/,, tt) 
M J 

•, •, •z(Yi, t)z(Yi + •1,, t + tl) > 
m: 1 i=l 

E (r2(yi, t)) (r2(yi -•- t•n , t + tt)) 
m=l i=l L_m=l i= 

/•r(r/., tl) 
M J 

5', Y', (•(Yi, Or(y, + •1,, t + tl) ) 
m=l i:l 

(A1) 

(r2(yi + r/n t + tl) ) 
Lm= 1 i= 

where 

=In +1 

(A2) 

J = N n < 0 Inl _< IN- 11 

(A3) 

and where the circumflex denotes statistics estimated from the 

data. The autocorrelation function for the • field,/•cc(r/,, tl), is 
calculated in the same manner as/•,•(r/,, tl) using • in place of 
r in (A1). The angle brackets signify time averaging, and the 
mean values of r and • are assumed to be removed. The 

functions /•, /•cc, and /•c• are contoured in Figure 4. We 
estimate integral correlation space scales of r and • by inte- 
grating/•,(r/,, 0) and/•cc(r/,, 0) over positive r/, out to the first 
zero crossing of/•. We estimate correlation time scales of r 
and cj by integrating/•(0, tl) and/•cc(0, tl) over positive t I out 
to the first zero crossing of/•. In estimating these scales, we 
integrated out to space or time lags larger than the maximum 
lags shown in Figure 4, if necessary. In winter, the zero cross- 
ing of/•cc(r/,, 0) is not reached by the maximum space lag that 
we integrated to (r/, = 2520 km), but/•cc(r/,, 0) has decreased to 
less than 0.1 by this lag. If/•c•(r/,, 0) is assumed to decrease 
linearly beyond this maximum lag, then the winter correlation 
space scale for • is underestimated by no more than 5%. All 
space and time scales are summarized in Table 4. 

The seasonally averaged space-lagged coherence squared 
functions for the r field, and betweeen the • and r fields, are 
given by 

;•rr2(F/., CO)--- 12 m= 1 i=I 

ß E {'•*(yi, co)'•(yi, cO)} 
m=l i 

I j ß •, ,__•i{'•v•(y,-Jr- l'ln cO)'•(yi '-[- "n cO)} m=l }- • (A4) 
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12 m= 1 i=I 

' •[m•l i•I •*(yi' •)•(Yi' 
m = 1 i= 

where I and d are computed using (A3). The overbar denotes 
the Fourier transform, an asterisk denotes complex conjugate, 
and braces denote frequency band averaging. The coherence 
squared for the • field is calculated in the same manner as for 
the z field using (A4). The phase functions for the z field and 
between the z and • fields, respectively, are given by 

) 0•(•,, w)= arg E •f*(Yi, w)•(y, + •, w)} (A6) 
1 i=I 

) m = 1 '= 

With 0 in radians, the phase speed function for z is given by 

(A8) 
0•(.., •) 

We band average over nine adjacent frequency bands, ex- 
cluding w = 0, and ensemble average over four seasons, which 
would result in estimates with 72 degrees of freedom if no 
spatial averaging were performed. The spatial averaging will 
increase the number of degrees of freedom by an amount that 
is a function of •,. The increase will be largest for •, = 0, 
where the spectrum estimates are spatially averaged over 2-3 
spatial correlation scales (section 3.2). At the largest space 
lags, the spatial averaging is only over one correlation space 
scale, so no additional degrees of freedom are gained. We 
therefore assume the estimates have 72 degrees of freedom, for 
which the minimum significant coherence squared is 0.041 
[Thompson, 1979]. 

