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Abstract. Spectral characteristics of the oceanic boundary-
layer response to wind stress forcing are assessed by com-
paring surface drifter observations from the Southern Ocean
to a suite of idealized models that parameterize the vertical
flux of horizontal momentum using a first-order turbulence
closure scheme. The models vary in their representation of
vertical viscosity and boundary conditions. Each is used to
derive a theoretical transfer function for the spectral linear
response of the ocean to wind stress.

The transfer functions are evaluated using observational
data. The ageostrophic component of near-surface velocity
is computed by subtracting altimeter-derived geostrophic ve-
locities from observed drifter velocities (nominally drogued
to represent motions at 15-m depth). Then the transfer func-
tion is computed to link these ageostrophic velocities to ob-
served wind stresses. The traditional Ekman model, with
infinite depth and constant vertical viscosity is among the
worst of the models considered in this study. The model that
most successfully describes the variability in the drifter data
has a shallow layer of depth O(30–50 m), in which the vis-
cosity is constant and O(100–1000 m2 s−1), with a no-slip
bottom boundary condition. The second best model has a
vertical viscosity with a surface value O(200 m2 s−1), which
increases linearly with depth at a rate O(0.1–1 cm s−1) and a
no-slip boundary condition at the base of the boundary layer
of depth O(103 m). The best model shows little latitudinal
or seasonal variability, and there is no obvious link to wind

Correspondence to:S. Elipot
(ship@pol.ac.uk)

stress or climatological mixed-layer depth. In contrast, in the
second best model, the linear coefficient and the boundary
layer depth seem to covary with wind stress. The depth of
the boundary layer for this model is found to be unphysically
large at some latitudes and seasons, possibly a consequence
of the inability of Ekman models to remove energy from the
system by other means than shear-induced dissipation. How-
ever, the Ekman depth scale appears to scale like the clima-
tological mixed-layer depth.

1 Introduction

The Southern Ocean is believed to be a primary location of
surface ocean mixing as a result of wind energy input, and
this is of relevance for the global oceanic circulation (Wun-
sch and Ferrari, 2004). Large et al.(1997) stressed that ob-
servations of mixing processes from this region are needed
to constrain general circulation models. A number of re-
cent studies have evaluated mixing processes in the South-
ern Ocean, both in the deep ocean (e.g.Naveira Garabato
et al., 2004; Sloyan, 2005) and in the upper ocean (e.g.
Cisewski et al., 2005; Thompson et al., 2007). Nonetheless,
we still lack observations of near-surface mixing on large
scales. This study focuses on mixing processes that occur
in the oceanic boundary layer (OBL) and that are linked to
the wind-forced input of momentum to the upper ocean.

Most of our understanding of the ocean’s response to wind
forcing at the local scale has been framed in terms ofEk-
man (1905) theory, usually used to assess ocean response
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to constant or steady forcing. Steady conditions are rarely
achieved in the real ocean, and, as a consequence, the steady
Ekman spiral has proved difficult to observe. Only through
extensive spatial and temporal averaging was it demonstrated
to exist to some degree (e.g.Price et al., 1987; Wijffels et al.,
1994; Chereskin, 1995). While predicted Ekman transports
agree well with observations (e.g.Price et al., 1987; Chere-
skin and Roemmich, 1991; Chereskin, 1995; Wijffels et al.,
1994; Schudlich and Price, 1998), predictions for the detailed
vertical structure of the wind-driven velocities have been less
satisfactory. Generally, an observed Ekman spiral appears
more “flat” than the theoretical one derived from the “clas-
sic” steady model with a constant vertical viscosityK and an
infinite ocean. This mismatch is an indication either that the
velocity magnitude decays with depth more rapidly than the
velocity vector rotates away from the wind stress direction or
that the shear is predominantly downwind (Chereskin, 1995;
Schudlich and Price, 1998; Price and Sundermeyer, 1999).
K, which represents the “mixing”, can be estimated by fit-
ting observations either to the decay of speed with depth
or to the velocity rotation at depth. Estimates obtained in
these two ways can differ by an order of magnitude (Weller,
1981; Price et al., 1987; Chereskin, 1995; Lenn, 2006). Thus
most studies have concluded that “Ekman theory” is unable
to reproduce the observed detailed vertical structure of wind-
driven currents. However, Ekman’s (1905) original theory
included solutions for transient winds, and more recent work
(e.g.Lewis and Belcher, 2004) has considered transient solu-
tions with a range of different forms of vertical viscosity and
upper ocean boundary conditions.

In this paper, rather than simply assuming that because Ek-
man theory does not perform well in the steady-state case
it cannot apply under any circumstances, we systematically
evaluate the behavior in the frequency domain of Ekman-
type models. At sub-inertial frequencies, ocean observa-
tions indicate that turbulence closure models are good predic-
tors of wind-driven velocities, while at the inertial frequency,
slab-like models, which effectively have infinite vertical vis-
cosity, are more successful (Weller and Plueddemann, 1996;
Plueddemann and Farrar, 2006). We confirm here that the
observed and theoretical ocean response to wind forcing
strongly depends on time scale. Here we consider three dif-
ferent formulations for viscosity and three different formu-
lations for the boundary condition at the base of the OBL.
Together these produce nine different Ekman-type models,
some of which have been investigated previously (e.g.Ek-
man, 1905; Gonella, 1972; Thomas, 1975; Madsen, 1977;
Jordan and Baker, 1980; Lewis and Belcher, 2004), though
we have found no previous comprehensive study of their fre-
quency characteristics. The nine models each exhibit dif-
ferent behaviors in the frequency domain (see AppendixA).
Here we first identify the viscosity and boundary condition
formulations that are best able to capture the observed rela-
tionship between time-varying wind and ocean velocity. Sec-
ond, we ask whether the best of these time-varying Ekman-

type models are sufficient to capture the full physics of wind
energy input to the OBL.

The scrutiny that this paper gives to Ekman-type mod-
els might seem misplaced, since Ekman theory is not used
in modern ocean general circulation models (OGCMs). In-
stead, modern OGCMs now typically use a turbulence clo-
sure boundary layer model such as KPP (Large et al., 1994),
which includes a non-linear form for the vertical viscosity as
well as a dependence on surface buoyancy fluxes and there-
fore must be solved numerically. In many regions, buoy-
ancy forcing appears to play a significant role in determin-
ing the velocity structure of the upper ocean. For exam-
ple, Price and Sundermeyer(1999) showed that the deep-
ening and shoaling of the surface mixed layer by diurnal
solar forcing could result in the time-mean spiral structure
of wind-driven currents. Moreover, to model properly the
wind-driven near-surface currents, local stratification should
be taken into account, since it determines how wind-induced
momentum penetrates through the water column (e.g.Plued-
demann and Farrar, 2006). Ekman-type models do not ex-
plicitly represent buoyancy forcing or stratification, but that
does not mean that the models are useless. We explore the
possibility that the relevant effects of buoyancy forcing and
stratification can be captured through an optimal choice of
viscosity and boundary layer parameters. Moreover, Ekman
models have other virtues. They are textbook classics with
a long legacy, and they continue to inform our physical intu-
ition about the upper ocean. They are analytically tractable,
meaning that the influence of specific parameters can easily
be explored. And simpler forms of Ekman-type models have
been used in a number of recent studies of drifter data (e.g.
Niiler and Paduan, 1995; Ralph and Niiler, 1999; Rio and
Hernandez, 2003).

Looking at the characteristics of OBL models at different
time scales comes down to considering their spectral char-
acteristics as they appear in the transfer function with wind
stress as input and ocean velocity as output (e.g.Gonella,
1972; Weller, 1981; Rudnick and Weller, 1993). Here, the-
oretical transfer functions are compared to the transfer func-
tions estimated from surface drifter data from the Southern
Ocean. The observed transfer functions are derived by carry-
ing out cross-spectral analysis for surface drifter trajectories
and wind stress interpolated onto drifter positions.

This paper is organized as follows: in Sect.2, the concept
of a transfer function for vector input and output variables is
interpreted in the context of OBL dynamics. In Sect.3, the
mathematical steps leading to the transfer function expres-
sions from the horizontal momentum balance equation are
given. (The general characteristics of these transfer functions
and their limiting behaviors are discussed in AppendixA.
These functions can be graphically represented as a func-
tion of frequency and depth.) The oceanic and atmospheric
datasets used in this study are described in Sect.4, and the
methodology used to estimate the observed transfer functions
in the Southern Ocean is given in Sect.5. The results of
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fitting the modeled transfer functions to the observed ones
are given in Sect.6 and a discussion of models’ performance
is found in Sect.7. Finally Sect.8 provides a summary.

2 The transfer function

2.1 Fourier series decomposition for a vector time series

A vector time series (here of the wind stress, drifter veloc-
ity or ageostrophic velocity) can be represented as a single
complex Fourier series if it is treated as periodic with period
T :

u(t) = u(t) + iv(t) =

k=+∞∑
k=−∞

uk(t), (1)

whereu andv are the zonal and meridional velocities, re-
spectively;t is the time, andi=

√
−1. At each discrete fre-

quencyνk=k/T , the rotary component is

uk(t) = Ck exp(i2πνkt), (2)

with the complex Fourier coefficientCk:

Ck(νk) =
1

T

∫ T

0
u(t) exp(−i2πνkt)dt. (3)

Each component is a vector rotating with time. The
hodographs for these vectors are counterclockwise-rotating
circles for positive frequencies and clockwise-rotating cir-
cles for negative frequencies. For each rotary component,
the absolute value ofCk indicates its magnitude.

2.2 Theory of the transfer function for vectors

For our analysis, the local wind stress vector at the air-sea
interface,τ (t), is interpreted as the input of a causal linear
system. The output of this system is the ocean velocity vector
u(t, z) at depthz. The velocityu(t, z) at timet can therefore
be thought of as a convolution of the wind stress with the
impulse response functionh(t ′, z), wheret ′ is time lag, and
z is depth (e.g.Bendat and Piersol, 1986, p. 189):

u(t, z) =

∫
∞

0
h(t ′, z)τ (t − t ′)dt ′. (4)

Taking the Fourier transform
∫

+∞

−∞
(·) exp(−i2πνt)dt of

Eq. (4), the convolution theorem linearizes the relationship:

U(ν, z) = H(ν, z)T(ν), (5)

whereU, H, andT are the Fourier transforms ofu, h, andτ ,
respectively. At any given frequencyν, the transfer function
H is complex valued.

