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ABSTRACT

Recent research has shown that decadal-to-multidecadal (D2M) climate variability is associated with environmental
changes that have important consequences for human activities, such as public health, water availability, frequency of
hurricanes, and so forth. As scientists, how do we convert these relationships into decision support products useful to
water managers, insurance actuaries, and others, whose principal interest lies in knowing when future climate regime shifts
will likely occur that affect long-horizon decisions? Unfortunately, numerical models are far from being able to make
deterministic predictions for future D2M climate shifts. However, the recent development of paleoclimate reconstructions
of the Atlantic Multidecadal Oscillation (AMO) (Gray et al., 2004) and Pacific Decadal Oscillation (PDO); (MacDonald
and Case, 2005) give us a viable alternative: to estimate probability distribution functions from long climate index series
that allow us to calculate the probability of future D2M regime shifts. In this paper, we show how probabilistic projections
can be developed for a specific climate mode – the AMO as represented by the Gray et al. (2004) tree-ring reconstruction.
The methods are robust and can be applied to any D2M climate mode for which a sufficiently long index series exists,
as well as to the growing body of paleo-proxy reconstructions that have become available. The target index need not be
a paleo-proxy calibrated against a climate index; it may profitably be calibrated against a specific resource of interest,
such as stream flow or lake levels. Copyright  2006 Royal Meteorological Society.
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1. INTRODUCTION

The last 15 years have seen much research on decadal-to-multidecadal (D2M) climate modes and their global
and regional impacts. The history of D2M has gone through several overlapping phases. The earliest, and still
ongoing, is the model- and observation-based inquiry into the nature and causes of D2M climate variability
with papers on the El Niño-Southern Oscillation (ENSO)-like Pacific Decadal Oscillation (PDO; Gu and
Philander, 1997; Mantua et al., 1997), a possibly related Interdecadal Pacific Oscillation (IPO; Folland et al.,
1999; Power et al., 1999), the Arctic Oscillation (AO; Thompson and Wallace, 1998), the North Atlantic
Oscillation (NAO; Hurrell, 1995; Marshall et al., 2001) and the Atlantic Multidecadal Oscillation (AMO;
Schlesinger and Ramankutty, 1994; Andronova and Schlesinger, 2000; Delworth and Mann 2000; Latif et al.,
2004). In the specific case of the AMO applied in this study, the evidence from coupled models suggests that
the Atlantic overturning circulation is implicated in the AMO mechanism (Delworth and Mann, 2000; Knight
et al., 2005).

Another phase of research comprised papers demonstrating that at least some of these D2M modes suggest
compelling manifestations in climatic and ecological impacts. This is especially notable for precipitation and
drought frequency, which appear to be sensitive to small but persistent changes in the prevalent atmospheric
circulation patterns over the continental regions adjacent to the oceans that mediate the oscillations. Impacts
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have been identified for the PDO (Mantua et al., 1997), the NAO (Marshall et al., 2001) and the AMO
(Enfield et al., 2001), and most recently for the interaction between the PDO and AMO modes (McCabe
et al., 2004). Moreover, both the PDO and the AMO are shown to modulate (render nonstationary) the
rainfall signatures of ENSO in the United States (Gershunov and Barnett, 1998; McCabe and Dettinger,
2000; Enfield et al., 2001). Enfield et al. (2001) estimate that the inflow to Lake Okeechobee (south Florida’s
water supply reservoir) undergoes a 40% peak-to-peak variation associated with the AMO. Another recently
identified area of strong impacts is the AMO modulation of major Atlantic hurricane activity (Goldenberg
et al., 2001), while Mantua et al. (1997) describe the basin-wide impact of the PDO on Pacific fisheries such
as salmon. From the response of an atmospheric global circulation model (AGCM) to observed Atlantic sea
surface temperature (SST), Sutton and Hodson (2005) have confirmed the AMO climate impacts suggested
by the limited data available (Enfield et al., 2001; McCabe et al., 2004).