APPENDIX B' CALCULATION OF T• (1, •) SPECTRUM 
ESTIMATES 

We use the Fourier transform method in two dimensions to 

estimate the (1, w) autospectra and cross-spectra. Given the 

discrete data sets z(y•, tO and •(y•, t0 for a given season sam- 
pled at N points along the coast and L points in time with 
sampling rates Ay and At, raw (unaveraged) estimates of the 
autospectra of z and •, and the cross-spectrum between z and 
•, are given by 

S•(I•, •,)= B•B•*(I•, •,)•(1•, •,) (B1) 

where the overbar denotes a two-dimensional Fourier trans- 

form, the asterisk denotes complex conjugate, and where B t = 
(NAy) -• and B• = (LAt) -• are the wave number and fre- 
quency bandwidths respectively, for the raw estimates. The 
discrete two-dimensional Fourier transform of a data matrix 

f (y•, t&) is 
N L 

f(l•, w,) = AyAt Z Z f(Y•, t&) e'('"y•-•"'•) (B4) 
j=• 

where the discrete wave numbers and frequencies of the raw 
spectrum estimates are given by 

{l.,=m(NAy) -•} {-N/2<m<N/2• to, = n(LAt)-• for 0 < n < L/2 J (B5) 
Spectrum estimates at negative frequencies contain redundant 
information. 

The raw spectrum estimates are Z 2 random variables with 
approximately 2 degrees of freedom. We must therefore 
average these estimates to increase their statistical stability. 
The averaged estimates are also Z 2 random variables, but with 
2N s degrees of freedom, where N s is the total number of raw 
estimates that are averaged [-Bendat and Piersol, 1971]. The 
raw estimates may be band averaged over wave number, band 
averaged over frequency, and/or ensemble averaged over two 
or more realizations (or in our case, seasons). The number of 
degrees of freedom will then be given by 

ndo f -- 2ntn,on r (B6) 

where n t is the number of wave number bands, n o is the 
number of frequency bands, and n r is the number of realiza- 
tions over which spectrum estimates are averaged. Because of 
limited resolution, we do not band average over wave number. 
To generate the average summer and winter spectrum esti- 
mates, we ensemble average over four seasons. 

We also corrected for leakage effects by prewhitening and 
postcoloring. Frankignoul [1974] noted that if a time series 
was relatively short compared to the dominant period of an 
energetic signal in the data, leakage could substantially distort 
the calculated autospectrum function at higher frequencies. If 
the series is long compared to this strong signal, leakage ef- 
fects will be small, and the calculated spectrum will approxi- 
mate the shape of the true spectrum. As the length of the series 
decreases, the slope of the calculated spectrum will asymp- 
totically approach co -2 as the length becomes of the same 
order as or smaller than the period of the strong signal, no 
matter what the slope of the true spectrum is. We were there- 
fore concerned that this could be a problem in the wave 
number domain, since the length of the domain is comparable 
to the horizontal scales of synoptic atmospheric systems (cy- 
clones and anticyclones). This concern was heightened because 
the initial wave number autospectra of both -r and • that we 
calculated had slopes close to 1-2 in most of the wave number 
domain that we resolved. Because of this, we prewhitened -r 
and cj in the alongshore domain only using the first-difference 
method prior to calculating spectrum functions, and then 
postcolored these functions in the wave number domain, as 
described by Frankignoul [1974] for frequency domain spec- 
trum functions. We tested how prewhitening in the space 
domain affected the shapes of wave number autospectra of 
both r and • and found that it made little difference. (Prewhi- 
tening was not performed in the (1, co) spectrum analyses of the 
wind fields presented by Halliwell and Allen [1987], but test 
calculations indicate that prewhitening had very minor effects 
on these spectra.) Apparently, the slopes of the true spectrum 
functions are close to 1-2 in most of the wave number domain. 

We also tested if prewhitening in the time domain had a sig- 
nificant effect on frequency spectra. Since the time series were 
long with respect to the periods of synoptic wind fluctuations, 
we did not expect frequency domain leakage to be a serious 
problem, and this was confirmed by the tests. (We also note 
that the one-dimensional spectrum functions in Figures 26 
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and 27 were computed as shown in Appendix C using (1, co) 
autospectra that were not prewhitened and postcolored.) 

