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Abstract. An existing particle-in-cell (PIC) numerical method developed for the study of 
two-layer mesoscale motions with outcropping pycnocline is applied to lens-like 
anticyclonic vortices and buoyant coastal currents. From a first series of experiments 
investigating the evolution of an initially elongated lens-like anticyclone, it is found that 
motions induced in the lower layer act only to increase the rotation of the vortex structure 
and do not appear to affect the process of eccentricity reduction (partial 
axisymmetrization). Eccentricity reduction, if any, produces a final vortex of aspect ratio 
between 1.8 and 1.9, a value that is very close to the stability threshold of large, reduced- 
gravity lenses. A second series of experiments devoted to vortex mergers determines how 
the maximal separation distance for which two circular anticyclonic lenses merge 
spontaneously varies with vortex size (ratio of lens radius to deformation radius) and 
stratification (ratio of lens central thickness to ocean depth). A third series of experiments 
considers the interaction of a lens vortex in the upper layer with a potential-vorticity 
anomaly in the lower layer. "Second-hand" relative vorticity, generated in the lower layer 
under the action of vertical stretching induced by the movement of the upper-layer vortex, 
interacts with "first-hand" relative vorticity, created by the existing potential-vorticity, to 
create effects similar to those predicted by studies of two-layer point vortices (hetons). 
Finally, the PIC method is generalized to simulate the finite-amplitude instability of a 
buoyant geostrophic/hydrostatic intrusion flowing along a vertical coastal wall. Those 
results, however, are reported here more as a demonstration on how the PIC method can 
be extended to include coastal boundaries than as a thorough investigation of coastal- 
current instabilities. 

1. Introduction 

A substantial portion of the ocean's energy is contained in 
the so-called mesoscale activity, the internal weather of the 
sea. These motions, with length scales of the order of the first 
baroclinic radius of deformation (20-200 km), are mostly com- 
prosed of jets and vortices [Robinson, 1983]. Their length scale 
implicates geostrophy, and, consequently, their relative high 
velocities are accompanied by substantial vertical displace- 
ments of density surfaces, causing on numerous occasions their 
outcrop through the surface. Examples are the north wall of 
the Gulf Stream, the periphery of its detached rings, the off- 
shore edge of coastal intrusions, and upwelling fronts. We shall 
use here the word "front" to describe the surface outcropping 
of a pycnocline or, in the context of a layered model, the 
surfacing of a density interface. Indeed, such outcropping 
causes important horizontal density gradients along the surface 
and corresponds to a frontal zone. 

Since geostrophy places a high degree of relation between 
horizontal density gradients and velocities (via the thermal- 
wind balance), fronts are accompanied by flow fields that are 
highly sheared in the horizontal and thus subject to barotropic 
instability, while the sloping density surfaces contain available 
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potential energy susceptible of being released by baroclinic 
instability. As a result, mesoscale frontal systems are replete 
with transient motions. 

Outcropping of density surfaces, however, creates severe 
problems for the modeler. In a system modeled with continu- 
ous stratification, the close packing of density surfaces neces- 
sitates high resolution in both horizontal and vertical direc- 
tions, which, because of the wandering nature of the front, 
needs to be implemented over large areas of the computational 
domain. Insufficient resolution causes undesirable diffusion 

and acts to smear the front over time. On occasions, compu- 
tational limitations have led to sacrifice variation in one hori- 

zontal direction for the benefit of high resolution in the vertical 
[e.g., Adamec and Elsberry, 1985]. In contrast, layered models 
with outcropping interface(s) allow true discontinuities but at 
the cost of different sets of equations on opposite sides of 
outcrop lines (fewer equations on the side where there is one 
less active layer). As a result, much of the present knowledge 
on frontal instabilities has been derived from theoretical stud- 

ies. However, these typically rely on a host of simplifying as- 
sumptions such as infinitesimal-amplitude perturbations on a 
simple basic state [e.g., Paldor and Ghil, 1990, and references 
therein] or asymptotic dynamics [Stern, 1980; Cushman-Roisin, 
1986]. 

Numerical investigations of frontal instabilities based on lay- 
ered models have traditionally avoided outcrops, even for fron- 
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Figure 1. Sketch of an unsteady two-layer system with out- 
cropping and the attending notation. 

tal studies (e.g., quasi-geostrophic study of Pratt and Stem 
[1986]), thus overlooking crucial dynamics. A most important 
exception is the isopycnic model using the flux-corrected trans- 
port (FCT) scheme [Sun et al., 1993, and references therein]. 
Thusfar, this model has only been applied to large-scale circu- 
lation problems, where outcrops of density interfaces arise 
from the finite vertical displacement of the thermocline over 
the meridional extent of the ocean basin. 

An alternative, specifically designed for the simulation of 
mesoscale-front variability, is the particle-in-cell (PIC) 
method. This method was originally developed for free-surface 
problems in fluid dynamics, then applied to plasma physics and 
astrophysics [Hockney and Eastwood, 1988] and later adapted 
to oceanography [Pavia and Cushman-Roisin, 1988, 1990]. It 
combines both Lagrangian and Eulerian approaches, treating 
each part of the model by the representation that fits it best. 
Typically, the field variables, such as pressure and layer thick- 
ness, are evaluated on a fixed Eulerian mesh (forming the 
cells), while the variables that are naturally attached to parti- 
cles, such as velocities, accelerations, and forces, are calculated 
in a Lagrangian fashion. 

A critical procedure in the model is the transfer, at least 
once each way per time step, of information between the par- 
ticles and the grid. Particle information is mapped onto the 
grid by tallying characteristics of the particles in each cell; this 
leads to relative weights binding (for that time step only) every 
particle to its neighboring grid points; these weights are used 
again later to interpolate gridded information at the particle 
locations during the reverse information transfer (for details, 
see Pavia and Cushman-Roisin [1988] and Cushman-Roisin et 
al. [1999]). The chief advantage of the PIC method is its avoid- 
ance of tracking the outcropping line as it moves and distorts 
in time. In the model, the front is simply the envelope of the 
group (or groups) of particles, which is easily perceived by the 
eye upon the examination of a plot but which never needs to be 
constructed by the computer code. 

Pavia and Cushman-Roisin [1988] developed the essential 
characteristics of the particle-in-cell algorithm for mesoscale 
oceanography. They, however, limited the physics to a re- 
duced-gravity model in the asymptotic regime of the frontal- 
geostrophic dynamics (length scales substantially longer than 
the deformation radius). This restriction was later removed 
[Pavia and Cushman-Roisin, 1990], and the primitive-equation 
model version was used to investigate the merging of anticy- 

clonic lens-like vortices with particular attention paid to the 
filamentation process and the formation of satellite vortices. 
The model, however, retained a single moving layer and was 
therefore deprived of baroclinic instability. Extension to two 
moving layers was done by Mathias [1992], and the incorpora- 
tion of a lateral boundary (such as a coast) was later accom- 
plished by Esenkov [1994]. A detailed description of the 
method and of its performance are given by Cushman-Roisin et 
al. [ 1999]. 