What is the interpretation ofH? Assume the wind stress
forcing is monochromatic (i.e. its Fourier series has only one
non-zero component) with frequencyν0>0 and a magnitude
of 1 N m−2. Thus:

τ (t) = 1 × exp(+i2πν0t). (6)

The hodograph of such a wind stress is a counterclockwise-
rotating circle. Its Fourier transform can be defined with the
help of the delta function, i.e.T(ν)=1×δ(ν−ν0) (in units of
N m−2 s). The resulting ocean velocityu(t, z) is the inverse
Fourier transform ofU(ν, z):

u(t, z) =

∫
+∞

−∞

U(ν, z) exp(+i2πνt)dν (7)

=

∫
+∞

−∞

H(ν, z)T(ν) exp(+i2πνt)dν (8)

=

∫
+∞

−∞

H(ν, z)δ(ν − ν0) exp(+i2πνt)dν (9)

= H(ν0, z) exp(+i2πν0t). (10)

Thus, in this example,u(t, z) is a vector rotating with the
wind stress at frequencyν0, and its Fourier series has only
one non-zero component. The velocity vector has a con-
stant deflection angle with respect to the stress vector, which
is given by the phase of the complex numberH(ν0, z) (in
units of kg−1 m2 s). If the rotating wind stress has a magni-
tude of 1 N m−2 (roughly equivalent to a 10-m wind speed of
20 m s−1; e.g.Large and Pond, 1981), then the absolute value
of H(ν0, z) indicates the speed of the upper ocean currents.

In AppendixA, the theoretical and observed transfer func-
tions are plotted in the complex plane. The axes can be
thought as being fixed in a reference frame rotating with the
wind stress vector, with the x-axis aligned with the wind
stress vector. This representation is independent of the co-
ordinate system, and it is particularly appropriate for study-
ing the angular relationship between the wind-driven ocean
velocity and the wind stress on global scales. This type of
analysis is reminiscent of the averaging method developed
by Price et al.(1987), where the signal-to-noise ratio of the
wind-driven velocities is improved by projecting them into
time-averaged along- and cross-wind directions.

3 Transfer functions for Ekman layer models

3.1 Equation of motions

Our objective in this section is to evaluate how analytic
Ekman-type models represent the relationship between wind
and upper-ocean velocity. For a horizontally homogenous
OBL, in the absence of pressure gradients the linearized hor-
izontal momentum balance is:

∂u(t, z)

∂t
+ if u(t, z) = −

1

ρ

∂τ (t, z)

∂z
, (11)

whereu(t, z) is the horizontal velocity forced by the wind
stressτ (t, 0), f the Coriolis parameter, andρ the density of
seawater. For consistency, the vertical coordinatez is taken
positive downwards, andz=0 is the mean ocean-atmosphere
interface. The “mixing” is written as a vertical flux of mo-
mentum per unit mass〈u′w′

〉, wherew is the vertical com-
ponent of the velocity (positive downward). The brackets

www.ocean-sci.net/5/115/2009/ Ocean Sci., 5, 115–139, 2009



118 S. Elipot and S. T. Gille: Ekman layer in the Southern Ocean

∂u

∂z
= 0

u → +∞ u → +∞

u → 0

u → 0

u → 0

h

hh

h

u u u

uu

h

z
z z

z
z z

z
z

(1a) (1b) (1c)

(2c)(2b)(2a)

(3a) (3b) (3c)

∂u

∂z
= 0

∂u

∂z
= 0

u = 0

u = 0

h

u

z
u = 0

κ(0) = κ0 κ(0) = κ0 κ(0) = κ0

κ0 κ0 κ0

κ(0) = 0κ(0) = 0 κ(0) = 0

u → +∞

Fig. 1. Schematics of the models. Black curves: velocity profiles. Gray curves:K profiles. K=K0: models

1a, 1b, 1c;K=K1z, models 2a, 2b, 2c;K=K0+K1z, models 3a, 3b, 3c.
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Fig. 1. Schematics of the models. Black curves: velocity profiles.
Gray curves:K profiles. K=K0: models 1a, 1b, 1c;K=K1z,
models 2a, 2b, 2c;K=K0+K1z, models 3a, 3b, 3c.

〈·〉 represent the “fast” time average and primes the tur-
bulent fluctuations that are typically not resolved by large-
scale oceanic observations. This flux defines a turbulent or
Reynolds stress (per unit mass) acting on the large-scale cir-
culation (e.g.Pedlosky, 1979):

〈u′w′
〉 ≡

τ

ρ
. (12)

Following the concept that turbulent momentum fluxes are
down-gradient and that they follow a Fickian law akin to
what occurs at the molecular level, this turbulent stress is
written as a turbulent coefficientK, the vertical viscosity,
multiplied by the vertical shear of horizontal velocity:

τ (z)

ρ
= −K(z)

∂u(z)

∂z
. (13)

This parameterization provides a first order turbulence clo-
sure scheme of the Reynolds equations for the velocity in the
OBL. It yields a linearized equation of motion conveniently
written in terms ofu only.

Using Eq. (13), the momentum equation becomes:

∂u(t, z)

∂t
+ if u(t, z) −

∂

∂z

(
K(z)

∂u(t, z)

∂z

)
= 0, (14)

whereK depends on depth only. The Ekman layer physics is
governed by the vertical form ofK and by the depth of the
OBL. To obtainH, for each OBL model Eq. (14) is Fourier
transformed to obtain an ordinary differential equation inz

for U(ν, z):

i(2πν + f )U(ν, z) −
d

dz

[
K(z)

dU(ν, z)

dz

]
= 0. (15)

Then, using the Fourier transformed boundary conditions, a
solution forU(ν, z) is found in the form given by Eq. (5) (see
Sect.3.3).

A number of studies have solved Eq. (14) explicitly for
u(t, z) using a variety of vertical profiles forK(z) and ap-
plying several types of boundary conditions. For exam-
ple, Lewis and Belcher’s (2004) derivations of the time-
dependent solutions showed that if a constant wind-stress
boundary condition is employed, then the lower boundary
condition controls the damping scale, viscous or inertial, of
the transient terms (in the form of inertial oscillations). Here,
Eq. (14) is solved in the spectral domain. In many of the
cases, our spectral solutions are modified versions of the
time-mean terms of the solutions presented by earlier au-
thors (Ekman, 1905; Thomas, 1975; Madsen, 1977; Jordan
and Baker, 1980; Lewis and Belcher, 2004).

3.2 Parameterization of the vertical viscosity

We consider nine models arising from three different verti-
cal profiles forK(z), and three different bottom boundary
conditions. These models are sketched in Fig.1. The model
number (1, 2 or 3) designates the vertical profile ofK and
the letters (a, b or c) indicate the bottom boundary condition.

Models 1a, 1b, and 1c have a constant viscosityK=K0
(first row of Fig.1), as inEkman(1905).

Models 2a, 2b, and 2c have a viscosity that increases lin-
early with depth and that vanishes at the surface:K(z)=K1z

(second row of Fig.1). This linear increase inK with
depth is physically justified, because it assumes that wind-
driven turbulent eddies are larger further from the surface,
and therefore that the turbulent viscosity is larger at depth
(e.g. Prandtl, 1952). For smallz, a linear profile implies
that the velocity should approximate a logarithmic profile as
for a wall-bounded shear flow (e.g.Kundu and Cohen, 2002,
p. 528), analogous to a linearK profile used for the atmo-
spheric boundary layer (Tennekes, 1973). A similar profile
has been predicted for the oceanic boundary layer (e.g.Mad-
sen, 1977; Jordan and Baker, 1980; Thomas, 1975; Craig
et al., 1993).

In models 2a, 2b, and 2c, zero values ofK at the surface
lead to a singularity. Models 3a, 3b, and 3c are designed
to avoid this by using a viscosity that is finite at the surface
and that increases with depth:K(z)=K0+K1z (third row of
Fig. 1). The linear part of the viscosity profile is again jus-
tified by the mixing length argument. The constantK0 al-
lows the top boundary condition to be satisfied exactly with-
out requiring approximations of the general solutions close
to the surface. The addition ofK0 is equivalent to intro-
ducing a roughness lengthz0, so that the surface viscosity is
K0=z0×K1. Note that such a vertical profile forK approxi-
mates near the surface the cubic vertical profile implemented
in the KPP model ofLarge et al.(1994).
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Table 1. Mathematical expressions for the transfer functionsH(ν, z). δ1=
√

2K0/(2πν+f ). δ2=K1/(2πν+f ). In andKn are thenth-
order modified Bessel functions of the first and second kind, respectively. For conciseness in the following tableζ(x)=2

√
i(z0+x)/δ2. The

numbers on the left column designate the family of model and the letters on the first row designate the type of bottom boundary condition
(see text).

K(z) a – infinite layer b – one layer c – one and a half layer

1 K0
e−iπ/4e−z(1+i)/δ1

ρ
√

(2πν+f )K0

e−iπ/4

ρ
√

(2πν+f )K0

sinh[(1+i)(h−z)/δ1]
cosh[(1+i)h/δ1]

e−iπ/4

ρ
√

(2πν+f )K0

cosh[(1+i)(h−z)/δ1]
sinh[(1+i)h/δ1]

2 K1z 2
ρK1

K0

(
2
√

iz
δ2

)
2

ρK1

K0

(
2
√

iz
δ2

)
−

K0

(
2
√

ih
δ2

)
I0

(
2
√

iz
δ2

)
I0

(
2
√

ih
δ2

)
 2

ρK1

K0

(
2
√

iz
δ2

)
+

K1

(
2
√

ih
δ2

)
I0

(
2
√

iz
δ2

)
I1

(
2
√

ih
δ2

)


3 K0 + K1z 1
ρ
√

i(2πν+f )K0
×

1
ρ
√

i(2πν+f )K0
×

1
ρ
√

i(2πν+f )K0
×

K0[ζ(z)]
K1[ζ(0)]

I0[ζ(h)]K0[ζ(z)]−K0[ζ(h)]I0[ζ(z)]
I1[ζ(0)]K0[ζ(h)]+K1[ζ(0)]I0[ζ(h)]

K1[ζ(h)]I0[ζ(z)]+K0[ζ(h)]I1[ζ(z)]
K1[ζ(0)]I1[ζ(h)]−I1[ζ(0)]K1[ζ(h)]

3.3 Boundary conditions

For all models, the surface boundary condition matches sur-
face wind stress to turbulent stress in the upper ocean. The
boundary condition in the time domain and its corresponding
Fourier transform are:

−K(0)
∂u(t, 0)

∂z
=

τ (t, 0)

ρ
⇔ −K(0)

dU(ν, 0)

dz
=

T(ν)

ρ
. (16)

This condition cannot be satisfied exactly whenK vanishes
atz=0 in models 2a, 2b, and 2c. Instead it is taken as a limit.

For the bottom boundary condition, three cases are con-
sidered:

1. Models 1a, 2a, and 3a are for a homogeneous ocean of
infinite depth, and the corresponding bottom boundary
condition specifies that the wind-driven velocity tends
to zero:

u(t, z) → 0 ⇔ U(ν, z) → 0, asz → +∞ (17)

2. Models 1b, 2b, and 3b are 1-layer models, with a ho-
mogeneous wind-driven finite layer of thicknessh, at
the bottom of which the velocity goes to zero:

u(t, z) → 0 ⇔ U(ν, z) → 0, asz → h (18)

3. Models 1c, 2c, and 3c are 1 and 1/2-layer models, con-
sisting of a homogeneous wind-driven layer of thick-
nessh, at the bottom of which the stress and hence the
velocity shear go to zero, but non-zero velocity is still
possible:

∂u(t, z)

∂z
→ 0 ⇔

dU(ν, z)

dz
→ 0, asz → h (19)

(Price and Sundermeyer, 1999used this bottom bound-
ary condition to study the influence of stratification on
Ekman layers.)