The coherence squared and transfer functions are given by 

I {•q•C(Im, con)} 12 
•/r;2(/m , con)-- {•r(/m ' con)}{i•;(lm ' COn)} (87) 

{•q<(/m, Cøn)} 
H<(lm' cøn)= S](1,,, con) (B8) 

where the braces denote the averaging performed. The gain 
and phase of the transfer functions are given by 

d<(lm, COn)--[H,;(lm, COn)I (B9) 

O<(lm, COn) = arg [H<(lm, con)] (B10) 

APPENDIX C: • RESPONSE PREDICTED BY FORCED, 
FIRST-ORDER WAVE EQUATIONS 

The forced, first-order wave equation with a linear friction 
term describing the alongshore-time dependence of the • re- 
sponse to r is 

Cn-l•n, q- •ny q- (cnTfn)-l•n-'- bn'r (C1) 

where c n are the free-wave phase speeds, Tj, n are the friction 
time scales, and b n are the coupling coefficients for the •n 
response. Using the continuous two-dimensional Fourier 
transform 

f(l, co)=J••,f•f(Y,t)ei(ly-'øt)dy dt (C2) 

assuming that the first mode dominates the response (drop- 
ping the n = 1 subscript for simplicity), and assuming constant 
coefficients, we obtained the transformed wave equation 

[icoc-' - il + (cTœ)-•]•- b7 (C3) 

The predicted transfer function H<(1, co) is therefore 

c Tfi, 
H<(I, co)= = G<e iø< (C4) 

1 - iTf(lc - co) 

with the gain G< and phase 0< given by 

crj, b 
G•;(l, to)= [1 + rj, 2(Ic- co)2],/2 (C5) 
O,;(l, co)= tan -• [Tj,(lc- co)] (C6) 

If additional modes contribute significantly to the response, 
the transfer function of the total response equals the sum of 
the transfer functions of the individual modes. If two modes 

dominate the response, then • - (• + (2, and 

H•;(I, co)= [bl[i((oc 2 - 1 _ 1) + (c2Tf2) -1] 
-1 

+ b2[i(coc 1 -1 _/) + (c 1Tj1)-1]}{[i(coCl _/) 

- -1 _ 0 + -1 (c7) + (c• Tjx) x] + [i(coc 2 

If friction is sufficiently strong, the modes can be frictionally 
coupled to each other [Brink, 1982' Chapman, 1987-1, and the 
(y - t) dependence of the ( response is described by an infinite 
set of coupled wave equations' 

Cn-l•n, q- •ny q- E anm•m = bnz (C8) 
m=l 

The diagonal elements of the frictional coefficient matrix are 
given by 

ann = (Cntfn) -! (C9) 

and the off-diagonal elements of an, , couple mode n to mode 
m. If two modes dominate the response, the Fourier trans- 
forms of the coupled equations are 

[i(coc,-' - 1) + a,,]•, + a,2•2 = b,r 
(ClO) 

a2,( , + [i(coc2-' - 1) + a22]• 2 = b2r 

By solving this system for •1, •2 and adding, the total transfer 
function is found to be 

H<(1, co)= {b•[i(coc2 -1 - l) + a22 ] 

+ b2[i(coCl -• -- l) + all ] -- bla21 

- b2a12}{[i(coc 1-• - l) + all ] 

+ [i(coc2 -• - l) + a22 ] - a•2a2•} -a (Cll) 

By comparing (C11) to (C7), the effects of mode coupling are 
evident. In our tests of the effects of mode coupling, we esti- 
mated the off-diagonal elements of the frictional coefficient 
matrix using 

anm-- fla.. m • n (C12) 

We then calculated transfer functions for several values of fi to 
assess how it was affected by varying the strength of the cou- 
pling. 