The purpose of the present article is to demonstrate the 
flexibility and usefulness of the two-layer PIC method in sim- 
ulating various mesoscale frontal dynamics. Of particular in- 
terest are the behavior of elongated vortices, vortex interac- 
tions such as merging, and the variability of coastal currents 
with offshore front. 

2. Model 

We consider a two-layer system of inviscid and incompress- 
ible fluid with constant densities p• and 92 on a flat bottom 
(Figure 1). (Extension to irregular bottom topography is 
staightforward.) The shallow-water equations that describe the 
motion of such system are: 

Ohi O(hitti) O(h•v,) 
-- + + -- = 0 (3) 
Ot Ox Oy 

where the subscript i = 1, 2 indicates the upper and lower 
layer, respectively; Pi, hi, and (ui, vi) are the pressure, thick- 
ness, and velocity components in each layer. The Coriolis pa- 
rameter, f, may in general be a function of the horizontal 
coordinates (x, y) but will be taken as a constant here. 

Equations (1)-(3) are completed by a geometric relation and 
the hydrostatic balance: 

h i + h 2 ---- H (4) 

Pl = P2 + pog'hl (5) 

In these last equations, H is the total depth of the fluid, and g' 
the reduced gravity [g' = g(P2 - P•)/P2]. Because the 
free-surface vertical elevations are much smaller than those of 

the interface separating the two layers, we use the rigid-lid 
approximation, which eliminates surface gravity waves. If we 
furthermore assume a flat bottom, the total depth H is constant. 

Because the lower iayer typically encompasses a much 
deeper part of the ocean than the upper layer (several thou- 
sand meters versus a few hundred meters), the thickness vari- 
ations in the lower layer are relatively small, and a quasi- 
geostrophic approximation can be used to describe its 
dynamics. It can be shown [Mathias, 1992] that application of 
the approximation to (1)-(5) results in the reduction of the 
governing equations to 
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Figure 2. Evolution of an initially elliptical lens-like vortex: (a}_particle positions and (b) upper-layer 
thickness contours every 3 days. The parameter values are a = X/ab/Ra = 5.0, •/ = a/b -- 3.0, and 3 = 
H•/H -- 0.25. For the sake of these plots, the dimensionless time used in the numerical code (scaled by l/f) 
was converted into a dimensional time with f = 10 -4 s -l. Note the filamentation and eccentricity reduction 
of the main vortex. 

oh • • + - 0 (8) 
Ot Ox Oy 

Oq: 1 
--+ J(P2, q2) = 0 (9) 
Ot 9of 

q2 -- •00f V2p2 + hi (10) 
p• : p: + 9og'h• (lt) 

in which we recognize the set of primitive equations for the 
upper layer (Equations (6)-(8)) and a single prognostic equa- 
tion for the lower-layer potential vorticity q2 (Equation (9), 
where J(a, b) is the traditional Jacobian operator). Note how 
the dynamics of the two layers are twice coupled: once in the 
stretching and squeezing of the lower layer via the variation of 
the upper-layer thickness (h • term in Equation (t0)), and once 
again in the lower-layer pressure field adding to the upper- 
layer pressure via the hydrostatic balance (p 2 term in Equation 
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Figure 3. Same as for Figure 2, except that the initial vortex is smaller, with a = •a---•/B d = $.5: (a) 
particle positions and (b) upper-layer thickness contours every 4 days. Note that the eccentricity reduction 
proceeds more rapidly that in the case shown in Figure 2. 

(11)). The two layers are thus fully interacting despite the 
quasi-geostrophic reduction of the dynamics in one of the two. 

The PIC method is fully described by Cushman-Roisin et al. 
[1999] and is only briefly summarized here. The upper-layer 
fluid is dissected into a large number of material particles, and 
every particle is assigned a volume, which remains constant, a 
vector position, and a vector velocity, which both vary over 
time. In contrast, the lower layer is represented by a gridded 
distribution of its potential vorticity. Because all particles re- 
tain their volume, no volume is gained or lost, and the upper- 
layer continuity equation, (8), is automatically satisfied. The 
position is updated in time by the velocity, while the velocity 

is updated by Newton's law (mass x acceleration = sum of 
forces). There are two forces: the Coriolis force (which is easily 
included, since it is an immediate function of the particle's 
velocity and of its position if the Coriolis parameter is spatially 
varying) and the pressure-gradient force (which is the chief 
difficulty because it is through it that particles interact with one 
another). To calculate the pressure-gradient force, the method 
calculates first the upper-layer thickness h • on a fixed square 
grid as the total volume of particles in a grid cell divided by the 
cell area. Next, it determines the upper and lower pressure 
distributions on the same grid: P2 by integration of (10) from 
the current potential-vorticity q2 and the just acquired thick- 
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ness field h i and then p 1 by the hydrostatic balance (11). Next, 60 
(9) is used to march q2 in time. Finally, the gradient of p 1 is 
calculated on the grid and interpolated at the particle sites, 

so 

providing the pressure-gradient force on every particle. The 
Jacobian operator in (9) is discretized according to the Ara- 
kawa scheme B [Arakawa and Mesinger, 1976], while the up- 40 
dating of positions and velocities is performed with an Adams- 

Bashforth scheme [Schwarz, 1989]. The time step is chosen so --• 30 
that no particle is moved in a single step over a distance greater ff 
than one tenth of the grid size. 

20: 

3. Vortex Simulations 

3.1. Initialization of a Vortex 

To initialize particles in a vortex formation, we proceed as 
follows: We first fill a unit circle ('V/x 2 + )2 2 = r -< 1) with N 
particles located at random, ascribing to particle k the coordi- 
nates 

xk = rk cos 0k Yk = rk sin 0k (12a) 

rk = x/-•l 0k = 2'rrn2 (12b) 
where (n•, //2) is the kth pair in a series of random numbers 
between 0 and 1. The square root of n• forces more particles 
to lie at larger radii in order to achieve a uniform distribution 
over the unit circle. We then assign a volume to every particle 
so as to impose a parabolic thickness profile of unit center 
depth and vanishing thickness at unit radius [h • (r) = 1 - r 2, 
0 -< r -< 1 ]. By virtue of the uniform distribution, every 
particle is expected to occupy the same fraction rr/N of the 
unit-circle area, and the volume assigned to the kth particle is 
thus the product of the layer thickness at radius r k by the 
horizontal area rr/N that it occupies: 

Vk = N (13) 