3.4 Mathematical expressions and graphical
representations

The derivations of the transfer functions for models 1a, 1b,
1c, 2a, 2b, and 2c are omitted here because similar deriva-
tions have been published previously (e.g.Gonella, 1972;
Thomas, 1975; Madsen, 1977; Weller, 1981; Lewis and
Belcher, 2004). The transfer functions for models 3a, 3b,
and 3c, to the best of our knowledge, are new results but
their derivation is trivial1.

The mathematical expressions for the transfer functions
of the models considered in this study are given in Table1.
These show that the ocean’s response depends nonlinearly
on the frequencyν of the forcing, the depthz, the latitude
through the Coriolis parameterf , the water densityρ, and
the vertical viscosityK. As indicated in Table1 the depth
scales for the transfer functions (δ1 for models 1a, 1b, and
1c andδ2 for models 2a, 2b, 2c, 3a, 3b, and 3c) depend on
viscosity and frequency.

AppendixA provides further detail about the structure of
the transfer functions and especially how each combination
of vertical viscosity profiles and bottom boundary conditions
leads to a different frequency response of the model (see Ta-
ble A1). One interesting characteristic of these functions
is their limiting behavior when the non-dimensional depths
z/δn, (n=1, 2) tend to zero. This situation occurs close to
the surface and also when the angular frequency of the forc-
ing approaches the inertial angular frequency−f .

In the Southern Hemisphere,f <0, and the inertial fre-
quency is−f/2π>0. For cyclonic (ν≤0) and sub-inertial
anticyclonic frequencies (0≤ν<−f/2π ) all of the models
indicate that the velocity is to the left of the wind stress
at the surface and spirals downward anticylonically, while

1Lewis and Belcher(2004) did consider the case of a non-
vanishingK at the surface by equivalently considering a water-side
surface roughness. However, they considered a coupled oceanic-
atmosphere Ekman log-layer which has a slightly more complicated
analytic solution.
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Fig. 2. Drifter trajectory segments used in this study between 30◦ S
and 60◦ S. The 40-day segments are colored according to their mean
latitude, following a repeated 5-class qualitative colormap to distin-
guish one 2◦ latitudinal band from the next.

for supra-inertial anticyclonic frequencies (ν>−f/2π ), the
velocity is to the right of the wind stress at the surface and
spirals cyclonically. The zero-frequencyν=0, or time-mean,
velocity at the surface is consequently to the left of the mean
stress direction.

4 Data

The Surface Velocity Program (SVP) (Siedler et al., 2001)
and the ongoing Global Drifter Program (GDP) both provide
horizontal velocity data from surface drifting buoys (drifters)
on a global scale. A standard SVP drifter has a Holey-Sock
drogue centered at 15-m depth, linked by a tether to a subsur-
face float and a surface float that radio-transmits its positions
to the ARGOS satellite array at an uneven time rate, depend-
ing on satellite coverage and the drifter’s setup (Sybrandy
and Niiler, 1991; Niiler et al., 1995; Lumpkin and Pazos,
2007). The NOAA Atlantic Oceanographic and Meteorolog-
ical Laboratory (AOML) Drifter Assembly Center processes
the raw position data and interpolates them using a kriging
procedure (Hansen and Poulain, 1996), resulting in a time
series of positionx(t) and velocityud(t, x(t)) at six-hour
intervals.

In principle, the drifter motions represent the currents av-
eraged over the 6.1 m length of the drogue. Vertical shear of
velocity has been observed over this lengthscale from vector
measuring current meters mounted at the top and the bottom

of the drogue (Niiler et al., 1995). Here shear information
was not collected, and in our analysis we interpret the drifter
velocities to be at the nominal 15 m depth.

In the Southern Ocean between 30◦ S and 60◦ S, 2839 in-
dependent SVP drogued drifter trajectories are available
from November 1989 to May 2003. Undrogued drifter data
were discarded. We identified 666 trajectories from drogued
drifters that were at least 40 days long from October 1992,
at the beginning of the TOPEX/Poseidon altimeter mission,
to August 2002, the date when the ECMWF ERA-40 re-
analysis ends (see below). Coastal areas are avoided by dis-
carding the points of drifter trajectories for which a dynamic
height relative to 3000 decibars from the 1◦ gridded historical
atlas data byGouretski and Jancke(1998) could not be inter-
polated linearly. When divided in 40-day long segments that
overlap by 20 days, these trajectories provide 10 387 time se-
ries segments, shown in Fig.2.

These segments are further sorted in 2◦ latitudinal bands
according to their mean latitude (color-coded in Fig.2). The
number of segments per band is listed in Table2. These num-
bers are used to evaluate the number of degrees of freedom
for the spectral estimates, as explained in AppendixB2.

Figure3a reveals the latitudinal biases, due to the decrease
in data segments south of 44◦ S.

In Fig. 3b, the longitudinal distribution of the data seg-
ments indicates that the drifters are primarily from the At-
lantic and Indian sectors of the Southern Ocean. The tempo-
ral distribution of the data segments (Fig.4) suggests that the
observations are weighted more heavily toward the second
half of the decade but show little seasonal bias. The drifter
dataset is also further divided into an austral winter sub-
dataset (5282 segments) and a summer subdataset (5105 seg-
ments) to study the seasonal variability. The austral winter is
taken to correspond to the months of April through Septem-
ber and the austral summer to the months of October through
March. The nominal month of a 40-day trajectory segment is
chosen here as the month of the median date of the segment.

In order to obtain an estimate of the absolute geostrophic
velocity component of the drifter velocities, two satel-
lite altimetry datasets were combined. The anomaliesu′

g

were derived from “Archiving, Validation and Interpreta-
tion of Satellite Oceanographic” data that are produced by
the Centre Localisation Satellite (AVISO). These provide
high-resolution maps (1/3◦×1/3◦ Mercator grid) by merg-
ing TOPEX/Poseidon (T/P) and ERS-1 and -2 altimeter mea-
surements, using an objective analysis method (Ducet et al.,
2000). These maps are available at 7-day intervals imply-
ing a Nyquist frequency of 1/14 cycles per day (cpd) for the
geostrophic part of the signal. We computed the velocity
anomalies from the zonal and meridional gradients of the
height anomalies. To these, a time-mean geostrophic ve-
locity ūg was added, computed from the Gravity Recov-
ery and Climate Experiment (GRACE) satellite-derived dy-
namic topography available on a global 1◦ grid (Tapley et al.,
2005). This mean geostrophic velocity field was interpolated
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overlapping 40-day drifter trajectory segments.
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Fig. 3. (a)Latitudinal distribution and(b) longitudinal distribution
of the median dates of the of the 20-day overlapping 40-day drifter
trajectory segments.

linearly in space, and the velocity anomaly maps were lin-
early interpolated in space and time, at all the drifter posi-
tions, to obtain the absolute geostrophic velocityu′

g + ūg at
the surface every 6 h along the drifter trajectories.

Time series of the ageostrophic velocityu at 15 m are
then obtained as the drifter velocity minus the absolute
geostrophic velocity at the surface:

u(t) = ud (t, x(t) = x0) − (u′
g (t, x0) + ūg(x0)). (20)

This neglects the geostrophic shear in the upper 15 m of the
ocean. Expendable bathythermograph data in the Drake Pas-
sage indicate a geostrophic shear of less than 10−3 s−1 in the
upper 400 m (J. Sprintall, personal communication, 2006),
yielding a potential maximum 1.5 cm s−1 geostrophic veloc-
ity difference between the surface and 15 m. This is of the
same order as other sources of noise in this study.

For wind data, we use European Center for Medium-
Range Weather Forecasts (ECMWF) ERA-40 Project re-
analysis wind stresses (Simmons and Gibson, 2000) obtained
from the Data Support Section of the Scientific Computing
Division at the National Center for Atmospheric Research.
The zonal and meridional wind stress components are avail-
able four times daily at the times 00:00, 06:00, 12:00 and
18:00 UTC. The values are instantaneous and are given as
forecasts valid 6 h after the re-analysis time. The data are
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Fig. 4. (a) Month distribution of the median dates, and(b) year
distribution of the mean latitude of the 20-day overlapping 40-day
drifter trajectory segments used in this study.

released on a Gaussian grid with resolution of 1.125◦ longi-
tude by roughly 1.125◦ latitude. These gridded winds were
linearly interpolated to the drifter positions to obtain contem-
poraneous six-hourly time series of wind stressτ (t).

5 Methods

5.1 Estimating the transfer function from the
cross-spectra

We estimate the transfer function from observations using a
spectral approach. The transfer functions discussed in Sect.3
satisfy:

Sτu(ν, z) = H(ν, z) Sττ (ν), (21)

whereSτu is the cross-spectral density function between the
wind stress and the ocean velocity, andSττ is the autospec-
tral density function of the wind stress. Here rotary power
spectral density functions are estimated by the periodogram
(e.g.Bendat and Piersol, 1986), for a finite number of fre-
quency bandsνk:

Ŝxy(νk) =

〈
XkY∗

k

〉
T

, (22)
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1.68, 1.77, 1.26, 7.64.
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Fig. 5. Phase of the cross-spectrum between the drifter ageostrophic
velocities and various wind and wind stress data for the data in the
52◦–54◦ S latitudinal band. ECMWF stress, ECMWF 10-m wind
and NCEP 10-m wind are instantaneous values valid at the drifter
time. NCEP stress−6 h is the average value valid over the previous
6 h before the drifter time. NCEP stress is the average value valid
over the next 6 h starting from the drifter time. Average NCEP stress
is the arithmetic average of these last two values. ECMWF stress
−6 h is the instantaneous stress value valid 6 h before the drifter
time. A positive phase means that the ocean velocity is to the left of
the wind. A positive linear slope of the phase indicates that the wind
lags the ocean velocities. In the order of the legend, the linear de-
pendences of the phase on frequency between 0 and 1 cpd converted
to constant time lags in hours (for the wind product with respect to
the ocean velocity) are: 1.62, 4.69,−1.36, 1.68, 1.77, 1.26, 7.64.

where〈·〉 is the expected value operation over an ensemble
of time series segments of lengthT and ·

∗ is the complex
conjugate.Xk is the finite Fourier transform ofx:

Xk(νk) =

∫ T

0
x(t) exp(−i2πνkt) dt, (23)

here computed using a standard Fast Fourier Transform al-
gorithm.