One of the greatest difficulties for climate researchers is the fact that even the longest instrumental time series
are frequently too short to extract conclusions about D2M variability with satisfactory statistical confidence.
Fortunately, there is a growing body of paleoclimatic work – especially that based on tree rings – which has
extended our temporal reach for centuries or more into the past, and which faithfully reconstructs either the
instrumental climate mode indices or specific responses to the modes, such as streamflow (Woodhouse et al.,
2006).

Of concern for climate applications is the fact that – unlike ENSO – numerical models have so far proven
incapable of predicting future phase shifts of D2M climate modes in a deterministic manner. The alternatives to
such predictions are probability-based projections. However, probabilistic projections are hampered because
the instrumentally-based time series are limited to the last 130–150 years at most, which yield too few
realizations of D2M cycles for conventional statistical approaches to deal with. In this study, we resolve the
problems associated with small sample sizes for a specific climate mode, the AMO, in two ways: (1) by
applying Monte Carlo-style resampling techniques to the index data and (2) by application to the longer,
424-year paleoclimate reconstruction based on tree rings (Gray et al., 2004). By then adjusting a probability
model to the distribution of resampled AMO phase intervals, we extract a practical method for determining the
probability of a future departure from the current AMO climate regime. In lieu of nonexistent deterministic
predictions, this method provides an essential element for the development of decision support tools for
managers and stakeholders in sectors affected by D2M climate modes, such as agriculture, water, energy,
health and disaster risk. For probabilistic projection to be useful, we do not require an understanding of the
physical mechanisms governing the climate mode or its impacts, only a reasonable certainty that the impacts
of interest derive from the climate mode in question. Even the latter is irrelevant if the methods are applied
directly to an index of the impact itself, such as a dendrochronological reconstruction of stream flow feeding
a water management system.

2. DATA AND METHODS

We use two unsmoothed data sets to index the AMO: an updated (1856–2001) annualized version of the
instrumentally-based AMO index suggested by Enfield et al. (2001), and the 424-year annualized index of
the AMO reconstructed from tree rings in North America and Europe (Gray et al., 2004). The former index
is the demeaned and detrended SST averaged for the North Atlantic Ocean from the equator to 70°N. The
Gray et al. index is the longer tree-ring series calibrated against the instrumental index.

To discourage unwanted short-interval occurrences, the time series are smoothed with a Butterworth filter
of order 8 and a half-amplitude response cutoff at 15 years. The filter is passed forward and backward to
remove unwanted phase effects. The Butterworth filter is an infinite impulse response filter commonly used
in signal analysis applications, which has monotonic rolloff and very reduced ripple effects in the pass band
and stop band, making it more desirable than the running boxcar filters used in many climate applications.
Order 8 achieves less than 3 db of ripple at periods greater than 20 years, and at least 40 db of attenuation
at periods below 10 years.
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To increase the sample size, the method of Ebisuzaki (1997) is used to randomly resample the series multiple
times, and the durations of positive and negative phases are estimated by the intervals between successive
zero crossings of the resampled series. The empirical distributions of sample intervals are then fitted by a
gamma probability density function (pdf) and a Kolmogorov–Smirnov (KS) test is used to determine the
goodness of fit. The resampling and fitting procedure is repeated N = 50 times to obtain stable means of the
gamma distribution parameters for scale and shape. However, choice of N is arbitrary and was chosen here
by observing the convergence of parameter values as N increases. The gamma fit for the longer, Gray et al.
series is used to construct the probability of future AMO shifts conditional on the time elapsed since the last
shift. Finally, the stationarity of the Gray et al. series is tested by repeating the procedure for three shorter,
141-year segments of the data, then comparing the distribution parameters obtained. The spread of resulting
gamma parameters is used to estimate the uncertainty of the probability projections.