The next step is to assign to the vortex its actual horizontal and 
vertical dimensions by dimensionalizing the particle volumes 
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Figure 4. Evolution of the eddy aspect ratio a/b during ec- 
centricity reduction, for several simulations as indicated along 
the curves. All ratios stabilize not too far from 1.871, although 
this critical value was established only for large, reduced- 
gravity vortices (limit a >> 1 and 8 = 0). 

o alpha=5.0 
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Figure 5. Variation of the angular rotation rate of stabilized 
elliptical vortices versus vortex size (a = X/•b/Rd) and layer- 
depth ratio (8 - H•/H). As for Figures 2 and 3, dimensional 
time is recovered by use of f = 10- 4 s-•. 

and position coordinates appropriately. If an elliptical vortex is 
desired, distinct amounts of stretching are used for the x and y 
coordinates. For a central depth H•, semimajor axis a, and 
semiminor axis b, i.e., 

X 2 h l: H1 1 2 •2 (14) a 

all volumes are multiplied by abH1, x coordinates are multi- 
plied by a, andy coordinates are multiplied by b. Finally, every 
particle is assigned an initial velocity. To avoid large transient 
motions that would result from an initial state greatly out of 
equilibrium, we choose the velocity field that would yield gra- 
dient-wind balance in the reduced-gravity limit: 

uk: +ro•vk vk:-ro•x• (15) 

where the constants % and roy are obtained by substitution of 
the preceding expressions in (6) and (7), together with o/or = 
0, p: = 0, andhl = H•[1 - (x/a): - (y/b)2] ß 

7-=2 a 2 +•-- •2- b2J - •-+ b2,} +•- 
(16a) 

•-=•+ a 2 b 2 •2 b 2j - •+ b 2j +•- 
(16b) 

In these expressions appears the internal deformation radius 
R d = V'g'H•/f. 

The initial lower-layer potential vorticity q 2 is simply a grid- 
ded sample of a given analytical function (equals 0 in most 
experiments). In all runs, we use N = 5000 particles per 
vortex and a 60 x 60 square grid, on which we impose doubly 
periodic boundary conditions. 

3.2. Partial Axisymmetrization of Elliptical Vortices 

The purpose of this first series of experiments is to study the 
evolution of elliptical vortices in a two-layer model. Satellite 
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Figure 6. Merging of two identical upper-layer anticyclonic lenses: (a) particle positions and (b) upper-layer 
thickness contours every 6 days. Parameters are a = R/Ra: 5.0, ;• = d/R = 2.0, and (5 = H•/H = 0.25. 
As for Figures 2 and 3, the dimensionless time used in the numerical code (scaled by l/f) was converted into 
a dimensional time with f = 10 -4 s -•. Note the formation of filaments and their subsequent instability, the 
eccentricity reduction of the merged core, and its clockwise rotation. 

observations of the sea surface [Evans et al., 1985, and refer- 
ences therein] and in situ measurements [e.g., Richardson et al., 
1973] have consistently shown that Gulf Stream rings are more 
or less circular, occasionally having a very moderate eccentric- 
ity. There are, however, several reasons to believe that elon- 
gated eddies should occur in the ocean. The two primary rea- 
sons are nonaxisymmetric birthing condition and subsequent 
distortion in the presence of shearing currents. We may there- 
fore hypothesize that vortices tend to resist high degrees of 
eccentricity and to evolve spontaneously into less eccentric 
structures. 

Several numerical and analytical investigations have pro- 
vided partial answers. Love [1893] found that vortices of the 
two-dimensional Euler equations are stable if their aspect ratio 
a/b < 3 and are unstable at greater eccentricities. Cushman- 
Roisin [1986] subjected the long length-scale limit of the re- 
duced-gravity elliptical vortex [Cushman-Roisin et al., 1985] to 
a small-amplitude stability analysis and demonstrated for this 
case too that moderately elongated eddies are stable while 
highly eccentric vortices are unstable. The threshold aspect 
ratio is W•/2 = 1.871. Ripa [1987] extended the analysis to any 
length scale to arrive essentially at the same conclusion: The 
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Figure 7. Same as for Figure 6a, but with the plots showing only the particles initially contained in the left 
vortex. Note the intrusion of this fluid around the other vortex during the early stages and the high degree of 
mixing in subsequent stages of the merging process. (If a traditional, Eulerian model had been used, the 
separation of fluid from each initial vortex would not have been an easy task.) 

critical aspect ratio depends on the size of the vortex relatively 
to the deformation radius, but, for the common eddies in which 
the relative vorticity does not overcompensate the planetary 
vorticity, values lie slightly below 2. 

These three studies, however, were performed with single- 
layer models. Since the ocean is stratified, we need to ask how 
the presence of baroclinicity affects the stability of an elliptical 
vortex. A logical start in that direction is the addition of a 
second moving layer, and the two-layer PIC model described 
above is appropriate for the task. One process requiring investi- 
gation is the feedback between layers: As an upper-layer elliptical 
lens vortex rotates, it perturbs the fluid thickness below thereby 

causing, via potential-vorticity conservation, lower-layer vorti- 
cal motions, which in turn affect the upper-layer vortex itself. 

In this series of experiments, we choose an anticyclonic elon- 
gated eddy and perform a series of runs with varying eddy 
sizes, eccentricities, and lower-layer thicknesses. The eddy size 
is controlled by the parameter a - X/•b/R a, where a and b 
are the semi-major and semi-minor axes, respectively, and R a 
is the internal radius of deformation (based on the initial 
central depth of the upper layer: R a = X/#'H l/f). The other 
control parameters are the initial aspect ratio 3/= a/b and the 
ratio of the thickness of the upper-layer and total depth 
& = H1/H. We perform all our experiments on thef plane and 
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Figure 9. Evolution of a heton-type structure consisting of an upper-layer anticyclonic lens floating above, 
and slightly to the side of, a lower-layer cyclonic anomaly of opposite-sign potential vorticity: (a) upper-layer 
particles and (b) lower-layer pressure contours. Solid and dashed lines represent positive and negative values, 
respectively. Parameter values are a = R/Rd = 3.5, ,• = d/R = 0.5, and • = H•/H = 0.25. 

with zero lower-layer potential vorticity (q2 = 0, althoughp2 
is not zero and varies in time). 

Figures 2a and 2b show the behavior of a relatively large 
(a = 5.0) and elongated (3' = 3.0) vortex over an active and 
finite lower layer (3 = 0.25). We notice that filaments form at 
the vortex tips; these filaments become first elongated, then 
wind onto themselves, presumably as a result of lateral shear 
instability, and ultimately give rise to small vortices that sur- 
round the main vortex. The main vortex, remaining somewhat 
elongated, rotates and periodically collides with those smaller 
eddies, and repeated merging takes place. After about a full 
rotation of the central vortex, we note the presence of essen- 
tially three eddies: one central vortex of reduced eccentricity 
and two small circular eddies some distance away. 