The length of the time series segments considered here is
T =40 days with a sampling interval1t=0.25 day leading
to N=160 points in time; thus the formal Nyquist frequency
is 1/(21t)=2 (cpd), although high frequencies are not well-
resolved, and we focus our attention on frequencies well be-
low the Nyquist frequency. The frequencies considered are
νk=k/T =k/(N1t), positive fork=0, . . . , N/2 and negative
for k=−N/2 + 1, . . . ,−1. The frequency resolution is the-
oreticallyνr=1/T = 0.025 cpd, but in reality it is 50% larger
(0.0375 cpd), because we applied a Hanning window to re-
duce spectral side-lobe leakage (Harris, 1978). Since the data
are ultimately sorted in 2◦ latitudinal bands between 30◦ S
and 60◦ S, this resolution is sufficient to resolve the smallest
difference in the inertial frequency from one band to the next,
except between the two southern-most bands.

The transfer function linking ocean velocities to wind
stress is calculated from Eq. (21):

Ĥ(νk, z) =
Ŝτu(ν, z)

Ŝττ (ν)
=

〈
Tk Uk

∗
〉〈

Tk Tk
∗
〉 , (24)

using the data sorted in 2◦ latitudinal bands.
The zero frequency component is representative of the

mean wind-driven currents at 15 m, and the phase

χ̂(ν, z) = arctan

(
Im(Ŝτu(ν, z))

Re(Ŝτu(ν, z))

)
, (25)

at zero frequency is the mean angle over 40 days between
the wind stress and either drifter or ageostrophic velocity at
that depth. Table2 lists χ̂(0) for 2◦ latitudinal bands. At
all latitudesχ̂(0) is greater for the drifter velocity than for
the ageostrophic velocity most likely because of the oceanic
eastward drift of the ACC flowing in the same direction as
the atmospheric westerlies. The variation of the mean angle
with latitude is one example of latitudinal variations in the
transfer function (see below).

5.2 Correcting an unexplained constant time lag

Transfer functions of vector quantities are computed using
rotary spectra (e.g.Mooers, 1973). Rotary spectra allow us
to identify the angular separation between vector quantities
but cannot distinguish differences in vector orientation from
differences in temporal phasing. In each latitudinal band,
we found that the phase of the transfer function depended
linearly on frequency, which corresponds to a constant time
lag between the wind stress and drifter data.

First, in order to investigate if this lag was data-specific,
several other types of wind products from the ERA-40
ECMWF Project re-analyses and the NCEP/NCAR Reanal-
ysis Project (Kalnay et al., 1996) were tested. For the 52◦–
54◦ S latitudinal band, Fig.5 shows the cross-spectral phases
χ̂ . Phases slope linearly with frequency for all products,
but the slopes depend on the timing of the wind relative to
the drifter measurements. This indicates that the time stamp
of the data must be interpreted with care, particularly since
wind products can be reported as instantaneous nowcasts, as
forecasts (so that the time stamp precedes the actual wind
by 6 h), or as time averages over 6-h intervals. In Fig.5, the
NCEP wind stress (black line), which is an average for the 6 h
following the reported time, shows an expected constant time
lag of 3 h with respect to the instantaneous ECMWF wind
stress (red line), which is valid at the reported time. Surpris-
ingly, the ECMWF winds show tilting phase lines (red line
in Fig. 5) even when there is nominally no time separation
between drifter and wind observations. A data-specific pos-
sible explanation for this is that there is a misalignment of the
time stamps of wind and drifter data but why this lag should
still be a function of latitude is unclear.
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Table 2. Characteristics of trajectory segments per 2◦ latitudinal band. The lag is discussed in Sect.5. χ(0) is the mean angle between the
wind stress and drifter velocitiesud or ageostrophic velocitiesu.

Latitudes Number of segments Lag (hour) χ(0) (◦)

all summer winter ud u

30−32◦ S 723 361 362 2.77 42.58 46.13
32−34◦ S 1080 570 510 3.22 29.45 37.88
34−36◦ S 1124 587 537 2.60 28.68 35.69
36−38◦ S 1045 525 520 2.43 27.85 33.86
38−40◦ S 1076 505 571 2.53 20.09 27.24
40−42◦ S 1172 569 603 2.32 16.87 33.18
42−44◦ S 1019 542 477 1.98 15.30 39.68
44−46◦ S 848 397 451 1.85 17.23 33.31
46−48◦ S 622 279 343 1.88 17.59 34.17
48−50◦ S 543 261 282 1.50 16.88 27.80
50−52◦ S 363 167 196 1.78 15.83 25.80
52−54◦ S 279 105 174 1.57 21.32 35.29
54−56◦ S 222 118 104 2.05 16.44 28.44
56−58◦ S 143 65 78 2.00 17.71 26.71
58−60◦ S 128 54 74 1.42 16.11 23.48

Total 10 387 5105 5282 – – –

We note also that Ekman models do not account explicitly
for the presence of oceanic surface-gravity waves in the real
ocean, and these could mediate the transfer of momentum
from the atmosphere to the upper ocean. As such, a time lag
could exist between the wind stress and the velocity at 15 m.
How and why this lag would be a function of the frequency
and latitude is unclear and further analysis, beyond the scope
of this study, is required.

In conclusion, according to our analysis, it is found that
the Ekman models considered here are unable to account for
this time lag. Therefore, as a first step, we corrected the
overall transfer function in each latitude band by removing
the trend fitted in its phase between 0 and 1 cpd. Each trend
correspond to a constant time lag reported in hours in Ta-
ble2. This lag decreases roughly from about 3 h to the north
to about 1.5 h to the south of the region.

5.3 Influence of the wind slip

Surface drifters are excellent but not perfect water-followers,
and their velocities contain an erroneous slip velocity caused
by the direct action of the wind on the surface flotation buoy.
Niiler et al. (1995) carried out experiments to measure wind
slip in the tropical and Northeastern Pacific. They modeled
the wind slipus as:

us =
a

R
w10, (26)

wherew10 is the 10-m wind velocity,R is the drag area ratio
of the drogue to the other constituents of a drifter (40 for a
SVP-type drifter), anda is a regression coefficient. Since no
measurements in the field were obtained for winds stronger

than 10 m s−1, this model has not been validated for intense
winds typical of the Southern Ocean: at drifter locations be-
tween 48◦ S and 58◦ S, the mean ECMWF reanalysis 10-m
winds exceed 10 m s−1, and the wind slip at these latitudes
may be seriously underestimated (Niiler et al., 2003).

The standard wind slip in Eq. (26) was computed using
ECMWF 10-m winds interpolated in time and space, and
subtracted from the drifter velocities in order to obtain the
wind slip-corrected velocities.Niiler et al. (1995) found that
the best-fit values ofa for either of two different types of
drifters, TRISTAR or SVP Holey-Sock, were not statisti-
cally different. Their best estimate from the combined drifter
datasets,a=4.63×10−2 is used here.

We find that in general the wind slip correction reduces
the magnitude of the real component of the transfer func-
tion, hence increasing the phase between stress and ocean
velocity at all frequencies. The full consequences of this
data modification are difficult to pin down, because the trans-
fer functions and the optimization procedures are nonlinear.
However, in general mean estimates of viscosity (see below)
and boundary layer depth are not distinguishable within er-
ror bars from the estimates obtained when the wind slip cor-
rection is not applied. Furthermore, it does not make much
sense to first remove a linear fraction of the wind in the form
of an unvalidated wind slip correction and then subsequently
to conduct a cross-spectral analysis between the “corrected”
velocity and the wind stress. On the basis of these consid-
erations, we have chosen here to present the results derived
without the standard wind slip correction.
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5.4 The cost function

Our aim is to determine the optimal boundary condition and
vertical viscosity that best allow an Ekman-type model to
represent the observed time-varying data. To do this, the ob-
served transfer functionŝH are compared to the nine theo-
retical transfer functionsHm listed in Table1. We seek the
optimal parameters forHm to minimize the cost functionL,
defined by the misfit between the observed and theoretical
transfer functions:

L =

∑
νk

|Hm(νk, z) − Ĥ(νk)| × w(νk), (27)

where| · | designates the absolute value. In the theoretical
transfer functions,ρ is 1027 kg m−3, the depthz is 15 m,
andf is computed at the center of the 2◦ latitudinal bands.
TheL1-norm was selected rather than theL2-norm, because
it performed better in the optimization procedure. Depend-
ing on the model considered, different algorithms were uti-
lized for this nonlinear optimization. Details are given in
AppendixB.

The weighting function,w(νk), is here the squared coher-
enceγ 2:

w(ν) = γ 2(ν) =
|Sτu(ν)|2

Sττ (ν)Suu(ν)
, (28)

and is estimated using Eq. (22). The normalized standard
error of the cross-spectrum is theoretically inversely propor-
tional to(γ 2)1/2 (Bendat and Piersol, 1986), so that the best
estimates of the cross-spectrum and hence of the transfer
function are obtained whenγ 2 is high and the weightsw used
to computeL penalize the frequency bands for whichγ 2 is
small. The minimum values ofL resulting from the optimiza-
tion procedures are plotted in Fig.6d and dicussed in the next
section. Near-surface data usually show thatγ 2 is higher for
anticyclonic frequencies than for cyclonic frequencies, and
that it is higher at subinertial frequencies (Gonella, 1972;
Weller, 1981; Daniault et al., 1985; McNally et al., 1989; Ni-
iler and Paduan, 1995; Weller and Plueddemann, 1996; Rio
and Hernandez, 2003; Elipot, 2006). Coherence is thought
to decrease at lower and higher (absolute) frequencies mostly
because of noise arising from other oceanic processes such as
mesoscale geostrophic eddies or free inertial waves (Weller,
1981; McNally et al., 1989; Niiler and Paduan, 1995; Elipot,
2006). As a result of our choice of the weighting functionw,
our analysis of the data is most representative of sub-inertial
motions and this should be kept in mind when interpreting
the results. More specifically, the impact on the results of the
zero frequency band or the frequency bands directly adjacent
to this one is negligeable.

While γ 2 will be reduced by noise, we find that we are
able to reproduce the observed coherence fairly well a pos-
teriori by using the theoretical expressions forH with the
parameters estimated from the fitting procedure. Indeed, if

one knows the transfer functionH, the coherence can be pre-
dicted from the auto-spectra of the wind stress and the ocean
velocity (e.g.Bendat and Piersol, 1986):

γ 2(ν, z) = |H(ν, z)|2
Ŝττ (ν)

Ŝuu(ν, z)
. (29)

While the transfer functionH peaks at the inertial frequency
(see Sect.2), and the near-surface oceanic spectrum from
drifter data has an approximate constant slope at subiner-
tial frequencies (see e.g.Rio and Hernandez, 2003; Elipot,
2006), the wind stress spectrum slopes steeply at high fre-
quencies (Gille, 2005; Elipot, 2006). Together these ef-
fects produce subinertial peaks forγ 2, with higher coherence
for anticyclonic frequencies (coherence squared level around
0.3) than for corresponding cyclonic frequencies (coherence
squared level around 0.1). This readily translates into say-
ing that up to 30% of the variance at sub-inertial anticyclonic
frequencies and 10% at cyclonic frequencies are explained
by the models.

6 Results of the fits

6.1 What are the best models for our observations?

To identify the optimal Ekman-model configuration, we as-
sess which of the models has the smallestL, as plotted in
Fig. 6d. We account for the uncertaintyδL in this cost func-
tion, as defined in Appendix B4. Even with a quantitative
cost function, no single model clearly outperforms all others
at all latitudes.