3. RESAMPLING PROCEDURE

Figure 1 (a) shows the smoothed AMO reconstruction of Gray et al. (2004), annotated with the intervals
between zero crossings, plus similar plots for three randomly resampled versions of the data. The Ebisuzaki
(1997) ‘random phase’ method of resampling consists of transforming the original time series into the
frequency domain, randomizing the Fourier phases, and reverse transforming to the time domain. Unlike
most randomizations in the time domain, this method preserves the original power spectrum but still produces
resampled series whose temporal correlations with each other and the original series are expected to be zero on
average. When the resampling is repeated many times, the resulting autospectra form a two-standard deviation
envelope that brackets the spectrum of the original data to a good approximation (Figure 2). The assumption
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Figure 1. (a): Smoothed annual tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) index by Gray et al. (2004).
(b, c, d): Smoothed resampled versions of the Gray et al. Index using randomization in the frequency domain (Ebisuzaki, 1997). Numeric

annotations are the intervals (years) between zero crossings
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Figure 2. Black curve: Autospectrum of the unsmoothed Gray et al. (2004) index. Light-shaded envelope: mean ±2 standard deviations
of the spectral energy at each frequency for 50 resampled versions of the unsmoothed Gray et al. index

implicit in this resampling is that the original series is extracted from a larger population (longer duration)
with time-invariant statistics (stationary). The question of stationarity will be examined in a later section.

As seen in Figure 1 (a), the original time series resolves 18 AMO phase intervals between the mid-
sixteenth century and the late twentieth century. To obtain a large enough sample for fitting purposes (about
100), we resample five times. A primary difference between increasing the sample size spectrally versus a
bootstrap resampling of the original 18 intervals (Efron, 1979) is that the latter method produces a sample
whose members have numerical values extracted from and limited to the original 18, whereas the spectral
randomization extracts entirely new values from the same power spectrum signature. With the bootstrap, it
is critical that the original sample be large enough to be representative of the larger population from which it
arises, while with the Fourier approach, it is sufficient that the spectrum be representative of the D2M process.

4. DISTRIBUTION FITTING

The histogram of Figure 3 (a) illustrates a typical empirical distribution of AMO regime intervals produced
by extracting five new time series from the original Gray et al. (2004) spectrum. The distribution is fit by the
smooth curve, which corresponds to a gamma pdf whose shape (A) and scale (B) parameters are adjusted to the
data by maximum likelihood estimation (MLE). As in the example shown, a KS goodness-of-fit test is applied
to the cumulative distribution (cdf, lower panel) and usually shows the fit to be acceptable at the 95% level of
significance. Each new fivefold resampling results in varied but similar parameter estimates. To obtain a stable
estimate of the gamma distribution for the 424-year period, we average the parameter estimates from 50 resam-
plings, obtaining A = 1.93 and B = 10.3. These values are later used to project the risk of future regime shifts.

5. STATIONARITY TEST

We now examine the hypothesis implicit in the above calculations, namely, that the 424-year recon-
struction arises from a stationary process. We define stationarity to mean that the distribution param-
eters A and B are acceptably invariant in time – in this case, that the confidence intervals about
the parameter means overlap between temporally adjacent samples. Since we have no additional data
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Figure 3. (a): Histogram (vertical bars) of zero crossing intervals from a set of five resampled and smoothed versions of the Gray et al.
(2004) index and the maximum likelihood (MLE) gamma probability distribution (solid curve) fit to the histogram. (b): Cumulative
empirical distribution (vertical bars) and gamma cumulative distribution function (solid curve), indicating that the Kolmogorov–Smirnov

goodness-of-fit criterion is satisfied at the 95% significance level

before or after the Gray et al. reconstruction to test this on, we instead divide the Gray et al. series
into three, nonoverlapping, 141-year segments and recalculate the 50-member ensembles for those seg-
ments and compare their parameter spreads. Because we also have the instrumental series with a sim-
ilar length, which coincides with the third Gray et al. segment, we also repeat the procedure for
that series. This produces four ensembles of parameter estimates, that is, 50 values of A and B for
each of the four segments tested. These ensembles are summarized by the box-and-whiskers plots of
Figure 4.

