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severed during the storm, and four days after the 
storm nearly 60% of the nation’s inhabited islands 
remained cut off from the outside world. According 
to UNESCO, 268 million U.S. dollars was required for 
total recovery and rehabilitation of Vanuatu.

The storm’s winds gradually slowed afterwards as 
Pam tracked west of the Tafea Islands. However, the 
Fiji Meteorological Service indicated that the TC’s 
pressure dropped farther to 896 hPa on 14 March. 
As Pam travelled farther south, the storm’s eye faded 
away and Pam’s low-level circulation became dis-
placed from its associated thunderstorms, indicating 
a rapid weakening phase. Later on 15 March, Pam en-
tered a phase of extratropical transition and affected 
northeast New Zealand and the Chatham Islands 
with high winds, heavy rain, and rough seas. A state 
of emergency was declared in the Chatham Islands. 
At least 15 people lost their lives either directly or in-
directly as a result of Pam, with many others injured. 

Shortly after Pam was classified, its outer rain-
bands led to the formation of a tropical low east of 
Cape York Peninsula, Australia, on 9 March. The 
Category 1 TC Nathan was named later that day. 
It slowly executed a cyclonic loop over the next few 
days, moving across Arnhem Land, Northern Ter-
ritory, and into Western Australia. See section 4e7 
for a detailed timeline of Nathan’s development, 
landfall, decay, and impacts. On 19 March, a tropical 
disturbance developed about 375 km to the southwest 
of Apia, Samoa. From 20 to 22 March, the resulting 
tropical depression produced heavy rain and strong 
winds over Fiji’s Lau Islands. The system moved 
southward as it was classified as a tropical depression. 
Early on 22 March, Tropical Cyclone Reuben was 
named as a Category 1 storm, located about 220 km 
to the south of Nuku’alofa, Tonga. On 23 March, TC 
Reuben began extratropical transition. 

Tropical Cyclone Solo developed within the mon-
soon trough on 9 April, about 465 km to the south of 
Honiara, Solomon Islands. Due to ideal conditions, 
the system rapidly developed as it moved southward 
and was named a Category 1 storm. Solo peaked 
with winds of 54 kt (28 m s−1), making it a Category 
2 storm. As Solo turned to the south-southeast from 
11 to 12 April, it moved between mainland New Cale-
donia and the Loyalty Islands. Rainfall totals up to 
222 mm were recorded in New Caledonia. Significant 
damage was reported there, with roads impassable in 
places and contaminated drinking water in the mu-
nicipality of Pouébo. Finally, and as noted in section 
4e7, Tropical Cyclone Raquel, the last storm of the 
2014/15 season, developed as a tropical disturbance 
about 718 km to the northeast of Honiara, Solomon 

Islands, on 28 June. Over the next couple of days, the 
system moved westward into the Australian region, 
where it was named a TC. Raquel then moved east-
ward into the South Pacific basin, where it weakened 
into a tropical depression. On 4 July, the system 
moved south-westward and impacted the Solomon 
Islands with high wind gusts and heavy rain.

f. Tropical cyclone heat potential—G. J. Goni, J. A. Knaff, 
and I.-I. Lin 
This section summarizes the previously described 

tropical cyclone (TC) basins from the standpoint of 
tropical cyclone heat potential (TCHP) by focusing on 
vertically integrated upper ocean temperature condi-
tions during the season for each basin with respect to 
their average values. The TCHP (Goni and Trinanes 
2003), defined as the excess heat content contained 
in the water column between the sea surface and the 
depth of the 26°C isotherm, has been linked to TC 
intensity changes (Shay et al. 2000; Goni and Trinanes 
2003; Lin et al. 2014). The magnitude of the in situ 
TCHP was also identified as impacting the maxi-
mum potential intensity (MPI) through modulating 
near-eyewall SSTs (and heat fluxes) occurring when 
TC winds mechanically mix the underlying ocean 
(Mainelli et al. 2008; Lin et al. 2013). In general, fields 
of TCHP show high spatial and temporal variability 
associated mainly with oceanic mesoscale features, 
interannual variability (e.g., ENSO), or long-term 
decadal variability. This variability can be assessed 
using satellite altimetry observations (Goni et al. 
1996; Lin et al. 2008; Goni and Knaff 2009; Pun et 
al. 2013) or using a combination of altimetry and 
hydrographic data (Domingues et al. 2015), and has 
been used to assess meridional heat transport and 
the overturning circulation in the Atlantic Ocean 
(Dong et al. 2015).