Figure6a, b and c shows the viscosity coefficientsK0 and
K1, and the boundary layer depthh, respectively, resulting
from fitting the theoretical transfer functions of the models
to the observed transfer functions in each 2◦ latitudinal band.
The error bars correspond to the mean absolute deviation
from the mean of distributions drawn from a bootstrapping
procedure (see AppendixB3).

Overall, the boundary condition c (no stress at the bottom
or slip condition) is not helpful here. In all cases of vertical
parameterization forK(z), the models with boundary con-
dition c degenerate and are equivalent (see Fig.6a, b and
Figs.A2, A1, A3) to the corresponding models with bound-
ary condition a (infinite ocean): the optimal values forh are
very large, ranging from physically acceptable for model 1c
(O(103 m)) to unphysical and at the upper limit of the depth
range explored by the optimization algorithms (see Fig.6c).

Regardless of the representation ofK(z), one-layer mod-
els (1b, 2b, and 3b) all perform significantly better than their
counterparts with alternate boundary layers.

In summary, disregarding the “failing” models 1c, 2c, and
3c, the model performances are from best to worst: models
1b, 3b, 2b, 3a, 2a, and 1a. Revealingly, model 1a, the tradi-
tional Ekman model that has been tested extensively in pre-
vious studies, is the worst of these models. In the discussion
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Fig. 6. (a)K0 estimates for models 1a, 1b, 1c, 3a, 3b, and 3c.(b) K1 estimates for models 2a, 2b, 2c, 3a, 3b, and 3c.(c) h estimates for
models 1b, 1c, 2b, 2c, 3b, 3c. The error bars correspond to plus or minus the mean absolute difference from the mean (see AppendixB3). (d)
Minimized cost functionL in arbitrary units. Values plotted correspond to the mean value ofL from 500 bootstrap samples (see AppendixB3).

that follows, we focus first on the best model 1b. However,
since this one returns parameters with unclear relationships
to external environmental parameters (see Sect.7), we also
examine in detail the second best model 3b.

6.2 One-layer model with constant viscosity

Model 1b, with constant viscosity, a finite-depth boundary
layer and a no-slip condition, should provide insight into the
Ekman layer in the Southern Ocean.

Figure8 shows the optimal parameters for this model for
year-round data, as well as for summer and winter data. All
500 bootstrap estimates of each parameter are displayed in
this figure. (See AppendixB1 for a discussion of the boot-
strap procedure.) In some cases, the joint probability density
function ofK0 andh (not shown) is bimodal rather than uni-

modal, meaning that there are two distinct clusters of points
in Fig. 8. This suggests that the subsampled data capture dif-
ferent types of oceanic conditions, while the scatter of each
mode is intrinsic to random oceanic variability and random
sampling of the data.

Throughout the Southern Ocean, this model indi-
cates values forK0 between 400×10−4 m−2 s−1 and
1180×10−4 m−2 s−1 (right panel of Fig.8) and values for
h between 30 and 50 m. The largest values of bothK0 andh

are found between 40◦ S and 50◦ S. The joint distribution of
bootstrap estimates ofK0 andh indicates a linear relation-
ship between these two parameters: larger viscosities cor-
respond to larger boundary layer thicknesses. This is con-
sistent with the idea thatK0 represents turbulence stirred
by the wind at the ocean surface, andh results from the
same wind stirring. Linear fits betweenK0 andh show that
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Fig. 7. Average cost function values for all data (left panel), data
south of 50◦ S (middle panel) and data to the north of 50◦ S (right
panel). Error bars are plus or minus the latitudinally averaged stan-
dard error for the cost function as derived in AppendixB.

in most cases the minimum boundary layer depth is 15 m
in the limit K0→0 since the optimization algorithm tries
to force the drifter observations to be within the boundary
layer. For this modelh is found to be within a few meters
of δ1(0)=

√
2K0/f , the exponential decay scale at zero fre-

quency, which is the “depth of wind-currents” (divided byπ )
defined byEkman(1905).

When the data are sorted by seasons, the scattering of the
distributions increases, and at many latitudes the probabil-
ity density functions of the bootstrap estimates indicate sev-
eral modes (Fig.8). However, the cost function is larger for
the summer data than for the winter data (not shown), which
makes the summer results less reliable. Thus the seasonal
variability captured by this model is unclear.

Numerous studies have compared observed oceanic veloc-
ities with theoretical predictions from constant vertical vis-
cosity models (seeHuang, 1979; Santiago-Mandujano and
Firing, 1990). Oceanic conditions, datasets, assumptions and
processing methods all differ in these studies compared with
our own. Broadly speaking, our results are consistent with
those ofRio and Hernandez(2003), who also used surface
drifter data and ECMWF wind stresses and who followed
Ralph and Niiler(1999) in assuming a constant vertical vis-
cosity within the Ekman layer.Rio and Hernandez(2003)
filtered their data to retain a sub-inertial spectral band, and
our cost function emphasizes the same frequency bands, so
the similarities in our results are not surprising. Our viscos-
ity estimates are however slightly larger and in fact closer to
in situ estimates of about 10−1 m−2 s−1 found near the Polar
Front in the mixed layer in periods of strong winds (Cisewski
et al., 2005).

6.3 One-layer model with linear viscosity with surface
finite value

Model 3b has a linearly increasing viscosity with a finite
non-zero value at the surface,K(z)=K0+K1z, and a finite
boundary layer with a no-slip condition. The results and their
seasonal variations are shown in Fig.9.

This model degenerates to model 1b south of 50◦ S since
it returns values forK1 that are not distinguishable from zero
and values forK0 andh that are not distinguishable within
error bars from the values returned by model 1b. South of
50◦ S few data are available and the transfer function esti-
mates are more noisy. However, when the data are sorted by
seasons, some of the bootstrap estimates, especially in sum-
mer, appear to continue the trend seen to the north of 50◦ S.

North of 50◦ S, the estimates of K0 average
(240±12)×10−4 m−2 s−1 for year-round data, and they
vary little with latitude. In contrast,h varies greatly with
latitude. For year-round data north of 50◦ S, h ranges
between about 1400 m and 6000 m. It is smaller in summer
compared to winter, and the latitudinal dependence is more
pronounced in summer. In summer,h changes order of
magnitude from north to south, increasing roughly from
350 m at 31◦ S to 1925 m at 49◦ S. In winter, h varies
between about 2000 m and 6500 m, without clear latitudinal
dependence. The implications of such large and unphysical
values ofh are discussed in the next section. Estimates of
K1 (lower left panel of Fig.9) to the north of 50◦ S range
between 0.3 and 0.9 cm s−1 for year-round data. Two trends
are noted forK1. First, for year-round data, it increases by a
factor of 2.5 from north to south. Second, it increases from
summer to winter by a factor 1.5 to the south and by 5.5 to
the north. As discussed in the next section, the parameterK1
is actually a friction velocity scale related to the wind stress.

Two-dimensional scatter plots ofK0 andK1 of bootstrap
estimates for each latitudinal bands and seasons (not shown)
reveal a linear dependency between these two parameters.
The largerK0 is, the smallerK1. This is discussed in the
next section. On the other hand, no relationship was found
betweenh and eitherK0 or K1. This suggest that the pa-
rameterh in this model captures a different signal in the data
than do theK0 or K1 parameters.

7 Discussion

We are now left with two plausible models for the Ekman
layer in the Southern Ocean, with two different parameteri-
zations of the vertical viscosity. How do the parameters fitted
for models 1b and 3b vary with respect to other environmen-
tal factors and what are their physical significance?

7.1 The relationship with the wind stress

The wind stress is the only forcing for Ekman models. Thus
one might expectK andh to resemble the wind stress. For a
stable planetary boundary layer, the relevant planetary scale
isu∗/f , whereu∗=

√
|τ |/ρ is the friction velocity scale. Fig-

ure 10a showsu∗/f , and Fig.10b showsu∗ derived from
the ECMWF wind stress. Since these scales are evaluated
from the mean of the values of wind stress interpolated at the
drifter locations, they should reflect the same seasonal and
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Fig. 8. Boundary layer depthh and vertical viscosityK0 for model 1b. The results for year-round data are plotted in black, for summer in
red and for winter in blue. The overall optimum parameters are plotted with white-filled symbols and the bootstrap distributions are plotted
with colored dots.

geographical variability. The most noticeable feature in these
two scales is that the seasonal variability disappears south of
48◦ S. This is also the case for the viscosity scaleu2

∗/f (not
shown).

While model 1b provides the best match to the observed
transfer functions, its optimal parametersh andK0 show lit-
tle of the latitudinal and seasonal variability that appears in
the wind stress. This suggests that model 1b does not account
for wind variability that should be important in the Ekman
layer. Despite providing no simple dynamical insights, the
optimalh andK0 are within scaling ranges found in numer-
ical studies of a neutrally stratified turbulent Ekman layer by
Coleman et al.(1990). Our data show the latitudinally av-
eraged ratio ofh to u∗/f for model 1b to be 0.32 for all
data, 0.27 in winter and 0.45 in summer, comparable to the
range 0.25–0.4 found in numerical simulations. Similarly for
model 1b, we found the average ratio ofK0 to the viscosity
scaleu2

∗/f to be 0.05 for all data, 0.04 in winter and 0.05 in
summer, comparable toColeman et al.’s range 0.03–0.08.

For model 3b optimalK1’s and ECMWFu∗’s are plot-
ted in Fig.10b. The coefficientK1, which has the units of
a velocity, appears related to the wind stress. For models

with linear viscosity, the linear coefficient is usually writ-
tenK1=κu∗ (Thomas, 1975; Madsen, 1977), whereκ is the
Von Karman constant.Madsen(1977) assumedκ=0.4, but
in the ocean or the atmosphere it is thought to be variable
(Tennekes, 1973). To the extent that model 3b successfully
captures oceanic variability, it gives us an unprecendented
comparison betweenK1 andu∗. From our data (Fig.10b),
K1/u∗=0.52 for all data, 0.64 in winter, and 0.33 in summer.
In both seasons, this ratio increases with latitude.

7.2 The influence of stratification

When a slab layer model is used to simulate upper-ocean
wind-driven velocity (Pollard and Millard, 1970) or to es-
timate the wind energy input to the mixed layer (D’Asaro,
1985; Alford, 2001), it is assumed that the wind momen-
tum input is deposited uniformly throughout the wind-driven
layer as a body force and this implies that the vertical profile
of the wind-induced Reynolds or turbulent stress is linear.
In these cases, the depth of the wind-driven “mixed-layer” is
prescribed or limited, perhaps by a pre-existing stratification.
In the momentum equation, the energy is removed from the
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Fig. 9. Boundary layer depthh and vertical viscosity coefficients for model 3b. The results for year-round are plotted in black, for summer in
red and for winter in blue. The overall optimum parameters are plotted with white-filled symbols and the bootstrap distributions are plotted
with colored dots.