Not only the interquartile ranges but also the whiskers (all parameter estimates except for outliers)
are nonoverlapping; hence, we can safely reject the stationarity hypothesis because the whiskers embrace
more than 95% of the values. The 424-year parameter means (long horizontal lines) are bracketed by
the segment estimates, especially those after A.D. 1700. The instrumental AMO index also falls within
the range of the Gray et al. segments. Hence, we conclude that the AMO process is nonstationary, that
the instrumental and reconstruction segments are statistically compatible, and that the 424-year mean
distribution provides a reasonable basis for making projections. The fact that the process is nonstationary
does not invalidate the estimation procedure, but it means that the distribution parameters are more
uncertain than implied by the 50-member spread for the longer 424-year estimation. We shall return to
this later.

The segment-to-segment variation of the interval means is not obvious from Figure 4 because the popula-
tion mean for each gamma fit is the product of the distribution parameters, µ = A∗B. For the three Gray et al.
data segments, the ensemble estimates of the distribution means are 17.3, 16.4 and 18.7 years, respectively,
with 95% confidence intervals ranging from 0.22 to 0.28 years. Hence, the regime intervals for the middle
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Figure 4. Box-and-whiskers plots for four 50-member sets of shape (a) and scale (b) parameter estimates. Those for the three 141-year
segments of the Gray et al. reconstruction are shown to the left of the vertical dashed line. Those for the instrumental AMO index are
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The long horizontal line in each panel marks the mean value of the 50-member ensemble for the entire 424-year reconstruction. This

figure is available in colour online at www.interscience.wiley.com/ijoc

segment (1708–1848) are significantly shorter than before or after. This is qualitatively consistent with the
character of the tree-ring reconstruction, which shows the dominance of longer intervals near the start and
end of the series (S. Gray, personal comm.).

6. PROBABILITY PROJECTIONS

If we let P(ρ) represent the probability of a realization ρ within the population space of the stochastic regime
intervals (T ), we can then construct useful probability projections for future realizations. For example, the
conditional probability that a future regime shift will occur within a horizon of t2 years, given that t1 years
have elapsed since the last, opposite regime shift, may be expressed as

P(T > t1 ∩ T ≤ t1 + t2|T > t1) = P(T > t1 ∩ T ≤ t1 + t2)/P (T > t1)

= P(t1 < T ≤ t1 + t2)/P (T > t1)

= (�[t1 + t2] − �[t1])/(1 − �[t1]) (1)
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where t = t1 + t2 is the current climate regime interval and �[t] is the estimated gamma cdf (Bartoszynsky
and Niewiadomska-Bugaj, 1996). A reasonable, further refinement of this statement is to ignore the probability
space for very short intervals (5 years or less) that would normally be ignored in practice in retrospective
analysis. This is accomplished by using a truncated gamma in Equation (1), �[t] = �[t]/(1 − �[5 ]), where
t > 5. The corresponding variation of P(ρ) as a function of t1 (abscissa) and t2 (ordinate) is shown in Figure 5.

The projections in Figure 5 provide quantitative estimates of probability. Thus, it is generally thought that
the AMO switched from cool to warm during the 1994–1995 time frame. If we enter Figure 5 with t1 = 10
years (prior to this writing), we find a rather low probability (<30%) that the AMO will switch back to its
cool phase in less than t2 = 5 years from 2005. For t2 = 10 and 15 years, the risk increases to ∼51 and
∼70%, respectively, and a regime shift within 20 years is highly likely (∼86%). Such a shift, when it occurs,
would imply a return to more frequent droughts in Florida, fewer droughts in the Colorado River basin, and
less frequent severe hurricanes in the tropical Atlantic (Enfield et al., 2001; Goldenberg et al., 2001; McCabe
et al., 2004). As expected, Figure 5 shows that the risk for any of these t2 values increases as time advances
and the last regime shift (1994–1995) recedes further into the past (t1 increases).

