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2015). This difference is not due to a change in global 
phytoplankton abundances but rather is a conse-
quence of the R2014.0 reprocessing that includes cali-
bration updates and a revised chlorophyll algorithm 
(Hu et al. 2012). The time series demonstrates the high 
level of consistency between the overlapping periods 
of the SeaWiFS and MODISA missions. Beyond 2012, 
the MODISA time series becomes increasingly erratic 
(not shown), reflecting a growing uncertainty in the 
calibration of that instrument (Franz et al. 2015).  
Consistency between MODISA and VIIRS in 2012, 
however, provides confidence for extension of the 
multimission trends into 2015.

Chla  monthly anomalies within the PSO 
(Fig. 3.27b) exhibit variations of ~15% over the 
multimission time series, with climatic events such 
as El Niño and La Niña clearly delineated. In 2015, 
consistent with a strong El Niño, Chla trends in the 
PSO approached the lowest levels measured since the 
1997/98 El Niño. Furthermore, mean Chla concentra-
tions in the PSO declined by approximately 20% from 
the peak observed during the 2010/11 La Niña, con-

sistent with expectations based on multivariate ENSO 
index variations (MEI; Wolter and  Timlin 1998).

Distinguishing the different drivers of Chla 
variability is important for interpreting the satellite 
record. Light-driven decreases in chlorophyll are 
associated with constant or even increased rates of 
photosynthesis, while nutrient-driven decreases are 
associated with decreased photosynthesis. An analy-
sis of photoacclimation and nutrient-driven changes 
in growth rate and biomass from the MODIS record 
shows that the inverse relationship between SST and 
Chla anomalies is overwhelmingly due to light- and 
division rate-driven changes in cellular pigmentation, 
rather than changes in biomass (Behrenfeld et al. 
2016). This study also shows that photoacclimation 
contributed 10%–80% of the variability in cellular 
pigmentation, suggesting the 2015 anomaly patterns 
in Chla for the PSO (Fig. 3.26c) were largely driven 
by photoacclimation. An additional contributor to 
the anomaly patterns in Chla is the misrepresenta-
tion of Chla changes due to colored dissolved organic 
matter (cDOM) signals (Siegel et al. 2005). Sunlight 
degrades cDOM, and this degradation is more ex-
tensive for shallow MLDs, yielding in the PSO an 
inverse relationship between cDOM and SST (Nelson 
and Siegel 2013) that may be mistakenly attributed to 
Chla changes (Siegel et al. 2013).
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The global ocean is a major sink for anthropo-

genic carbon dioxide (CO2) that is released into the 
atmosphere from fossil fuel combustion, cement 
production, and land-use changes. Over the last 
decade, the global ocean has continued to take up a 
substantial fraction of anthropogenic carbon (Canth) 
emissions and is therefore a major mediator of global 
climate change. Air–sea flux studies, general ocean 
circulation models including biogeochemistry, and 
data-constrained inverse models suggest the ocean 
absorbed approximately 46 Pg C (1 Pg C  1015 grams 
of carbon) of Canth between 1994 and 2014 (Le Quéré 
et al. 2015; DeVries 2014), with an increase in the rate 
of Canth uptake from 2.2 ± 0.5 Pg C yr−1 during the 
1990s to approximately 2.6 ± 0.5 Pg C yr−1 during the 
most recent decade from 2005 to 2014 (Table 3.1). A 
summary of the air–sea exchange and ocean inven-
tory of Canth based on both observations and model 
results through 2014 is presented. Data for 2015 are 
not available owing to the need for careful scientific 
quality control of ocean carbon data prior to analysis.

FIG. 3.27. Eighteen-year, multimission record of Chla 
averaged over the PSO (see Fig. 3.25) for (black) Sea-
WiFS, (blue) MODISA, and (red) VIIRS. (a) Indepen-
dent records from each mission, with the multimission 
mean Chla concentration for the region (horizontal 
black line). (b) Monthly anomalies for SeaWiFS, 
MODISA, and VIIRS after subtraction of the 9-year 
MODISA monthly climatological mean (2003–11), 
with the averaged difference between SeaWiFS and 
MODISA over the common mission lifetime (gray 
region). The MEI (green diamonds, see text) inverted 
and scaled to match the range of the Chla anomalies.
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1) AIR–SEA CARBON DIOXIDE FLUXES