Ocean Sci., 5, 115–139, 2009 www.ocean-sci.net/5/115/2009/



S. Elipot and S. T. Gille: Ekman layer in the Southern Ocean 129

0 0.005 0.01 0.015

u
*

K
1

b)a)

m s−1
0 20 40 60 80 100 120 140 160

−58

−54

−50

−46

−42

−38

−34

−30

MLD

u
*
/f

δ
2
(0)

all data

summer

  winter

m

La
tit

ud
e

Fig. 10. (a)Filled symbols areδ2(0) for all data (black), summer data (red) and winter data (blue) The planetary scale,u∗/f , is computed
from the mean of the wind stress interpolated on the drifter positions (see text). The magenta curves with seasonal symbols are the MLD
from Dong et al.(2008). (b) K1 for model 3b and friction velocityu∗. Symbols for seasons are:� all data,4 winter data,◦ summer data.
The error bars for MLD,u∗ andu∗/f are the standard error of the mean. The error bars forδ2(0) are obtained by formally propagating the
errors fromK0 andK1 taken as the mean of the absolute differences between the bootstrap estimates and the overall most probable estimate.

system through a linear drag term that is intended to repre-
sent radiation of energy out of the mixed/wind-driven layer.
The drag coefficient is typically tuned to match the velocity
observations, but it has been shown that this typically over-
estimates the wind energy input (Plueddemann and Farrar,
2006).

In contrast, boundary layer models, such as KPP, that ex-
plicitly incorporate buoyancy forcing deposit momentum to
a “surface layer” or shallowest layer. Then, the depth over
which the vertical viscosity is enhanced by the wind momen-
tum input, the boundary-layer depth (BLD), is usually deeper
and is diagnosed by a criterion based on a bulk Richardson
number relative to the top most layer of the numerical model.
The simple idea is that the stratification limits the vertical
penetration of turbulent momentum. However, in the trop-
ical Pacific,Zhang and Zebiak(2002) found that KPP pro-
duced more realistic velocities when it was modified to de-
posit wind momentum as a body force over the whole BLD.

In “Ekman” models the wind-induced stress is a non-linear
function of depth, and it is not associated with a constant
body force per unit mass. In that case, energy is removed
from the system only by dissipation through the shear in-
duced stress and the downward radiation of energy by inter-
nal waves or the deepening of the mixed-layer is not mod-

eled. This is clearly a limitation when modeling the real
ocean (e.g.Plueddemann and Farrar, 2006). Our optimiza-
tion procedure requires only that the BLD be less than 104 m,
and the optimal BLDs obtained for model 3b are O(103 m),
values that can at times exceed the water depth and that are
clearly unphysical. One possible explanation is that such
models are unable to extract enough energy from the sys-
tem, and they set the boundary layer to be extremely deep to
accomodate large wind energy input.

The KPP formulation uses a cubic profile forK(z). In
a coarse resolution OGCM for the Southern Ocean,Large
et al.(1997) found that the monthly-mean mixed-layer depth
(MLD) and BLDs determined by KPP were comparable.
However, on much shorter time scales when the stirring by
the wind is intense, they noted that the BLD could be much
greater than a MLD defined as an isothermal layer. For this
study we compared the observed transfer functions to trans-
fer functions derived from a KPP-style cubic profile of the
vertical viscosity. This required numerical solution. The re-
sulting viscosity estimates were indistinguishable from the
estimates obtained by the linear viscosity models, because
our estimated BLD was again unphysically large O(104 m),
and the cubic profile approximated a linear profile near the
surface, much like models 3a, 3b, and 3c. Since adjusting
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Fig. 11. Sea surface roughness estimatesz0=K0/K1 in 2◦ latitu-
dinal bands for models 3b. Note that no overall optimum estimates
cannot be obtained south of 50◦ S since the optimumK1≈0.

vertical viscosity did not produce plausible BLDs, it is clear
that buoyancy fluxes play a role in the ocean boundary layer
that Ekman models are unable to represent.

To investigate this further, we explored whether we could
detect the influence of the stratification in our results. The
climatological MLD determined from density profiles (Dong
et al., 2008) was interpolated in space and time to the drifter
positions. Mean values are plotted in Fig.10a, as a func-
tion of latitude and season. MLDs and BLDh from the
drifter data differ by an order of magnitude, with MLD being
O(100 m) andh O(1000 m). Nonetheless, both exhibit com-
mon latitudinal and seasonal trends, implying that the strati-
fication represented by MLD can be associated with BLD.

Interestingly, at each latitude band, the depth scaleδ2 at
zero frequency (filled symbols in Fig.10a) is close to the
mean value of the MLD. This correspondence is found not
only for year-round data but also for seasonally sorted data.

Whereasδ1(0) for models 1a, 1b, and 1c is a familiar scale
of exponential decay,δ2(0) appears in a complicated manner
in the expression of the transfer function for model 3b (see
Table1). We computed the ratio of the absolute value of the

transfer function at the depthz=δ2(0) to the surface value,
which is also the ratio of the velocity magnitudes at the same
depths, using the optimum parameters. At the depthz=δ2(0),
the current speed is about 15% of its surface value at 50◦ S.
This percentage increases to about 32% at 31◦ S. These re-
sults imply that the shear is large and velocities greatly re-
duced at the “Ekman depth”.

Overall, the model 3b results suggest that the wind-driven
velocities penetrate deeper than the depth of the mixed layer
but that the mixed-layer depth nevertheless controls the Ek-
man scale of the model.

7.3 Speculation about the sea surface roughness

The atmospheric boundary layer and the oceanic boundary
layer interact with each other and create roughness along
their interface (e.g.Melville, 1977). For the ocean, the
roughness lengthz0 is expected to be representative of the
thickness of an unresolved, wave-enhanced sub-layer (Craig
and Banner, 1994), just below the surface. Possible scalings
for z0 found in the literature include some multiple ofu2

∗/g

(Charnock, 1955) whereg is the gravitational acceleration,
the wavelength of the waves (Craig and Banner, 1994), or
the significant wave height (e.g.Terray et al., 1996). The
lengthz0 needs to be considered in order to model correctly
the vertical velocity profile as one approaches the boundary.
For models 3a, 3b, and 3c, the optimization procedure was
set up to conduct a search of the two parametersK0 andK1,
which were assumed to be independent. A scatter plot (not
shown) of all bootstrap estimates ofK0 versusK1 in each
latitudinal band shows that they are actually linearly depen-
dent; Fig.11shows the linear coefficient or roughness length
z0=K0/K1 for model 3b.

The roughness parameter is larger in the austral summer
than it is in the austral winter, which is mostly a consequence
of the seasonal variations ofK1. An examination of Fig.11
suggests no clear relationship betweenz0 and MLD, wind
stress, or the Coriolis parameter. Further investigation is re-
quired to link these estimates to oceanic conditions.

8 Summary

This paper has studied the frequency response of the ocean
boundary layer to wind stress forcing. We used a series of
Ekman-type models, so named because no explicit buoyancy
forcing is considered and the turbulent vertical flux of hor-
izontal momentum is parameterized by a first-order turbu-
lence closure as first introduced byEkman(1905) for the
ocean. Models of this type are highly idealized in some re-
spects, which might make them seem inappropriate for real
ocean applications, but they have a long tradition in phys-
ical oceanographic literature and they are mathematically
tractable, making them a natural starting point for any con-
sideration of upper ocean physics.
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We have sought a formulation of Ekman-type models to
best represent the frequency response of upper ocean cur-
rents to time-varying winds. Three vertical profiles for the
vertical viscosity are considered: a constant profile, a linear
profile increasing with depth from zero at the surface and
a linear profile increasing with depth from a finite value at
the surface. Three boundary conditions for the bottom of
the oceanic boundary layer are considered: an infinite depth
layer with vanishing velocity at infinite depth, a finite depth
layer at the bottom of which the velocity vanishes and a fi-
nite depth layer at the bottom of which the stress vanishes.
Together these imply nine different models. The frequency
response of each of these model is described by a depth-
dependent transfer functionH. At each frequency, the phase
of H gives the deflection angle of the oceanic velocity with
respect to the instantaneous wind stress, and the magnitude
of H indicates the magnitude of the oceanic velocity for a
1 N m−2 wind stress.

Parameters for the theoretical transfer functionH are tuned
to find the best match to transfer functions derived from
Southern Ocean drifter observations, altimetry, and wind
fields, and the success of the models has been evaluated. Re-
sults show that the classical Ekman model, with constant ver-
tical viscosity and infinite depth, is among the least success-
ful representations of the OBL. The model can be improved
by treating the upper ocean as a 1-layer system and/or by
allowing the vertical viscosity to vary with depth.

The best model to describe the frequency response of
Southern Ocean drifter velocities to wind stress forcing is
a one-layer model with a constant vertical viscosity. From
60◦ S to 50◦ S, the boundary layer is shallow, of O(30–35)
m, and the viscosity averages 724×10−4 m−2 s−1 with small
seasonal variations of the order of±15%. These latitudes
correspond to the largest zonally-averaged wind stress values
in the Southern Ocean with little seasonal variations. From
50◦ S to 40◦ S, the boundary layer is best described by a
slightly deeper layer O(45–50) m, with associated increased
constant vertical viscosity reaching over 1000 m2 s−1, how-
ever with very little seasonal variability. From 40◦ S to 30◦ S,
the boundary layer is shallower again, O(35) m, and the vis-
cosity is smaller, averaging 474×10−4 m−2 s−1.

For the latitude range from 30◦ S to 50◦ S, an alternate de-
scription of the Ekman layer is given by a one-layer model
with a vertical viscosity that increases linearly with depth
from a finite value at the surface. In this model, the bound-
ary layer parameter and the vertical viscosity coefficientK1
both appear to vary with wind. The boundary layer is much
deeper than the mixed layer, with deepest values in winter
and at latitudes where the wind is strongest. The vertical vis-
cosity coefficientK1 is O(10−3

−10−2 m s−1) and scales like
the friction velocity, showing similar seasonal and latitudi-
nal variations. The viscosity at the surfaceK0 ranges be-
tween 10−2 and 4×10−2 m2 s−1 and does not show obvious
dependence on latitude, wind stress or MLD. The boundary
layer depth parameter is O(103 m) and can exceed the ocean

depth, implying that it has limited physical meaning. In con-
trast, the time-mean Ekman depth scale,K1/f does appear
physically meaningful: it is close to the seasonally and lati-
tudinally varying climatological MLD.

The models presented here are not able to explain fully the
observed locally wind-driven variability in the upper ocean.
Buoyancy fluxes, which are omitted from Ekman-type mod-
els, need to be considered to account for the unexplained por-
tions of the upper ocean response to wind.