Figures 3a and 3b depict the evolution of a smaller initial 

eddy (a = 3.5) with the same initial eccentricity (3' = 3.0) and 
depth ratio (15 = 0.25) as Figure 2. The eddy evolution in this 
case does not differ qualitatively from that of the one-layer 
case [Pavia and Cushman-Roisin, 1988], the only difference 
being the faster rate with which the eccentricity reduction 
occurs. 

Comparing the evolution of the aspect ratio for a number of 
experiments (Figure 4), we note that all initially elongated 
vortices reduce their aspect ratio a/b to values in the range 
1.75-1.85, which is not too different from the theoretical value 
of •/•/2 - 1.871. This comes somewhat as a surprise since the 
existing theory is valid only for large, reduced-gravity vortices 
(double limit a --> c• and 15 --> 0). The theoretical stability 
criterion therefore appears to be a good predictor outside its 
range of applicability. 
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Figure 10. Trajectories of the upper-layer center of mass 
(circles) and of the lower-layer pressure minimum (crosses), in 
the heton-like structure of Figure 9. Marks along the trajecto- 
ries indicate half-day intervals; the duration of the simulation 
is 3.5 days. Note how the vortex centers move as a pair along 
nearly concentric circular arcs. 

To test further the relevance of the large-size, reduced- 
gravity stability theory to the finite-size, two-layer case, we 
performed an additional run with a vortex of initial aspect ratio 
3/= 1.6, which lies below the theoretical threshold value. Ex- 
cept for leaving a very thin trail of particles as it rotates, the 
eddy retained its shape after two full rotations. 

Another observation stemming from our experiments is that 
smaller vortices rotate faster than the larger ones (Figure 5). 
The one-layer model [Cushman-Roisin et al., 1985] predicts 
eddy rotation rates decreasing like the negative fourth power 
of the eddy radius. While this relation is borne in the •3 -- 0 
limit, simulations with finite lower-layer depths reveal a less 
precipitous drop in rotation rate with increasing size. In addi- 
tion, we note that the initial rotation rate of the vortex in- 
creases almost linearly with •3, i.e., the thinner the lower layer, 
the faster the vortex rotation. This is in complete agreement 
with the theoretical findings of Cushrnan-Roisin and Merchant- 
Both [1995]. 

Other factors may influence the rotation rate of the vortex 
besides its size and the layer-thickness ratio. For example, an 
imbalance between centrifugal, Coriolis, and pressure forces 
in the initial state causes a pulsation of the eddy which, in 
turn, may affect its rotation rate. Another possible agent is 
friction. The study of these additional processes is left for further 
studies. 

3.3. Horizontal Interaction of Two Circular Vortices 

In a second series of experiments, we explore the horizontal 
interaction of two frontal vortices, which may or may not in- 
clude a merger of the two vortex cores. We do so by initializing 
the model with two identical circular anticyclonic lenses placed 
some distance apart. This problem is pertinent since numerical 
simulations of quasi-two-dimensional turbulent flows [e.g., 

McWilliams, 1984; Cushman-Roisin and Tang, 1990] indicate 
that eddy merging is a spontaneous process, driving the so- 
called reverse cascade of energy toward large scales. This gives 
us a good reason to believe that eddy merging occurs in the 
ocean. And, indeed, there are reports of such encounters, 
although these are few, presumably more because of logistical 
difficulties than because of the rarity of this type of event. Two 
noteworthy reports are those of Creswell [1982] documenting 
the merger of two anticyclonic eddies in the vicinity of the East 
Australian Current and of Yasuda et al. [1992] tracing the 
interaction of two Kuroshio rings. In addition, the coalescence 
of Aghu!as Current rings has been inferred from satellite im- 
agery [van Ballegooyen, 1994], and there are strong reasons to 
believe that Mediterranean salt lenses, also, may occasionally 
merge [Schultz-Tokos et al., 1994]. 

The two-vortex problem has been the object of much atten- 
tion. Our present purpose is not to offer an extensive review 
but only to situate our numerical experiments in the context of 
previous investigations. Almost all previous numerical studies 
have been conducted with quasi-geostrophic models, dis- 
cretized by either finite differences [e.g., Melander et al., 1988; 
Valcke and Verron, 1997; Yasuda and Flierl, 1997] or contour 
dynamics [e.g., Polvani et al., 1989]. Although these investiga- 
tions have been conducted with much attention paid to accu- 
racy, it nonetheless remains that they are fundamentally re- 
stricted by the underlying quasi-geostrophic assumption of 
small vertical displacements, and it is unclear whether, or to 
which extent, the results can be extrapolated to frontal vortices, 
with outcropping interface. 

The particular study of the merging of lens-like vortices 
(with outcropping interface) begun with a theoretical argu- 
ment indicating that spontaneous coalescence of such vortices 
was energetically prohibited [Gill and Griffiths, 1981]. This 
conclusion is contradicted by the observational evidence [Gill 
and Griffiths, 1981] as well as laboratory evidence [Griffiths and 
Hopfinger, 1987]. The paradox was resolved by Cushman- 
Roisin [1989], who noted that the rejection of core fluid by the 
process of filamentation yields a final state that consists in 
more than a single, compound vortex. When account is made 
for the volume, angular momentum, and energy contained in 
the surrounding filaments, the merger event is no longer found 
energetically prohibited. However, this theoretical study only 
considered initial and final states, leaving undocumented the 
actual evolutionary pathway. 

To date, the only existing numerical study detailing the pro- 
cess of merging of two lens-like anticyclones is that of Pavia 
and Cushman-Roisin [1990]. This study was based on an ear- 
lier, one-layer version of the present PIC model and confirmed 
the spontaneous character of frontal-vortex merger and the 
crucial role played by filamentation during the process. We 
now extend this study to include the influence of an active 
second lower layer. In particular, we investigate how the min- 
imum distance between initial vortices required for merging 
depends on the layer-depth ratio (a crude measure of the 
ambient stratification). In essence, this extends the recent 
study by Valcke and Verron [1997] on the effect of a second 
layer on quasi-geostrophic vortex merger to frontal vortices. 

We initialize our f plane, two-layer model by constructing 
two identical circular vortices of central depth H1 and radius 
R, separated by a center-to-center distance d (d -> 2R, to 
avoid overlap). The independent dimensionless parameters are 
c• = R/R a (where R d = V'g'H•/f ), X = d/R, and t5 = H•/H, 
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Figure 11. Evolution of a vortex structure consisting of an upper-layer anticyclonic lens floating above, and 
slightly to the side of, a lower-layer anticyclonic anomaly of same-sign potential vorticity: (a) upper-layer 
particles and (b) lower-layer pressure contours. Solid and dashed lines represent positive and negative values, 
respectively. Parameter values are c• = R/Rd = 3.5, ,• = d/R = 0.5, and 8 = H1/H = 0.25. 

which measure respectively the eddy size, the separation dis- 
tance, and the importance of the lower layer. The lower-layer 
potential vorticity is again set to a uniform zero value. 