Ocean CO2 uptake can be estimated from air–
sea differences in CO2 partial pressure (pCO2) and 
gas transfer velocity, which is mainly a function of 
wind speed. Significant improvement in global and 
regional CO2 f lux estimates have been made in the 
past year as part of Surface Ocean pCO2 Mapping 
Intercomparison (SOCOM), comparing 13 indepen-
dent data-based methods of global interpolation of 
pCO2 (Rödenbeck et al. 2015). Recent research has 
also decreased uncertainty on the equations used to 
estimate CO2 exchange from air–sea pCO2 differences 
(Wanninkhof 2014; Ho and Wanninkhof 2016). Large 
increases in autonomous pCO2 measurements over 
time have been achieved with ships of opportunity 
(SOOP-CO2) and moorings. The third update of 
the Surface Ocean CO2 Atlas (SOCAT) with over 
14 million data points was released to the public in 
2015 (Bakker et al. 2016). Subsequent data releases 
will occur annually such that the data can inform 
the annual assessment of global CO2 sources and 
sinks provided by the Global Carbon Project (www 
.globalcarbonproject.org). The increased data cover-
age and new mapping techniques make it possible 
to obtain air–sea CO2 fluxes at monthly time scales, 
allowing investigation of variability on subannual to 
decadal time scales and the causes thereof. An impor-
tant recent result illuminated by these improved ap-
proaches is the reinvigoration of the Southern Ocean 
carbon sink since 2002 (Landschützer et al. 2015), 
which had previously been found to be decreasing 
(Le Quéré et al. 2007).

The newly released datasets have been used to 
verify the magnitude of the anthropogenic air–sea 
CO2 fluxes over the last decade and in 2014. The ocean 
sink in 2014 was 10% above the 2005–14 average of 
2.6 ± 0.5 Pg C yr−1 (Table 3.1). In 2014, the ocean and 
land carbon sinks removed 27% and 37% of total CO2 
emissions, respectively, leaving 36% of emissions in 
the atmosphere, compared to 44% as a decadal aver-
age (Le Quéré et al. 2015).

Ocean uptake anomalies (Fig. 3.28b) in 2014 rela-
tive to the 2005–14 average (Fig. 3.28a) are attributed 
to several climate reorganizations. The lower CO2 
eff luxes in the equatorial Pacific are attributed to 
anomalously high regional SST and reduced upwell-
ing of CO2-rich subsurface waters due to a weak 
Modoki-like near-El Niño in 2014. Stronger effluxes 
are evident in the northeast Pacific due to the warm 
“Blob” (Bond et al. 2015) as well as warm conditions 
offshore of the California coast (Fig. 3.29). A cold 
anomaly in the southern Labrador Sea and adjacent 
regions (Josey et al. 2015) associated with deep mix-

FIG. 3.28. (a) Average annual air–sea CO2 flux for 2005–
14 based on the AOML–EMP approach (Park et al. 
2010). Positive values are effluxes and negative values 
are influxes. The SST anomaly interpolation method 
used for this analysis is less robust than more recent 
and sophisticated approaches (Rödenbeck et al. 2015), 
but faithfully reproduces the major anomaly features, 
especially in the highly data-constrained equatorial 
Pacific. (b) Air–sea CO2 flux anomaly in 2014 compared 
to ten-year average (2005–14). Positive values are in-
creased effluxes (or decreased influxes) and negative 
values are increased influxes (or decreased effluxes).

FIG. 3.29. CO2 measurement from a ship of opportunity 
(SOOP) from New Zealand to Long Beach, CA, show-
ing anomalously high surface water partial pressure of 
CO2 (pCO2) values in 2014 and 2015 in the anomalously 
warm surface water offshore of the California coast. 
Equatorial pCO2 values are depressed in the boreal 
spring of 2014 and 2015 compared to climatological 
values.
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ing led to larger effluxes in the northwest Atlantic. 
A large negative anomaly in the northwest Pacific, 
perhaps related to a shift in the PDO, contributed 
to the higher-than-average 2014 ocean CO2 uptake.