Somewhat unintuitively, we see that as t1 increases, the probability of a future climate shift does not
increase very quickly for short-term horizons (small t2). Thus, for t1 = 20 and 30 years, the probability at
t2 = 5 years has only increased to 39% and 61%, respectively. This is a property of conditional distributions
because the probability must asymptote to the t1 axis. What changes more noticeably with t1, however, is
how the probabilities compress into shorter horizon intervals, i.e. the probability increases at a higher rate
for longer horizons. An easier way to see this is to plot the horizon (t2) as a function of t1 and the risk
(probability) (Figure 6). Thus, for a relatively high-risk level of 70%, the horizon is less than 6 years when
t1 = 30 years, as compared to a horizon of 15 years when t1 = 10 years. If t1 = 30, a regime shift is virtually
assured within a 10-year horizon.

For any particular application, managers or decision makers may feel comfortable adopting a definition
of what constitutes an ‘imminent condition’ for a regime shift. Thus, for example, one might decide that
the point at which a horizon t2 = 5 years achieves a risk level of 70% constitutes imminence. Referring
to Figure 6, we find this to be the case when t1 = 30 years, which will be realized 20 years beyond
2005. For other applications, imminence might be achieved sooner. Clearly, however, there is a finite
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probability that the regime shift could occur before that point; the definition of imminence should be one for
which the immediate implementation of mitigation measures reaches a priority that eclipses most competing
considerations. Planning for the contingency of an earlier regime shift should probably be in place considerably
before imminence is realized.

7. UNCERTAINTIES

The uncertainty of such estimates can be derived from the parameter estimates of the three Gray et al. (2004)
time segments, which collectively have a considerably larger spread than those of the 424-year estimation
used for Figure 5. This is primarily because of the nonstationarity of the intervals over the last half millennium
(Figure 4). Pooling the 3 × 50 segment estimates of A and B, we then randomly select a large number of
parameter values within their overall 1-α confidence intervals and generate the corresponding rms uncertainty
in P(ρ) over the domain of Figure 5. The uncertainty is fairly uniform over the [t1, t2] domain shown.
For confidence intervals between 95% and 99%, the uncertainty ranges between ±2% (α = 0.05) and ±5%
(α = 0.01), respectively.

The existence of nonstationarity does not exhaust the sources of uncertainty that attend such projections.
For example, it is also desirable to consider how the quality of the reconstruction will affect the distribu-
tion parameters. Tree-ring proxies suffer from declining sample-depth backward through time and age-related
calibration bias, while different ensembles of trees invariably yield varying results. Where multiple recon-
structions of the same climate index are available (at least four exist for the PDO), the uncertainty due to
the inability of the reconstructions to perfectly emulate the climate process can be estimated by applying the
above methods to the multiple reconstructions, rather than to segments of a single reconstruction. Only one
reconstruction yet exists for the AMO, so we have not done this.

Figure 5 is only one example of a potentially useful climate risk projection tool. Thus, for any given year
in which decisions are made, one can also construct a graph showing the distribution for P(ta < T ≤ tb),
where ta (abscissa) and tb (ordinate) define a time range, e.g. 10–15 years into the future. The risk of an
AMO shift between ta = A.D. 2015 and tb = A.D. 2020 is about 19%. This result can also be obtained from
Figure 5 by subtraction.
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Other, more complex projections can be developed. McCabe et al. (2004) have shown how the uncorrelated
+/− phases of the PDO and AMO have juxtaposed since the mid-nineteenth century in ways that plausibly
explain mega droughts in the southwestern and midwestern United States. If both oscillations can be
statistically modeled as we have done here only for the AMO, it is possible to develop joint probability
projections for the four possible phase–phase scenarios (+/+. +/−. −/−. −/+), under the assumption that
the climate oscillations are mutually independent. It is also possible to query the conditional probability for
regime interval magnitude (the area subtended between zero crossings) or intensity (magnitude divided by
interval length) given an interval of a certain length. Many of these ideas have already been explored by
Biondi et al. (2002, 2005)

In using a proxy index, one must keep in mind that a reconstruction cannot reproduce all of the variance
in the instrumental series used for calibration. The smoothed Gray et al. reconstruction accounts for 88% of
the variance in the instrumental AMO index after 1900 when ocean thermometry came into its own. Some
of the missing variance affects the interval lengths on which the methods described here are based. Part of
the error variance is probably attributable to the insensitivity of tree rings to water surpluses as compared to
water deficits; when water is plentiful, growth is limited by other factors such that ring width becomes an
underestimate of the true water availability. While this may have only a minimal effect on regime intervals, it
can bias any probability method based on magnitude or intensity. The risk methodology, as well as the proxy
information per se, must be used, interpreted and applied with care. Thus, the results of McCabe et al. (2004)
imply that water managers in the Colorado River Basin should have more confidence in the interpretation of
the positive phase of the AMO in terms of drought, than of the negative phase in terms of water surplus.