In contrast to the one-layer model [Pavia and Cushman- 
Roisin, 1990], where the lack of eddy interaction outside of 
each outcrop prevented merging unless there was an initial 
overlap, our present simulations with two active layers indicate 
that vortex lenses can merge with nonzero separation distance. 
The explanation lies in the lower-layer pressure field, which 
extends well beyond the eddy rim, allowing the vortices to feel 
each other's remote presence. Merging therefore occurs with- 
out initial overlap, although the tendency to merge obviously 
decreases with initial separation between eddies. 

Figures 6a and 6b depict the evolution of the particle's 
positions and of the upper-layer thickness in the case of 8 = 

0.25, with each eddy radius being 5 times the radius of defor- 
mation (c• = 5.0) and initially touching (,X = 2). The first stage 
in the merging process involves the wrapping of the eddies 
around each other (Figure 7). Then, while the new aggregate 
eddy structure is in this transient state, its elongation causes it 
to rotate, and filaments begin to form at the extremities. The 
next stage is the merging itself, during which an elongated eddy 
with a single center (depth maximum) is formed, while further 
filamentation occurs at the two vortex tips. In the final stage, 
the elongated eddy partially axisymmetrizes, and the filaments 
roll up to form a constellation of smaller satellite eddies. We 
also observe that the depth of the final eddy is almost the same 
as that of the initial eddies and that its radius is not much 

larger than theirs. This leads us to conclude that the merged 
eddy is only slightly larger in volume than each of the initial 
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Figure 12. Trajectories of the upper-layer center of mass 
(circles) and of the lower-layer pressure minimum (crosses), in 
the vortex structure of Figure 11. Marks along the trajectories 
indicate half-day intervals; the duration of the simulation is 3.5 
days. Note how the vortex centers rotate counterclockwise, as 
if chasing each other. There is also a tendency toward vertical 
alignment. 

eddies. Calculations show that --•40% of the total volume is 

taken by the filaments. 
Experiments with other parameter values exhibit either 

qualitatively similar features or the absence of merging. Col- 
lectively, they conclusively demonstrate that an active lower 
layer exerts a profound influence upon the merging of the 
vortices. For example, medium-size vortices (a -- 3.5) merge if 
they are grazing (X = 2.0) for 8 values of 0.5 and 0.25. When 
the distance between the same eddies is increased by 10% (X = 
2.2), merging no longer takes place for 8 = 0.25 but still takes 
place for 8 = 0.5. For larger vortices (a = 5.0), merging from 
a grazing condition takes place for 8 values of 0.1, 0.25, and 0.5. 
However, for an infinitely deep lower layer (8 = 0), there is no 
merging, in agreement with the earlier results of Pavia and 
Cushman-Roisin [1990]. Put another way, there exists a mini- 
mum separation distance for merging, which depends on both 
vortex size and layer-depth ratio. Figure 8 recapitulates our 
simulations and clearly shows how the critical separation dis- 
tance necessary for merging depends on the depth ratio 8 for 
two distinct vortex sizes (• = 3.5 and 5.0). From our set of 
experiments, we empirically derive that merging occurs if X < 
1.73 + 0.32(• - 1.0)(8 + 0.15), although this criterion is 
imprecise because it is very difficult to distinguish in numerical 
experiments between a very long merger and the absence of 
merging. We also note that the merging time (time until sta- 
bilization of the central vortex) is nearly inversely proportional 
to the depth ratio 8 and directly proportional to the distance 
ratio X. Vortices that are too far apart to merge exhibit a 
simple mutual rotation, as we can anticipate by extrapolation 
of point-vortex studies [Aref, 1983, and references therein]. 

3.4. Vertical Interaction of Vortices 

In a two-layer system, distinct vortices do not have to lie in 
the same layer, and we may ask how a vortex in one layer 
interacts with a nearby vortex in the other layer. Hogg and 
Storereel [1985] were the first to address this question by study- 

ing the behavior of point vortices in a two-layer quasi- 
geostrophic system, paying particular attention to pairs con- 
sisting of opposite-signed vortices, which they called "hetons." 
Soon afterward Griffiths and Hopfinger [1986] carried out lab- 
oratory experiments designed to verify the theoretical predic- 
tions of Hogg and Storereel [1985]. They thus ensured that the 
vertical deflections induced by the vortices at the density in- 
terface were sufficiently weak to satisfy the quasi-geostrophic 
approximation. Despite the fact that laboratory vortices nec- 
essarily have finite areas (particularly the anticyclones, which 
are formed by fluid injection), the behaviors of laboratory and 
point-vortex hetons were found to be in substantial agreement. 
As a rule, hetons self-propagate as pairs, following a straight 
path if the two components have equal strength, and a curved 
path, otherwise. Complicated interactions, which may include 
re-pairing, occur when two hetons collide. 

Later, Polvani [1991] performed simulations with the con- 
tour-dynamics method, in essence extending the study of Hogg 
and Storereel [1985] from point to finite-area vortices. Besides 
verifying the overall behavior of point hetons when the two 
vortices have opposite polarities, Polvani [1991] also studied 
the behavior of like-signed vortices (two identical vortices but 
one in each layer, a small horizontal distance apart from each 
other) and discovered a tendency toward vertical alignment. In 
some ways, such alignment is the counterpart of coalescence 
when the vortices lie in distinct layers. Because the method of 
contour dynamics crucially depends on the assumption of qua- 
si-geostrophy, vertical displacements of the density interface 
were again in this study necessarily very small. 

On the contrary, the PIC method allows finite vertical dis- 
placements, even outcropping, of the density interface. We are 
therefore in a position to extend the investigation of hetons to 
cases when the upper-layer vortex has a frontal character. 
From the perspective of our PIC method, the most natural 
structure of a heton-like formation is an upper-layer anticy- 
clonic lens floating above, and slightly to the side of, a lower- 
layer circular patch of cyclonic potential vorticity. To minimize 
the number of parameters, we assign the same radius R to both 
upper-layer lens and lower-layer anomaly and set the poten- 
tial-vorticity anomaly at a uniform value: q2 = +fH•/H. (In 
the present context, it is not possible to maintain quasi- 
geostrophy in the lower layer and simultaneously enforce total 
compensation of anticyclonic and cyclonic vorticities in the 
overall structure. The upper-layer potential vorticity varies ra- 
dially, reaching infinity at the outcrop.) With the definition of 
the deformation radius Rd again based on the initial center 
depth H• of the lens, the dimensionless parameters are c• = 
R/Rd, measuring the size of the vortices; X = d/R, measuring 
the separation distance d between the vortex centers; and 8 = 
H•/H, measuring the importance of the coupling between the 
layers. 