Appendix A

Limiting behavior of the transfer functions

The frequency and depth dependence of the transfer func-
tions can be illustrated graphically. FigureA2 shows the
transfer functions for models 1a, 1b, 1c, Fig.A1 for mod-
els 2a, 2b, 2c, and Fig.A3 for models 3a, 3b, 3c. These trans-
fer functions are evaluated with numerical values for the vis-
cosityK and the boundary layer depthh, chosen as optimal
parameter fits for Southern Ocean observations (see Sect.6)
in the 40–42◦ S latitudinal band. The plots shown here are
representative examples of the zonally-averaged OBL in the
Southern Ocean. Frequencies are plotted from−2 cycles per
day (cpd) to 2 cpd, since the 6-h data have a Nyquist fre-
quency of 2 cpd. The vertical variation of the transfer func-
tion is plotted as a line, color-coded by frequency. Each curve
in these figures is analogous to the velocity hodograph as a
function of depth, or what could be called an Ekman “spiral”.
The colored dots (on the lines in Fig.A2 or projected on the
(x, y, h) plane in Figs.A1 andA3) give the transfer func-
tions at 15 m for each frequency band. The observed transfer
function at 15 m estimated from the data in the 40–42◦ S lat-
itudinal band is plotted on the(x, y) plane in the lower-right
panels of Figs.A2, A1, andA3. For models 1a, 1b, 1c and
3a, 3b, 3c the transfer function at the surface as a function
of frequency are plotted with gray curves. For model 1c, the
transfer function at the bottom of the boundary layer is also
drawn (lower-left panel of Fig.A2).

A1 Constant eddy viscosity models

For K=K0 (models 1a, 1b, and 1c), the general solution of
Eq. (15) is

U(ν, z)=A(ν)e−αz
+B(ν)e+αz with α=

√
i

(
2πν+f

K0

)
, (A1)

whereA(ν) andB(ν) are determined by the boundary condi-
tions. The transfer functions for models 1a and 1c were first
derived byGonella(1972). (See Appendix B ofElipot, 2006
for a correction of typographic errors inGonella’s paper and
demonstration of equality between his and our mathematical
expressions.)
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Table A1. Mathematical expressions for the limiting behaviors of the transfer functions forz/δn → 0. δ1=
√

2K0/(2πν + f ).
δ2=K1/(2πν+f ). 0=0.5772 is the Euler’s constant.
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+
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The steady case for model 1a is obtained from the expres-
sion in Table1 by settingν=0. This gives the “classic” time-
invariant Ekman spiral solution:

u(z) =
τ (0)

ρ
√

K0f
e−iπ/4e−z(1 + i)/δe , (A2)

where

δe =

√
2K0

f
, (A3)

is the exponential decay scale.DE=π |δe| is the “Depth of
Wind-currents” defined byEkman(1905), which is the depth
at which the velocity is opposite in direction to the velocity
at the surface.

At non-zero frequencies, the exponential decay scale is
modified and we define a frequency-dependent “Ekman
depth”:

δ1(ν) =

√
2K0

2πν + f
, δ1(0) = δe. (A4)

|δ1| represents the penetration depth of the wind-driven cur-
rents, which increases with the square root ofK0, since
a larger viscosity is expected to be representative of more
vigorous turbulence, and is inversely proportional to the
square root of the “wind rotation”ν∗

=2πν+f (Crawford
and Large, 1996). Frequencyν∗ is a measure of the rela-
tive rotation in the local reference frame at the cyclonic fre-
quencyf/2π (units of s−1). When the frequency is inertial
(ν=−f/2π), |δ1| goes to infinity.

The transfer functions for models 1a, 1b, 1c (first row of
Table 1) are written in a way that emphasizes the angular
separation at the surface. Table1 shows that model 1a has an
angular separation at the surface of±π/4 for all frequencies,
and it increases with depth, anticyclonically for sub-inertial
frequencies and cyclonically for supra-inertial frequencies.
For models 1b and 1c, the deflection angle is influenced by
the finite thicknessh of the boundary layer and can therefore
differ substantially fromπ/4 at the surface.

We examine the behavior of the transfer functions near
the inertial frequency, in the limit where 2πν→−f . For
model 1a, the velocity at all depths is predicted to be nearly

oriented at±π/4 from the wind stress (see TableA1), and
the magnitude of the response has an unbounded resonance.
Model 1b and model 1c near-inertial behaviors are very
different (see TableA1), and this emphasizes that choos-
ing the right bottom boundary condition is potentially cru-
cial for modeling high-frequency wind-driven currents. For
model 1b, the inertial resonance is finite and downwind at all
depths, and the vertical shear is constant. The inertial sur-
face drift scales likeh and inversely withK0. In contrast, for
model 1c, the inertial resonance is infinite, the shear is zero,
and velocities at all depths are at right angles to the wind
direction. The transfer function scales inversely toh and
is independent of the viscosity. This is an inertial slab-like
behavior but since the shear is zero, there is no dissipation
term to remove energy from the system. This forced iner-
tial “mode” of motion is unlikely to represent real oceanic
processes. Similarly,Lewis and Belcher(2004) found in
the time dependent solution for model 1c that an undamped
mode oscillating at the inertial frequency is excited when an
impulsive stress is imposed on an ocean originally at rest,
and they consequently abandoned this model as being un-
physical. In Sect.6, we find that this model performs poorly,
most likely because the data indicate a downwind inertial re-
sponse.

A2 Linear viscosity models

For K=K1z (models 2a, 2b, 2c), the general solution of
Eq. (15) is:

U(ν, z) = A(ν)I0

(
2

√
iz

δ2

)
+ B(ν)K0

(
2

√
iz

δ2

)
, (A5)

whereIn andKn are thenth-order modified Bessel functions
of the first and second kind, respectively, and

δ2(ν) =
K1

2πν + f
, (A6)

is a new frequency-dependent Ekman depth for models 2a,
2b, and 2c (and also for models 3a, 3b, 3c) that goes to infin-
ity at the inertial frequency.A(ν) andB(ν) are determined
by the boundary conditions. The surface boundary condition
Eq. (16) is taken as the limit using first-order approximations
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Fig. A1. Transfer functions for model 1a withK0=574×10−4 m−2 s−1; model 1b with

K0=106×10−4 m−2 s−1 and h=51 m; model 1c with K0=558×10−4 m−2 s−1 and h=1528 m;

f=−0.95×10−4 s−1 corresponding to 41◦ S and an inertial frequency of approximately 1.3 cpd. Each

curve is the transfer function as a function of depth for frequenciesν=−1.95 . . . 1.95 cpd at0.05 cpd interval,

with lines color-coded by frequency. The black curves are the transfer functions at the zero-frequency. The

transfer function at 15 m is indicated by a colored dot on eachcurve for each model. The gray curve joins

thez=0 m points for all frequencies for models 1a, 1b and 1c. For model 1c a gray curve also joins thez=h

points. The dotted lines indicate thex and y axes and the± 45◦ directions. The lower-right panel is the

observed transfer function at 15 m in the 41◦ S zonal band.
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Fig. A1. Transfer functions for model 1a withK0=574×10−4 m−2 s−1; model 1b withK0=106×10−4 m−2 s−1 andh=51 m; model 1c
with K0=558×10−4 m−2 s−1 andh=1528 m;f =−0.95×10−4 s−1 corresponding to 41◦ S and an inertial frequency of approximately
1.3 cpd. Each curve is the transfer function as a function of depth for frequenciesν=−1.95. . . 1.95 cpd at 0.05 cpd interval, with lines
color-coded by frequency. The black curves are the transfer functions at the zero-frequency. The transfer function at 15 m is indicated by a
colored dot on each curve for each model. The gray curve joins thez=0 m points for all frequencies for models 1a, 1b and 1c. For model 1c
a gray curve also joins thez=h points. The dotted lines indicate the x and y axes and the±45◦ directions. The lower-right panel is the
observed transfer function at 15 m in the 41◦ S zonal band.

for the derivatives of the Bessel functions (Madsen, 1977).
The mathematical expressions of the transfer functions for
these models are given in the second row of Table1 for the
three bottom boundary conditions.

Madsen(1977) andLewis and Belcher(2004) both derived
the transfer function for model 2a in Laplace transform form
and inverted it to obtain the time dependent solution in the
oceanic boundary layer.

The behaviors asz/δ2→0 are summarized in TableA1.
These are obtained by retaining the first term of a series ex-
pansion forK0 around 0 (see TableA2).

For model 2a, the imaginary part of the transfer func-
tion (the crosswind component of velocity) tends to a con-
stant, while the real part (the downwind velocity component)
is logarithmic and eventually goes to infinity. Model 2b
presents a rather different limiting behavior than model 2a:
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Fig. A2. Transfer functions for model 2a withK1=0.77×10−2 s−1; model 2b withK1=0.42×10−2 s−1and

h=56 m; model 2c withK0=0.77×10−2 s−1andh O(104) m; f=−0.95×10−4s−1 corresponding to 41◦ S

and an inertial frequency of approximately 1.3 cpd. See alsothe caption for Fig. B4. The theoretical transfer

functions at 15 m depth are projected on the plane coincidingwith the bottom of the axes. The real part of the

transfer functions atν=0 is projected on the (x, z) plane and the imaginary part on the (y, z) plane and these

curves are drawn in black. Since these transfer functions are not defined at the surface, the curves curves start

at the depthz=−0.1 m. The lower-right panel is the observed transfer function at 15 m in the 41◦ S zonal band.
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Fig. A2. Transfer functions for model 2a withK1=0.77×10−2 s−1; model 2b withK1=0.42×10−2 s−1and h=56 m; model 2c with
K0=0.77×10−2 s−1andh O(104) m; f =−0.95×10−4s−1 corresponding to 41◦ S and an inertial frequency of approximately 1.3 cpd. See
also the caption for Fig.A1. The theoretical transfer functions at 15 m depth are projected on the plane coinciding with the bottom of the
axes. The real part of the transfer functions atν=0 is projected on the (x, z) plane and the imaginary part on the (y, z) plane and these
curves are drawn in black. Since these transfer functions are not defined at the surface, the curves curves start at the depthz=−0.1 m. The
lower-right panel is the observed transfer function at 15 m in the 41◦ S zonal band.

Table A2. Limiting behaviors for small argument of the zeroth and
first orders modified Bessel functions of the first and second kinds.
0 is the Euler constant.

I0(ξ) K0(ξ) I1(ξ) K1(ξ)

|ξ | → 0 1 − ln
(

ξ
2

)
− 0 ξ/2 ξ−1

it predicts that near the surface, the oceanic boundary layer
behaves like a logarithmic layer and that there is no cross-
wind component for the inertial response. The limiting be-
havior of model 2c is a combination of the limiting behavior
of model 2a and model 1c: it has a logarithmic downwind
component with a constant cross-wind component and also
includes an “inertial” mode at right angles to the wind that is
independent of the viscosity but dependent on the boundary

layer depth. In Sect.6 we find that that model 2c fails in the
sense that fitted values forh are physically too large.