8. SUMMARY AND DISCUSSION

We have shown how a multicentury proxy reconstruction of a climate index may be used to estimate the pdf of
climate regime intervals, thus providing a basis for the projection of climate risk and the eventual development
of useful decision support tools. The spectrum preserving resampling of the time series provides sufficient
sample sizes for pdf estimation using the gamma distribution. Application of the methods to several time
segments of the data allow an assessment of stationarity and enable us to estimate the associated uncertainty
in the distribution parameters. We find the AMO to have been nonstationary over the last half millennium
and the associated uncertainty in probability to be in the range of 2–5%. Finally, we give a detailed example
of a derived, climate risk projection and suggest others that can be developed.

Consider the situation in 1990, more than 20 years into a period of cool North Atlantic SSTs (AMO)
associated with dry conditions in Florida, wet conditions in the southwestern region and less frequent
hurricanes. It is not difficult to imagine management decisions that could have been made then as an AMO
reversal became imminent within operational time horizons. Where water was expected to become more
plentiful, flood control measures could have been implemented and development on flood plains discouraged.
Where more persistent and/or frequent droughts were expected, more water could have been shunted to aquifer
storage, water access leases shortened, reservoir withdrawals reduced, conservation measures implemented
and agricultural practices modified. These suggestions come from water management and state engineering
offices with relevant responsibility for water planning. One might speculate, moreover, that underwriting
associations in cooperation with legislators could have increased the funding of windstorm contingency pools
in anticipation of more frequent, destructive hurricanes, had such pools existed (they did not). It should be
added that in any application, there may be operational or institutional constraints that limit the extent to
which risk projection methods may be incorporated into mitigation efforts.

D2M climate risk assessment is not only useful when a climate shift becomes imminent. In general, for
any policy or measure that can be adopted in anticipation of a change, there exists an alternative to be
followed if the probability of change is low. Policies may be reviewed periodically in light of changing
probabilities and the spectrum and effectiveness of available mitigation measures can be revised on a regular
basis. Cognizance of the changing nature of climate and its impacts is a relatively recent development and
it has taught us that effective management should not be based on static policies. Perhaps the best example
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of this lesson is the recent increase in destructive hurricane potential – related to the change in the AMO
climate regime (Goldenberg et al., 2001) – and its impact on the insurance industry.

It is important to point out that the usefulness of these methods for actual applications will depend on the
nature of the application, the strength of the connection between the climate mode and the target variable,
and managers’ ability to utilize the projections in making operational decisions. In general, the closer the
relationships of the modeled index to the decision-triggering target variables, the better. Thus, if a proxy
reconstruction of stream flow exists, this may be more useful to model than the climate mode whose association
with the stream flow is less than perfect. However, projections based on a climate mode have the advantage
of being appropriate over a wider range of applications and geographic regions.

Finally, the ultimate uncertainty for which there is no sure remedy at present, is the effect that global
climate change will have on future climate regime characteristics. However, it is worth noting that if the true
future distribution parameters are different from those in the past, the effect on risk projection (as shown
in Figure 5) is to shift all probabilities in the same direction and by similar amounts. Hence, the relative
change in probability from one part of the domain to another is little affected by a parameter discrepancy.
Arguably, the evolving change in risk is more likely to influence management and policy adjustments, than is
the absolute risk at a given position, as long as the errors are within reasonable bounds. In fact, this principle
applies to all sources of uncertainty. Thus, the potential importance of climate change need not invalidate the
use of paleo-proxy records to project future climate risk, and such indices of past variability should continue
to inform management decisions.
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