Figures 9a and 9b show the evolution of the upper-layer 
particles and lower-layer pressure field when the parameter 
values are • = 3.5, X = 0.5, and 8 = 0.25. From the sequence 
of plots, it is evident that the two vortices distort somewhat to 
adjust to each other's presence but retain their integrity and 
that they entrain each other in their respective sense of rota- 
tion. If we track the two vortex centers by locating the center 
of mass of the upper-layer particles and the point of minimum 
pressure in the lower layer, we obtain Figure 10, which shows 
more clearly the mutual advection of the vortex pair. The 
trajectories appear as concentric circular arcs. These results 
extend beyond the quasi-geostrophic approximation of the 
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Figure 13. (a) Particle positions and (b) corresponding upper-layer thickness contours during the evolution 
of a coastal current with offshore front. The coast is on the left side and the general flow is down the page. 
Parameter values are Bu = 2.8 x 10 -3 and 15 = 0.1. 

findings of Hogg and Stommel [1985] and of Griffiths and Hop- 
finger [1986], who found that quasi-geostrophic hetons trans- 
late (or corotate with the center of corotation lying outside the 
trajectories of the individual vortex centers). 

Additional simulations with different parameter values indi- 
cate that the radii of the vortex-center trajectories increase 
with increasing initial separation. A greater initial separation 
also gives rise to a slower drift of the two-vortex structure. 
Increasing the thickness of the bottom layer decreases the drift 
speed but does not appear to affect significantly the radii of the 
trajectories. 

In a separate series of experiments, we set the lower-layer 

potential-vorticity anomaly to a negative value (q2 = - fH•/ 
H), yielding a compound system with two vorticities of the 
same (anticyclonic) polarity, one in each layer. According to 
Polvani [1991], the quasi-geostrophic version of this situation 
leads to mutual rotation with a tendency toward vertical align- 
ment. As for the previous series of experiments, our simula- 
tions reveal a similar evolution (Figure 11). The upper-layer 
lens executes a clockwise rotation around the lower-layer vor- 
tex. Less evident but nonetheless present is the clockwise tra- 
jectory of shorter radius traced by the latter (Figure 12). Thus 
both vortices rotate around each other. Also noticeable on 

Figure 12 is the gradual reduction of the distance separating 
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Figure 13. (continued) 
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the two vortex centers. This tendency toward vertical align- 
ment extends the finding of Polvani [1991] beyond the quasi- 
geostrophic approximation to situations with finite vertical dis- 
placements of the density interface. 

Additional simulations provide the following parametric 
variations. When the upper-layer thickness is a quarter of the 
total depth of the two-layer system (8: 0.25), the radius of the 
path of the upper vortex increases with the initial horizontal 
separation of the vortices. The trajectories nearly coincide 
(although the 180 ø phase shift remains) when the distance 
between the centers are equal to the radius of each vortex, i.e., 
when each vortex moves along the rim of the other. When the 

upper-layer thickness is one tenth of the total depth of the 
two-layer system (8 = 0.1), the radius of the path of the lens 
center is always shorter than that of the path of the lower 
vortex. Finally, the relative velocity of the vortex centers de- 
creases with increasing lower-layer thickness and with increas- 
ing vortex separation. 

4. Coastal Buoyancy Current Simulations 
Coastal buoyancy currents are quite common in the oceans. 

Most occur because horizontal density differences (associated 
with coastal processes) and Coriolis effects combine to pro- 
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Figure 14. Same as Figure 13, but for Bu = 2.8 x 10 -2 and 15 = 0.1. 
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duce geostrophic currents parallel to the coast, flowing with the 
coast on the right in Northern Hemisphere. Despite their rel- 
ative spatial confinement and temporal persistence, all coastal 
buoyancy currents exhibit a considerable degree of wave-like 
behavior and instability [Mork, 1981; McClimans and Nilsen, 
1982; Royer, 1982; Millot, 1985; Griffiths and Pearce, 1985; 
Kowalik et al., 1994]. What is known about the dynamics of this 
variability in the case of a current bounded offshore by a front 
has been provided by theoretical studies based on severely 
limiting assumptions, such as infinitesimally small perturba- 
tions or very long wavelengths [Killworth and Stern, 1982; Pal- 
dot, 1983, 1988] and by laboratory simulations [Griffiths and 
Linden, 1981, 1982; McClimans et al., 1985]. 

Our present interest is in discerning the possible outcomes 
under varying parameters (current width, frontal strength, 
etc.). Because we are not interested in the behavior of the nose 
of a progressing coastal intrusion (which this model is able to 
simulate, but which we defer to a further study), we shall 
assume that the coastal current preexists and occupies the 
entire length of the coastline and moreover that it is initially in 
steady geostrophic balance. 

For our experiments with a coastal boundary, we choose a 
rectangular channel bounded by vertical walls at x = 0 and x = 
D (where D is the channel width) and open on the two re- 
maining sides. Along these open boundaries, we impose peri- 
odic boundary conditions, while along the x boundaries, we 
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Figure 14. (continued) 

impose no normal flow (u = 0 atx = 0, D). In the PIC 
method, this is accomplished by a momentum-conserving re- 
flection scheme [Sanson et al., 1998; Cushman-Roisin et al., 
1999]: A particle that would be moved beyond a wall (say 
x = 0) is instead reflected into the domain r .... = -x•< •d and k./,k 
,V new . old 
/< = y/< , where new refers to the state immediately follow- 

ing the reflection and old refers to that preceding it) with 
conserved total momentum in the tangential direction 
[•J•c ew = •J•c ld q- f(x•< ld -- x•cew)] and opposite normal velocity 

new __ -- O'/g old (u/• /< , where the factor cr is set to enforce conser- 
vation of kinetic energy, (u•eW) 2 + (v•<ew) 2 : (U•<•d) • + 
(V•<•d)•). In the lower layer, geostrophy implies Op•/Oy = 0; 
that is, p• = constant at x = 0, D. 

We use a 60 x 120 grid and N = 12,000 particles. To 
initialize the system, particles are first randomly and uniformly 
distributed over an area a x b, where a is the width of the 
current and b the length of the domain in the y direction, 
according to 

xk = an i yk = bn: (17) 

where (n•, n2) is the kth pair in a series of random numbers 
between 0 and 1. For all our runs, we take b - 12a to allow 
a sufficient number of waves along the current and thereby 
reduce the effect of quantization (integer number of waves 
between periodic boundaries). 