For models 2a, 2b, 2c the singularity atz=0 is inconve-
nient, because the surface velocity is not defined. In order
to obtain this surface “drift”,Madsen(1977) evaluated the
velocity at a depthz0 from the theoretical surface. This dis-
tance is called the roughness length and for the case of an
OBL could correspond to an unresolved sub-layer just be-
neath the surface where turbulence caused by waves (break-
ing or not) occurs. The size ofz0 is subject to much debate
(e.g.Stips et al., 2005). Reviewing field and laboratory ex-
periments,Madsen(1977) used a length of O(10−2 m) and
found that only the order of magnitude was relevant since
a multiplicative factor of 2 forz0 changed the surface drift
magnitude and angle by only 10%. In Sect.6, we find that
the fitted values for the linear coefficientK1 in the Southern
Ocean are one to two orders of magnitude larger than those
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Fig. A3. Transfer functions for model 3a withK0=205×10−4 m−2 s−1, K1=0.71×10−2 s−1; model 3b with

K0=203×10−4 m−2 s−1, K1=0.72×10−2 s−1and h O(103) m; model 3c withK0=217×10−4 m−2 s−1,

K1=0.71×10−2 s−1andh O(104) m; f=−0.95×10−4s−1 corresponding to 41◦ S and an inertial frequency

of approximately 1.3 cpd. The transfer function at the surface is plotted with a gray curve projected on the plane

coinciding with the bottom of the axes. The lower-right panel is the observed transfer function at 15 m in the

41◦ S zonal band. See also the captions of Figs. B4 and B4.

50

Fig. A3. Transfer functions for model 3a withK0=205×10−4 m−2 s−1, K1=0.71×10−2 s−1; model 3b withK0=203×10−4 m−2 s−1,
K1=0.72×10−2 s−1andh O(103) m; model 3c withK0=217×10−4 m−2 s−1, K1=0.71×10−2 s−1andh O(104) m; f =−0.95×10−4s−1

corresponding to 41◦ S and an inertial frequency of approximately 1.3 cpd. The transfer function at the surface is plotted with a gray curve
projected on the plane coinciding with the bottom of the axes. The lower-right panel is the observed transfer function at 15 m in the 41◦ S
zonal band. See also the captions of Figs.A2 andA1.

used byMadsen(1977), so that the surface drift is much more
sensitive to the choice ofz0. Moreover, selecting the surface
roughness a posteriori can be seen to be inconsistent (Lewis
and Belcher, 2004), because in this case the roughness is no
longer compatible with the surface boundary condition for
the stress Eq. (16). This difficulty is avoided by the next
family of models.

A3 Linear viscosity models with finite surface value

When the viscosity profile is

K = K0 + K1z = K1(z0 + z), (A7)

the general solution to Eq. (15) is:

U(ν, z)=A(ν) I0

[
2

√
i(z0+z)

δ2

]
+B(ν)K0

[
2

√
i(z0+z)

δ2

]
, (A8)

whereδ2 is defined by Eq. (A6). Mathematical expressions
of the transfer functions for this family of models are given

in the third row of Table1 and graphical representations are
given in Fig.A3. The frequency-dependent Ekman scaleδ2
appears only within the argument of the Bessel functions.

The parameterz0=K0/K1 eliminates the singularity at the
surface asz goes to zero. At the surface, in contrast to models
2a, 2b, and 2c the transfer functions for models 3a, 3b, and
3c are defined and take on finite values. As a consequence,
their limiting behaviors are the same as for models 2a, 2b,
and 2c but withz augmented byz0 (see TableA1).

For models 3a, 3b, and 3c, the ratioz0 can also be inter-
preted as a surface roughness length. It is hypothesized to be
related to the properties of surface gravity waves, e.g. to be
representative of the penetration depth of turbulence bursts
input by waves (Csanady, 1997). In Sect.7 of this study,
estimates of this length scalez0 are provided. Further inves-
tigations (beyond the scope of this study) could relate these
estimates to other environmental parameters like significant
wave height or wavelengths of surface gravity waves.
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Table B1. Characteristics of the cost function minimizations.Kn: vertical viscosity polynomial coefficients;h: boundary layer depth in m;
NM: Nelder-Mead simplex method ; NMSA: Nelder-Mead simplex method plus Simulated Annealing with the following options: starting
temperature 100◦, termination temperature 0.1◦, temperature step factor 0.1. The result distribution line refers to the number of modes found
in the joint probability density functions of the optimum parameters, obtained from the bootstrapping procedure.

Model 1a 1b 1c

Parameters K0 K0,h K0,h
Limit constraints [0, 3] [0, 3], [0, 104] [0, 3], [0, 104]
Initial guess 0.5 (0.1, 50) (0.01, 1000)
Algorithm NM NMSA×2 NMSA
Results distributiona 1 1 (2 at 31◦ S) 2

Model 2a 2b 2c

Parameters K1 K1, h K1, h

Limit constraints [0, 3] [0, 3], [0, 104] [0, 3], [0, 104]
Initial guess 0.001 (10−3, 200) (10−3, 103)
Algorithm NM NMSA×2 NM×2
Results distribution 1 2 1

Model 3a 3b 3c

Parameters K0, K1 K0, K1, h K0, K1, h

Limit constraints [0, 3], [0, 3] [0, 3], [0, 3], [0, 104] [0, 3], [0, 3], [0, 104]
Initial guess (0.01, 0.1) (10−2, 8×10−3, 500) (10−2, 8×10−3, 500)
Algorithm NM NM NM
Results distribution 1 2 1

a1:unimodal 2:bimodal

Appendix B

Optimization and error analysis

B1 Bootstrapping

We implemented a bootstrap method (Efron and Gong, 1983)
in order to infer the sample variance of the transfer function
estimates and to assign uncertainties to our optimum param-
eters.

For each latitudinal band, theN segments (listed in Ta-
ble 2) were randomly re-sampled to obtain a bootstrap sam-
ple containingN segments but allowing for repetition. A
total of M=500 bootstrap samples were drawn in this way
and subsequentlyM estimateŝHk, k=1 . . . M, of the trans-
fer function were computed by the periodogram method.

B2 Error estimates for the transfer function

Estimates of the transfer function have random errors inher-
ent to the spectral estimation.Bendat and Piersol(1986)
provide approximate formulae for the variances and normal-
ized random errors of the magnitude and phase of the transfer
function. However, we obtain here estimates of the sample
variance of the transfer function from the bootstrap samples:

Var[|Ĥ|] =
1

M − 1

k=M∑
k=1

(Hk − Hk)(Hk − Hk)
∗, (B1)

where(·)= 1
M

∑k=M
k=1 (·)k is the sample mean estimate. This

variance estimate is then used to compute the standard error
of the mean for the magnitude of the transfer function as a
function of frequency:

δ
[
|Ĥ(ν)|

]
=

√
Var[|Ĥ(ν)|]

Neff
, (B2)

whereNeff is the effective number of degrees of freedom
(DOF).Neff in each latitudinal band is less than the number
of segmentsN listed in Table2 because of the 50% overlap
and the Hanning windowing of the time series segments, and
is theoretically asymptotically reduced by 25% asN→+∞

(Harris, 1978). This approximation is expected to work well
here, because the smallest number of segments used to com-
pute spectral estimates (at 59◦ S in the summer) is still greater
than 50.

B3 Algorithms for the optimization procedure and
uncertainties for the optimum parameters

We selected parameter limits for the optimization procedure
for each specific model. These ones are listed in TableB1.
For h, the lower bound was taken as the physical limit of
0 m for an oceanic boundary layer. For the upper bound, we
chose the limit 104 m to be consistent with an expected or-
der of magnitude of 103 m for a wind-driven layer. ForK0
and K1 we limited ourselves to the[0, 3] s−1 or m−2 s−1
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intervals. Because the parameter space to explore was large
and sometimes several local minima for the cost function ex-
isted, we implemented different optimization algorithms de-
pending on the model. In some cases, we used the multidi-
mensional unconstrained nonlinear minimization or Nelder-
Mead simplex method (Nelder and Mead, 1965), coded in
thefminsearchMATLAB function. In order to constrain this
algorithm to the chosen parameter space, we added extra pe-
nalities to the cost function to prevent the parameters from
straying outside their assigned limits. When several minima
appeared, we used the Nelder-Mead algorithm augmented by
a simulated annealing procedure step (Press et al., 1988), us-
ing the functionsimannealingSBfrom the Systems Biology
Toolbox for MATLAB (Schmidt and Jirstrand, 2005). The
parameters used for the simulated annealing algorithm are
listed in the caption of TableB1. For model 1b, the opti-
mization algorithm was restarted from its first result set to
ensure exhaustiveness in the space search.

The optimization procedure for each model was run for
the estimate of the transfer function̂H computed from the
N segments in each latitudinal band, and then run on each
of the M Ĥk bootstrap samples. The distribution of theM

optimum values for each parameter was used to assess the
uncertainty in the estimates. In some cases listed in TableB1
(see the “Results distribution” entry line), the joint probabil-
ity density functions (pdf) showed several modes with ap-
proximately the same corresponding cost function value. For
these cases, the most probable mode was isolated. Then, the
uncertainties were derived from the distribution around these
modes and we chose the error bars for each optimum param-
eterx in Fig. 6a, b and c to be the mean absolute deviation
from x:

error=
1

M∗

k=M∗∑
k=1

|xk − x| , (B3)

whereM∗
≤M is the actual number of optimum parameter

values retained for the error estimates. In most cases, the op-
timum parameters obtained from̂H were indistinguishable
within the error from the mean of optimum parameters from
the bootstrap estimateŝHk. However, in a few cases, the
overall optimum parameters differed from the mean boot-
strap parameters estimates by more than twice the error. In
these cases, the overall optimum parameters belonged to an-
other less probable mode of the joint pdf. The results pre-
sented here are the mean of the retained optimum parameters
from the bootstrap samples.

B4 Criteria for terminating the optimization procedure

The Nelder-Mead algorithm is a direct search method com-
monly employed in non-linear optimization (Nelder and
Mead, 1965) and extensively reviewed elsewhere (e.g.Press
et al., 1988). For this algorithm, the first termination crite-
rion is related to a function tolerance, the amount by which
the algorithm might be expected to reduce the cost function

L at each iteration in the optimization algorithm. First, the
variance of the estimated transfer functionĤ is used to esti-
mate the uncertainty inL, by propagating errors through the
calculation:

δL =

∑
νk

δ
[
|Ĥ(νk)|

]
× γ̂ 2(νk), (B4)

where the summation is over the frequency range. In the
Southern Ocean we foundδL to be less than 2×10−2 for lat-
itudes lower than 46◦ S and to increase monotonically pole-
wards reaching a maximum of 0.11 at 59◦ S. This maximum
δL is used as an upper bound value for the function tolerance.
When decreases inL fall below δL, further improvements in
the optimized parameters are not expected to exceed the un-
certainties in the calculations, and the optimization should
be terminated. The second criterion for the termination of
the algorithm is that the diameter of ann-dimension simplex
(wheren is the number of dimension of the search space) be
less than a tolerance value (10−5). We found that this was
the controlling criteria in terminating the optimizations and
that setting the tolerance function to 2×10−2 or less did not
change our results significantly. Thus we selected 10−2 as
the function tolerance.
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