A recent synthesis of pCO2 data in the western 
Arctic showed that the Arctic biogeochemical sea-
scape is in rapid transition. An analysis of nearly 
600 000 surface seawater pCO2 measurements from 
2003 to 2014 found 0.0109 ± 0.0057 Pg C yr−1 entered 
the ocean in the western Arctic coastal ocean (north 
of the Bering Strait) during this period, and that this 
uptake would be expected to increase by 30% under 
decreased sea ice cover conditions expected with 
Arctic warming (Evans et al. 2015). Reductions in 
ice cover may have a more moderate impact on other 
areas of the western Arctic, such as south of Bering 
Strait (Cross et al. 2014).

2) CARBON INVENTORIES FROM THE GO-SHIP SURVEYS

The CLIVAR/CO2 Repeat Hydrography Global 
Ocean Ship-Based Hydrographic Investigations 
Program (GO-SHIP; www.go-ship.org/) collects 
high-quality surface-to-bottom water property 
measurements along transoceanic sections at decadal 
intervals. These data are essential for estimating 
decadal Canth storage changes within the ocean 
interior. The extended multiple linear regression 

method (eMLR) distinguishes these changes from 
large natural decadal changes in dissolved inorganic 
carbon (DIC) concentrations between cruises (e.g., 
Friis et al. 2005; Sabine et al. 2008). The method 
has recently been modified to permit basinwide es-
timates of Canth trends by utilizing data from repeat 
hydrography cruises and climatological data from 
World Ocean Atlas 2013 (Sabine and Tanhua 2010; 
Locarnini et al. 2013; Zweng et al. 2013; Williams 
et al. 2015). Global-scale results from this modi-
fied eMLR approach indicate a Canth uptake rate of 
~2.6 Pg C yr−1 (1994–2006). This estimate is consistent 
(within uncertainties) with model-based (Khatiwala 
et al. 2013; Talley et al. 2016) and data-based estimates 
(Table 3.1) for this period.

Canth storage rates vary widely regionally (Fig. 3.30), 
ranging from 0.1 ± 0.02 to 2.2 ± 0.7 mol C m−2 yr−1 
(Williams et al. 2015). For comparison, the 2.3– 
2.9 Pg C yr−1 global mean uptake rate estimates above 
correspond to a global mean Canthstorage rate between 
0.53 and 0.67 mol C m−2 yr−1. Updating regional stor-
age estimates with measurements from the most 
recent GO-SHIP hydrographic surveys is an ongoing 
effort. Recent estimates (Fig. 3.30b) suggest greater 
storage in the Atlantic in the recent decade than in the 
preceding decade (Woosley et al. 2016), but consistent 
storage between the two decades in the Pacific.

Table 3.1. Global ocean Canth uptake rates. All uncertainties are reported as ±1 .

Years Mean Canth Uptake (Pg C yr–1) Reference

1.1 ± 0.5

1.5 ± 0.5

1980–89 2.0 ± 0.5

1990–99 2.2 ± 0.5

Sabine and Tanhua 2010

2000–09 2.3 ± 0.5

2.3 ± 0.5

2000–10

2.9 ± 0.5
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FIG. 3.30. Regional C anth (anthropogenic carbon) 
storage rate estimates in literature as colored dots 
with positions corresponding to the approximate 
centers of the broad regions considered. Estimates 
are from: A. Williams et al. (2015), B. Sabine et al. 
(2008), C. Sabine et al. (2008), D. Peng et al. (2003), 
E. Peng et al. (2003), F. Murata et al. (2009), G. Wakita 
et al. (2010), H. Sabine et al. (2008), I. Waters et al. 
(2011), J. Waters et al. (2011), K. Waters et al. (2011), 
L. Sabine et al. (2008), M. Matear and McNeil (2003), 
N. Murata et al. (2007), O. Murata et al. (2010), P. Peng 
et al. (1998), Q. Peng et al. (1998), R. Murata et al. 
(2008), S. Peng and Wanninkhof (2010), T. Friis et al. 
(2005), U. Tanhua et al. (2007), V. Olsen et al. (2006), 
W. Wanninkhof et al. (2010), and X. Quay et al. (2007). 
Storage rate estimates that use data from cruises in 
the year 2011 or afterward are mapped in (b), and all 
other estimates are mapped in (a). Atlantic estimates 
in (b) are from Woosley et al. (2016). Colored lines 
are provided representing preliminary storage rate 
estimates along the labeled P16 and P02 sections in the 
decades spanning the (a) 1990s to 2000s and (b) 2000s 
to 2010s occupations. The similar line in (b) for S4P is 
from Williams et al. (2015).
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