Because of their random positioning, all particles share the 
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Same as Figure 13, but for Bu = 0.28 and • = 0.1. 

t =35 days 

same cross-sectional area, equal to ab/N. Then each particle is 
assigned a volume depending on its actual position in the 
current and the prescribed profile of the latter. In all our 
simulations, we use a parabolic profile, h•.(x) = H•.(1 - 
x2/a2), which has a maximum thickness at the coast (h •. = H•. 
at x = 0) and a front offshore (h• = 0 at x = a). So, the 
volume Vk of particle k is 

xk ab 
Vk=H1 1-• N (18) 

We then assign initial velocity components to every particle 
by requiring that the current be initially in geostrophic equi- 
librium: 

OPl I (19) u k= 0 v•= Pof •x- • 
However, because p•. = P2 + Po#'h•., we first need to calcu- 
late the initial pressure distribution in the lower layer, using 
(10). Taking a uniform potential vorticity in the lower layer 
[q2(t = 0) = 0], we need to solve V2p2 = -(pof2/S)h•., 
with the boundary conditions p 2 = 0 and Op2/Ox = 0 at x = 
a (for match with the stagnant lower layer offshore of the 
front) and periodicity in y. The solution is 

P2 = H 12a 2 2 + 3 
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Figure 15. (continued) 
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from which we finally derive the alongshore particle velocities: 

V k = -- 
2g'H•xk faH• xk x• 
-- + (21) fa: + • 3a 3 a 

Note that this velocity does not vanish at the coast, although its 
residual value there is entirely due to a lower-layer effect, 
which vanishes in the limit of a very deep ocean (H•/H -• 0). 

Coastal currents in our numerical experiments can be char- 
acterized by their geometric structure, i.e., initial width a, 
buoyancy g', and coastal depth H•. The nondimensional num- 
ber that combines these characteristics is the so-called Burger 
number, Bu = g'H•/f2a 2 (or equivalently, a rotational den- 
simetric Froude number [McClimans et al., 1985]). Every ex- 

periment can then be characterized by two dimensionless num- 
bers, the Burger number (By) and the vertical aspect ratio 
(8 = H•/H). The former is an estimate of the ratio of kinetic 
to available potential energy of the flow, while the latter mea- 
sures the importance of the lower layer. Together these pa- 
rameters permit to distinguish among different regimes of in- 
stabilities. Because oceanic observations reveal that the 

majority of coastal buoyancy currents falls in those ranges of 
parameter values, we perform our experiments with 10 -4 < 
By < 0.5 and 0.1 < 8 < 0.25. (By = 0.5 is actually an upper 
bound for this type of flow, as shown in the appendix.) In our 
runs, we vary the Burger number by changing the coastal depth 
H• and keeping the width a constant. 
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Figure 16. Same as Figure 13, but for Bu - 1.4 and •3 - 0.1. 
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We start with a small Burger number (Bu = 2.8 x 10 -4) 
and aspect ratio (t5 = 0.1), corresponding to a very broad 
current over a relatively deep lower layer. The flow is found to 
be stable, preserving its shape for the entire duration of the 
simulation (144 inertial periods). The existing horizontal shear 
is apparently too weak to cause a barotropic instability, while 
the large width of the current implies a weakly sloping inter- 
face, which, in conjunction with a deep lower layer, most likely 
precludes baroclinic instability. 

When we increase the Burger number by a factor of 10 
(Bu = 2.8 X 10-3), we note that finite-amplitude perturba- 
tions emerge and propagate downstream (Figure 13). These 
wave-like structures have a characteristic wavelength compa- 

rable to the radius of deformation but have weak amplitudes 
(they are squeezed in the offshore direction). Another inter- 
esting feature is the formation of vortices embedded in the 
mean current (Figure 13b). The fact that these structures have 
a characteristic length scale of the order of the radius of de- 
formation is an indication that baroclinic instability may play 
an important role in the evolution of the current. 

A further increase of the Burger number (Bu = 2.8 x 
10-2), which corresponds to a deeper and/or narrower cur- 
rent, reveals a more interesting behavior (Figure 14). In this 
case, the essence of the instability is probably a mixed baro- 
tropic-baroclinic instability (barotropic because of the large 
velocity shear at the front and baroclinic because the initial 
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Figure 16. (continued) 

current width is of the order of the deformation radius based 

on the initial coastal thickness). The distortion of the frontline 
is not only faster but also larger than in the cases with smaller 
Burger numbers. The instability is manifested by severe local- 
ized pinching of the current and vigorous backward wave 
breaking, which lead to intense stirring across the flow. A 
coastal current with a still higher Burger number (Bu = 
0.28), approaching the dynamical limit of 0.50 (see appendix), 
develops perturbations of even longer wavelengths but causing 
less pinching of the current (Figure 15). 

Figure 16 demonstrates that for Bu = 1.4, a value exceed- 
ing the dynamical limit, the current is inertially unstable with 
no dominant wavelength and the emerging picture is that of a 

well-developed geostrophic turbulence between coast and 
front. (After a few days, the numerical accuracy for this run has 
fallen sharply as the width of the current has increased and the 
number of particles per cell has dropped to an unacceptably 
low level. A more precise run would require a much larger 
number of particles. This we did not do because it is enough to 
know that such coastal current is very short lived and could not 
exist in the real ocean.) 

Simulations with a shallower and therefore more active 

lower layer (•3 = 0.2) show that the larger the Burger number 
the bigger the differences with the previous cases (•3 = 0.1). 
Indeed, on the f plane, the squeezing or stretching of fluid 
columns in the lower layer can be compensated only by mod- 
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Figure 17. Dependence of the wavelength of the most un- 
stable disturbance along a coastal front on the Burger number 
of the associated current. Circles and crosses correspond, re- 
spectively, to a deeper and shallower lower layer (/5 = 0.1 and 
• = 0.2). 

ifications in relative vorticity. A greater depth ratio, which 
implies greater relative stretching and squeezing of the lower 
layer under the action of upper-layer motions therefore creates 
stronger flows in the lower layer and a greater feedback on the 
upper layer. The dependency of the most unstable wavelength 
on the Burger number Bu and the depth ratio /5 is shown in 
Figure 17. The result is that the ratio A/a of the wavelength A 
to the current width a increases with the Burger number as 
Bu 1/2 and decreases with the depth ratio/5, in accordance with 
the laboratory findings of Griffiths and Linden [1982] and with 
the observations of the meandering of the Norwegian Coastal 
Current reported by McClimans et al. [1985]. The proportion- 
ality between h/a and Bu 2/2 is clear in our simulations, but the 
dependency of h/a on/5 is more difficult to establish, for it does 
not clearly follow a power law; a rough fit yields proportionality 
to 8 -n with n = 0.5 _+ 0.1, significantly different from n = 
0.25 found by Griffiths and Linden [1982]. This matter de- 
mands additional investigation. 