Globally, the number of tropical cyclones was 
10% higher than the previous season; however, in the 
eastern North Pacific (ENP), the number increased 
significantly from an already high number in 2014. 
The 2014 and 2015 ENP hurricane seasons were the 
most active in recorded history. In the western North 
Pacific (WNP) basin, the 2015 number was similar to 
the long-term climatological average. Nevertheless, 
it is a ~40% increase as compared to the very low 
occurrence in 2014. 

The two following factors best illustrate the over-
all global TCHP interannual variability within and 
among the basins: 1) the TCHP anomalies (departures 
from the 1993–2014 mean values) during the TC sea-
sons in each hemisphere; and 2) differences in TCHP 
between the 2015 and 2014 seasons.
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Most basins exhibited positive TCHP anomalies 
(Fig. 4.36), except for the WNP and the western 
portion of the South Pacific basin. The WNP basin 
experienced a significant reduction in TCHP of ~20%, 
which is typical of El Niño years (Zheng et al. 2015). 
The TCHP in the Gulf of Mexico exhibited large 
positive anomalies due to the intrusion of the Loop 
Current and a long residence time of Loop Current 
rings. Despite these positive anomalies, there were no 
hurricanes in the Gulf of Mexico (just one tropical 
storm—Bill).

In the ENP basin, the positive TCHP anomalies 
were consistent with strong El Niño conditions and a 
continued positive phase of the Pacific decadal oscil-
lation. The combination of these two phenomena is 
manifest in positive SST anomalies in that region and 
extending to the date line. Consequently, the TCHP 
values in this region during the season were even 
higher than in previous years (Fig. 4.37). As in 2014, 
positive TCHP and SST anomalies contributed to 
elevated tropical cyclone activity, with 16 hurricanes 
in the ENP during 2015 (Fig. 4.36). 

The WNP basin also usually exhibits anomalies 
related to ENSO variability (Lin et al. 2014; Zheng 
et al. 2015). From the 1990s to 2013, it experienced a 
long-term decadal surface and subsurface warming 
associated with prevalent La Niña–like conditions 

(Pun et al. 2013; England et al. 2014). However, with 
the developing El Niño, the warming had stopped. 
With 2015 being the strongest El Niño event since 
1997, the TCHP over the WNP MDR (4°–19°N, 
122°E–180°) fell considerably, as characterized by 
evident negative anomalies (Figs. 4.36, 4.37; Zheng et 
al. 2015). With the relaxation of the trade winds dur-
ing El Niño, warm water returning from the western 
to the eastern Pacific produced a positive anomaly in 
the ENP while the WNP exhibited a negative anomaly 
(Figs. 4.36, 4.37; Zheng et al. 2015). 

For each basin, the differences in the TCHP values 
between the most recent cyclone season and the pre-
vious season (Fig. 4.37) indicate that the southwest 
Indian Ocean, the northwest Indian Ocean, and the 
western portion of the ENP continued to exhibit 
an increase in TCHP values. TC activity in terms 
of Category 4 and 5 storms was correspondingly 
elevated in these basins. The largest changes with re-
spect to the previous seasons occurred in the ENP and 
WNP basins, with differences greater in magnitude 
than 20 kJ cm−2. Compared to 2014, the percentage 
of Category 5 TCs in the WNP was quite low, with 
only two of 15 TCs (13%) attaining Category 5. In 
contrast, in 2014, though there were only eight TCs 
during the TC season, there were three Category 5 
TCs or 38%. The evident reduction in TCHP over the 
WNP may have acted as a damper by increasing the 
ocean cooling effect on restraining TC intensification 
(Zheng et al. 2015).

The 2015 season was noteworthy for several 
reasons with respect to intensification of TCs, in-
cluding Hurricane Patricia, the strongest Western 
Hemisphere hurricane ever recorded and Hurricane 
Joaquin, the most intense TC on record to strike the 
Bahamas. A summary of the ocean conditions for 
these and some other selected TCs are as follows.