Given the autospectrum of r, ST(1, co), then the predicted 
cross-spectrum between r and •, S<(l, co) and the predicted 
autospectrum of •, S;(1, co), are given by 

S<(1, co)= H<(I, co)S•(1, co) (C13) 

St(l, co)- [H<(I, co)[2S•(/, co) (C14) 

The coherence squared is 

2 = = 1 (C15) 7< (1, co) IS<(1, co)l 2 
S,(1, co)S;(/, co) 

The coherence squared and transfer functions can be calcu- 
lated as functions of I or co only, and we describe these calcu- 
lations here for functions of 1. Given 

S•(1) = S,(l, co) dco (C 16) 

we can calculate S<(!) and S;(!) by integrating (C13) and (C14) 
over co, as was done for ST(I) in (C16), and then calculate the l 
coherence squared and transfer functions by 

7<2(/) = 1S•c(1)12 (C17) 
S,(I)S;(1) 

H(l) - S<(1) S•(1) (C18) 
The maximum achievable coherence squared, 7<2(1), is gener- 
ally less than 1. To calculate the one-dimensional coherence 
squared and transfer functions presented in section 6.3, we 
numerically integrate (C13) and (C14) over co and numerically 
calculate the integral in (C16) using (C4) and observed values 
of S•(I, co) (Figure 7). We then calculate 7r; 2 and O< using (C17) 
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and (C18). The numerical integrations are performed using the 
trapezoidal rule. 

APPENDIX D' EFFECTS OF NOISE ON (I, to) COHERENCE 
AND TRANSFER FUNCTION ESTIMATES 

Assume that the output function •(y, t) is related to the 
input function z(y, t) through a two-dimensional linear model 

L•(y, t)= bz(y, t) (D 1) 

where L is a linear operator. If all terms of (D1) have constant 
coefficients, it can be Fourier transformed using (C2) to yield 

•(l, to)= H(l, ro)7(l, to) (D2) 

where H(l, m) is the transfer function of the model. In general, 
when we estimate a transfer function using discrete samples of 

•(yj, tk) and r(yj, t 0, noise will be present in these samples, and 
we must understand how this noise affects the estimated trans- 

fer function H(Im, to,) before we can compare it to the model 
transfer function H(l, to). 

We assume that the sampled data sets r(yj, t 0 and •(yj, t 0 
consist of a signal plus noise. Here we define noise as all 
variance in each data set that is not explained by the model. 
This includes random noise in both z and •, but also includes 
• variance that is forced by other processes. In our analyses, 
for example, this may include free-wave energy propagating 
poleward from the equatorial region that is incoherent with z 
within our analysis domain. Fourier transforming z(yj, t 0 and 
•(yj, t0 using (B4) therefore yields 

7=is+ 7e 
(D3) 

where all transformed variables are functions of (lm, tO,), and 
where the subscript s denotes signal and e denotes noise. The 
transforms of the signals are related by the linear model (D2)' 

•s = H,•7s (D4) 
We now show how noise can cause the observed transfer func- 

tion /•,c to differ from the model transfer function H,c. We 
define the estimated spectrum functions' 

= = + + 

S• '-- {•*•) '-- {(L -I" •e)*(L -'1" •e)) 

(D5a) 

(D5b) 

(D5c) 

If we assume that 17 e and •e are incoherent with each other and 
with the signals, then using (D4) we obtain 

$z--' -1 t- (D6a) 

= IH,12{7s*is} + {L'L} (D6b) 

S'z- IHcl{i$*is} (D6c) 
The observed coherence squared and transfer functions are 

^ 2 IS•l 2 IH•l 2{•s*•s}2 

(D7) 

-- •r -- [{is*is} -I- {ie*•e} ] 
(D8) 

with the gain and phase given by 

( {is*is} ) (DO) ½,• = liq d = IH,;I [{is*is} + {ie*ie}] 
0 = arg (/•,c)= arg (H•c) (D10) 

Therefore noise in the r and • data sets has the following 
influence on the observed coherence, gain, and phase func- 
tions' (1) In the absence of noise in both data sets, 72 would 
equal 1 for all l,• and r%. The presence of noise in either data 
set will cause 72 to decrease. (2) The presence of noise in only 
the input ('r) data set will cause (J,c = Iq,cl to be smaller than 
the true model gain G•- IH•l. (3) The value of 0 is not af- 
fected by noise in either the input or output data set. There- 

fore 0 is an unbiased estimator of 0, but (J•c will be too small 
at all (I m, •%) where the input r data set has a poor signal-to- 
noise ratio. 
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