5. Conclusions 

We applied an augmented, two-layer version of a particle- 
in-cell (PIC) method to problems in mesoscale oceanography 
in which the interface separating two layers of constant density 
intersects the surface along one or several fronts that distort 
over time. While the use of a more traditional numerical 

method would have demanded that we overcome a number of 

computational issues, we demonstrated that the PIC method is 
very versatile and capable of deriving a number of useful re- 
sults in a broad range of problems. 

In a first series of simulations, the flow field was initialized 
with a single anticyclonic lens vortex of elliptical shape. Nearly 
all vortices exhibited a clear tendency toward eccentricity re- 
duction but resisted complete axisymmetrization. Their final 
aspect ratio (semimajor axis over semiminor axis, a/b) was 
found to lie in the rather limited range 1.75 < a/b < 1.85, 
almost independently of their initial aspect ratio and of the 
lower-layer depth. Furthermore, these values are not far from 

the theoretical stability threshold found for large, reduced- 
gravity lenses (a/b = 1.871). Invariably, the evolution pro- 
ceeded with an anticyclonic rotation of the vortex during which 
filaments were shed in the wake of its two tips. These filaments 
in turn exhibited instabilities, breaking into segments that 
rolled into small eddies. The only vortices that showed no 
tendency toward eccentricity reduction were those whose as- 
pect ratio lay below 1.75 initially. 

Next, we revisited the classical problem of vortex merging, 
this time with two anticyclonic lens-like vortices atop of a lower 
layer finite depth. While the two upper-layer vortices were 
placed apart from each other, and thus by virtue of their 
frontal character did not overlap at all in that layer, the pres- 
sure distributions they induced in the lower layer created none- 
theless an interaction, which led either to merging into a new, 
larger vortex or to mutual rotation. Merging occurred if the 
initial separation distance d between vortex centers did not 
exceed a certain value depending upon their initial radius R, 
center depth H1, and depth of the lower layer H, namely 
d/R < 1.73 + 0.32(fR/X/#'H• - 1.O)(H•/H + 0.15). In 
every merging situation, once the new vortex core was formed, 
a certain elongation was present, which then led to anticyclonic 
rotation, filamentation, and partial eccentricity reduction. 

In a third series of simulations, the flow field was initialized 
with one circular anticyclonic vortex in the upper layer above, 
and slightly to the side of, a potential-vorticity anomaly in the 
lower layer. When this anomaly corresponded to a cyclonic 
vorticity (i.e., the heton configuration of point vortices), results 
very similar to those obtained with quasi-geostrophic point 
vortices and contour dynamics (co-induced translation along a 
circular path) were noted, thereby extending known results to 
the non-quasi-geostrophic dynamical regime. When the lower- 
layer potential-vorticity anomaly corresponded to anticyclonic 
vorticity, we noted a mutually induced corotation of the vortex 
centers accompanied by a tendency toward vertical alignment. 
This result, also, generalizes the previous quasi-geostrophic 
result to finite vertical displacements of the interface. 

Finally, we briefly explored the instabilities of a buoyant 
geostrophic current along a coastal wall and with an offshore 
front. Not surprisingly, we found a similar dependence of the 
most unstable wavelength on the basic flow parameters (via a 
Burger number and a depth ratio) to that reported by previous 
authors from laboratory experiments and oceanographic ob- 
servations. 

The preceding simulations form but a small sample of what 
can actually be simulated with the PIC method. Because the 
Coriolis force is computed for each particle at its current site, 
beta-plane cases can easily be treated by making the Coriolis 
parameter dependent on the spatial coordinates. Westward 
drift and Rossby-wave radiation can then be studied for frontal 
lens-like vortices. Other simulations could be devoted to the 

stability of lens-like vortices of radial structure other than 
parabolic. In particular, one could investigate the importance 
of a relative-vorticity profile that is nonmontonic in the radial 
direction (so-called shielded vortices). Still with only minor 
changes to the code, one could study the formation and devel- 
opment of a buoyant coastal intrusion by initializing the system 
with no upper layer and steadily injecting buoyant particles in 
one or several cells along the wall. 

Finally, further extensions and generalizations are eminently 
possible. First, one could remove the quasi-geostrophic (QG) 
approximation made to the lower layer. This can be done by 
using an existing finite-difference code for two-dimensional 
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(barotropic) flow over arbitrary topography, where the topog- 
raphy here happens to be the instantaneous thickness of the 
upper layer. Likewise, the inclusion of bottom topography, 
with or without removal of the lower-layer QG approximation, 
would be straightforward. Extension to more than two layers is 
also immediate, regardless of how many terminate at intersec- 
tions of density interfaces within the domain. One simply has 
to treat all such layers with the PIC approach and all others 
with a conventional code; coupling between layers will natu- 
rally occur in the diagnostic relations extending the geometric 
constraint (4) and hydrostatic balance (5) to multiple layers. 
Applications to intermediate-depth Mediterranean salt lenses, 
bottom lenses, and bottom currents are eminently possible. 

Appendix: Extremum Value of the Burger Number 
There exists an upper bound on the value of the Burger 

number for reduced-gravity geostrophic flows with zero coastal 
velocity and offshore front. To show this, we invoke (1) the 
geostrophic relation: 

dh 

fv: g' dx (A1) 

where v(x) is the geostrophic velocity profile, (2) the require- 
ment of inertial stability that the total (planetary + relative) 
vorticity must have the same sign as the planetary vorticity 
[Holton, 1992, p. 207]: 

( dr) f f+•x-x >0 (A2) 

and (3) the accompanying boundary conditions: v = 0, h = H 
at x -=- 0 (coastal wall)and v = V, h = 0 at x = L (offshore 
front). Obviously, the two constants H and L must be positive. 

We then multiply f(f + dv/dx) by (L - x), integrate the 
product over 0 -< x _< L, use (A1) after an integration by 
parts, and impose the boundary conditions to obtain 

f f+•xx (L-x) dx= 2 g'H (A3) 

Because of (A2) and since (L - x) >_ 0 over the interval of 
integration, the integrand is positive, and we find faL2/2 - 
g'H >- 0, which leads to 

g'H 1 

Bu - •-< • (A4) 

Thus the Burger number is at most 1/2. When Bu equals 1/2, 
(A3) yields that the total vorticity f + d v/dx must be identi- 
cally zero for all values of x (0 -< x _< L). Thus the limiting 
value of the Burger number corresponds to the case of zero 
potential vorticity. Geostrophic flows for which (A2) is not met 
are inertially unstable and break down in about one inertial 
period. 
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