• Typhoon Koppu (Lando; Fig. 4.38a) was a Cat-
egory 4 TC that formed east of the Commonwealth 

FIG. 4.36. Global anomalies of TCHP corresponding 
to 2015 computed as described in the text. The boxes 
indicate the seven regions where TCs occur, from left 
to right: Southwest Indian, North Indian, West Pacific, 
Southeast Indian, South Pacific, East Pacific, and North 
Atlantic (shown as Gulf of Mexico and tropical Atlantic 
separately). The green lines indicate the trajectories 
of all tropical cyclones reaching at least Category 1 

1) and above 
during Nov–Apr 2014/15 in the Southern Hemisphere 
and Jun–Nov 2015 in the Northern Hemisphere. The 
numbers above each box correspond to the number of 
Category 1 and above cyclones that travel within each 
box. The Gulf of Mexico conditions during Jun–Nov 
2015 are shown in the inset in the lower right corner. 

FIG. 4.37. Differences between the TCHP fields in 2015 
and 2014 (kJ cm 2).
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of the Northern Mariana Islands (CNMI) on 10 
October. This storm reached its peak intensity on 
17 October, with sustained winds of over 100 kt 
(51 m s−1), and 1-minute sustained winds of ap-
proximately 130 kt (67 m s−1). Though it eventually 
reached Category 4, Koppu did not intensify as 
rapidly as most intense TCs over the WNP (e.g., 
Haiyan in 2013; Lin et al. 2014). The negative 
TCHP may have slowed down its intensification 
rate (Zheng et al. 2015). However, since the TCHP 
over the WNP is among the highest globally in a 
climatological sense, even with reduced TCHP, 
it is possible for intense TCs to develop (Zheng 
et al. 2015). During El Niño 
years, TCs tend to form 
towards the southeast and 
closer to the date line. As 
a result, a TC can travel a 
longer distance across the 
ocean during intensifica-
tion, through over reduced 
TCHP conditions (Zheng 
et al. 2015). Koppu made 
landfall in the north of the 
Philippines and quickly 
weakened due to its inter-
action with land. The cool-
ing of SSTs caused by this 
typhoon was more evident 
west of 130°E, in both the 
surface and upper layer.

• Typhoon Chan-hom (Fal-
con; Fig. 4.38b) was char-
acterized by its large size 
and long duration over the 
ocean. Chan-hom devel-
oped on 29 June from an at-
mospheric system that also 
developed TC Raquel in the 
southwest Pacific Ocean. 
Chan-hom’s susta ined 
winds reached values up 
to 89 kt. (46 m s−1). This ty-
phoon continuously inten-
sified while traveling over 
warm waters with moderate 
(> 80 kJ cm−2) TCHP values. 
A cooling of the surface 
(−2°C) and the upper layer 
(40 kJ cm−2) under the track 
of this typhoon occurred 
when its intensity reached 
Category 1. 

• Category 5 typhoon Soudelor (Hanna; Fig. 4.38c) 
was the second-strongest tropical cyclone to 
develop in the Northern Hemisphere in 2015. 
Though not as intense as Haiyan in 2013 (Lin et al. 
2014), it was as intense as Vongfong in 2014 (Goni 
et al. 2015). This is in spite of the reduced TCHP 
in the WNP, associated with the 2015 El Niño year. 
This drop from the preexisting extremely high 
TCHP condition (Pun et al. 2013; Lin et al. 2014) 
was still able to provide favorable conditions for 
intensification. Soudelor intensified over a very 
favorable TCHP field of over 120 kJ cm−2, which 
may have contributed to its ability to attain wind 

FIG. 4.38. (left) Oceanic TCHP and surface cooling given by the difference 
between post- and pre-storm values of (center) tropical cyclone heat potential 
and (right) sea surface temperature, for 2015 Tropical Cyclones (a) Koppu (b) 
Chan-hom, (c) Soudelor, (d) Patricia, and (e) Joaquin. The TCHP values cor-
respond to two days before each storm reached its maximum intensity value.
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speeds of 116 kt (60 m s−1) on 3 August. Its high 
translation speed (~5–8 m s−1) during intensifica-
tion helped to reduce the ocean cooling during the 
TC life cycle, thus supplying more air–sea flux for 
intensification (Lin et al. 2009). This was the most 
intense storm to strike Saipan, CNMI, in the last 
25 years. Cooling of the surface waters of over 5°C 
was observed under the full track of this typhoon, 
while cooling of the upper ocean layers (TCHP) 
was restricted to between 135° and 150°E.

• Hurricane Patricia (Fig. 4.38d) was the most 
intense tropical cyclone ever recorded in the 
Western Hemisphere in terms of barometric 
pressure, and the strongest ever recorded globally 
in terms of maximum sustained winds of 185 kt 
(95 m s−1; Kimberlain et al. 2016). Patricia started 
as a tropical depression off the coast of Mexico on 
20 October, and developed into a Category 5 storm 
within 66 hours. During its rapid intensification 
the TCHP values were higher than 80 kJ cm−2.

• Hurricane Joaquin (Fig. 4.38e) was an intense TC 
that evolved near the Bahamas on 26 September 
and was one of the strongest storms to affect these 
islands. Joaquin underwent rapid intensification 
and became a Category 3 hurricane on 1 October, 
exhibiting maximum sustained winds of approxi-
mately 135 kt (69 m s−1) on 3 October (Berg 2016). 
The upper ocean conditions were supportive of At-
lantic tropical cyclone intensification (Maineli et al. 
2008). This rapid intensification occurred during 
a short travel time over very high TCHP values 
(> 100 kJ cm−2). The cooling of the ocean waters was 
evident both in the upper layer and at the surface. 

g. Atlantic warm pool—C. Wang
The description and characteristics of the Atlantic 

warm pool (AWP), including its multidecadal vari-
ability, have been previously described (e.g., Wang 
2015). Figure 4.39 shows the extension of the AWP 
time series through 2015 varying on different time 
scales. 

While the AWP in 2015 showed similarities to 
2014, there were some key differences. As in 2014, 
the AWP in 2015 was larger than its climatological 
mean each month, with the largest AWP occurring 
in September (Fig. 4.40a). However, the AWP in 2015 
started in February and lasted through December, 
longer than its normal period of May to October, and 
had an anomalously larger value in November. After 
starting in February, the AWP appeared in the Gulf 
of Mexico in June (Fig. 4.40b). By July and August, the 
AWP was well developed in the Gulf of Mexico and 
Caribbean Sea and reached eastward into the western 

tropical North Atlantic (Figs. 4.40c,d). By September, 
the AWP had further expanded southeastward and 
the 28.5°C isotherm covered nearly the entire tropical 
North Atlantic (Fig. 4.40e). The AWP started to decay 
after October when the waters in the Gulf of Mexico 
began cooling (Fig. 4.40f). In November, the 28.5°C 
isotherm still covered the Caribbean Sea and part of 
the western North Atlantic Ocean (Fig. 4.40g).

The effect of the AWP on TC steering flows and 
tracks has been previously documented (Wang 2015). 
The TC steering flow anomalies were consistent with 
those of other observed large AWP years (Wang et 
al. 2011). The TC steering flow anomalies during the 
North Atlantic TC season are depicted in Fig. 4.41. 
With the exception of June and November, the TC 
steering f low anomalies were unfavorable for TCs 
making landfall in the United States. From July to 
October, the TC steering flow anomalies were mostly 
southward or eastward in the western tropical North 
Atlantic, and northward and northeastward in the 
open ocean of the North Atlantic. This distribution 

FIG. 4.39. The AWP index for 1900–2015. The AWP 
area index (%) is calculated as the anomalies of the 
area of SST warmer than 28.5°C divided by the cli-
matological Jun–Nov AWP area. Shown are the (a) 
total, (b) detrended (removing the linear trend), (c) 
multidecadal, and (d) interannual area anomalies. The 
multidecadal variability is obtained by performing a 
7-year running mean to the detrended AWP index. 
The interannual variability is calculated by subtracting 
the multidecadal variability from the detrended AWP 
index. The black straight line in (a) is the linear trend 
that is fitted to the total area anomaly. The extended 
reconstructed SST dataset is used.
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