
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/319038761

On	the	vertical	structure	and	stability	of	the
Lofoten	vortex	in	the	Norwegian	Sea

Article		in		Deep	Sea	Research	Part	I	Oceanographic	Research	Papers	·	August	2017

DOI:	10.1016/j.dsr.2017.08.001

CITATIONS

0

READS

84

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Geophysical	Oceanography	View	project

VICE	Project	View	project

I.	Bashmachnikov

Saint	Petersburg	State	University

42	PUBLICATIONS			388	CITATIONS			

SEE	PROFILE

Mikhail	A.	Sokolovskiy

Russian	Academy	of	Sciences

63	PUBLICATIONS			629	CITATIONS			

SEE	PROFILE

Denis	L.	Volkov

National	Oceanic	and	Atmospheric	Administr…

49	PUBLICATIONS			500	CITATIONS			

SEE	PROFILE

Carton	Xavier

Université	de	Bretagne	Occidentale

122	PUBLICATIONS			1,946	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Mikhail	A.	Sokolovskiy	on	07	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/319038761_On_the_vertical_structure_and_stability_of_the_Lofoten_vortex_in_the_Norwegian_Sea?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319038761_On_the_vertical_structure_and_stability_of_the_Lofoten_vortex_in_the_Norwegian_Sea?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Geophysical-Oceanography?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/VICE-Project?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/I_Bashmachnikov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/I_Bashmachnikov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Saint_Petersburg_State_University2?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/I_Bashmachnikov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Sokolovskiy?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Sokolovskiy?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Russian_Academy_of_Sciences?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Sokolovskiy?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Volkov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Volkov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Oceanic_and_Atmospheric_Administration?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Volkov?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carton_Xavier?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carton_Xavier?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Bretagne_Occidentale?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carton_Xavier?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Sokolovskiy?enrichId=rgreq-b4e9f72eaaf9fe8df6359809f5975d9c-XXX&enrichSource=Y292ZXJQYWdlOzMxOTAzODc2MTtBUzo1NDY3NDE4MzM2ODI5NDRAMTUwNzM2NDgxOTY2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Contents lists available at ScienceDirect

Deep-Sea Research Part I

journal homepage: www.elsevier.com/locate/dsri

On the vertical structure and stability of the Lofoten vortex in the Norwegian
Sea

I.L. Bashmachnikova,b,⁎,1, M.A. Sokolovskiyc,d, T.V. Belonenkob, D.L. Volkove,f, P.E. Isachseng,h,
X. Cartoni

a NIERSC, Nansen International Environmental and Remote Sensing Centre, 14th line, St. Petersburg, Russia
b The St. Petersburg State University, Department of Oceanography of the Institute of Earth Sciences, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
c Water Problems Institute, Russian Academy of Sciences, Moscow 119333, Russia
d P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia
e Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
f NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
g Department of Geosciences, University of Oslo, Oslo, Norway
h Norwegian Meteorological Institute, Oslo, Norway
i Laboratoire de Physique des Océans, UMR 6523, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29200 Brest, France

A R T I C L E I N F O

Keywords:
Lofoten vortex
Vertical structure
Vortex stability
Primitive equation model
QG model

A B S T R A C T

The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is
investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The
LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the
subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal
decreases in amplitude while the radius increases by as much as 25–30% relative to the values in the core.
Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard con-
figurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and
above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a
two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography.
The QG results show a number of common features with those of the primitive equation model. Thus, among the
azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a
major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic
instability, penetrating deep into the core. The results predict 50–95% volume loss from the vortex within 4–5
months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of
perturbations, only 10–30% volume loss during the same period is detected. Taking into account the gently
sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of
development of instability close to that in the primitive equation model. Some remaining differences in the two
models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and
convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy
anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.

1. Introduction

The Lofoten Basin is a bowl-shape depression in the bottom topo-
graphy of the Norwegian Sea (68–72°N and 2°W - 10°E) with a max-
imum depth of about 3250 m. It is located between the Mohn Ridge
(about 2000 m deep) to the northwest and the Scandinavian Peninsula
to the east, and is limited in the south by the Jan-Mayen Fracture zone

(about 2000 m deep) and the north-western flank of the Voring plateau
(Fig. 1).

Warm and salty Atlantic Water (AW) occupies the upper
800–1000 m of the Lofoten Basin. The AW overlies denser waters of
both lower temperatures and salinities (Blindheim and Rey, 2004;
Nilsen and Nilsen, 2007). In the AW layer, temperature and salinity
both increase towards the center of the basin (Boyer et al., 2005), while
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the density surfaces at mid-depths are bent down as much as 300 m
over the center of the Lofoten Basin and towards the Lofoten Islands
relative to the northwestern and the southwestern basin boundaries
(Rossby et al., 2009). Being the major heat reservoir in the Nordic Seas,
this is a region of strong atmosphere–ocean interactions. It is also a
region of intense mesoscale dynamics which impacts the net warm
water flux to the Arctic, making it a sub-Arctic “hot spot” of ocean
variability (Volkov et al., 2013).

The Norwegian Atlantic Current (NwAC) dominates the near-sur-
face circulation along the eastern rim of the Norwegian Sea and brings
the warm and salty AW north at an average velocity of 20–30 cm s−1

(Blindheim and Rey, 2004; Koszalka et al., 2011; Lumpkin and
Johnson, 2013; Volkov et al., 2015). The NwAC consists of a topo-
graphically controlled near-barotropic current flowing along the shelf
break of the Scandinavian Peninsula and a strongly baroclinic jet that
follows 2000–2500 m isobaths, the Norwegian Atlantic Slope Current
(NwASC) (Koszalka et al., 2011; Volkov et al., 2015). Instability of the
NwAC is considered to be the main source of the intense mesoscale
variability in the Lofoten Basin. Results of a two-layer model (Orvik,
2004) and further observations (Blindheim and Rey, 2004; Gascard and
Mork, 2008; Koszalka et al., 2011; Lumpkin and Johnson, 2013) also
revealed a northward surface current along the Mohn Ridge, at the
western edge of the Lofoten Basin, with a mean velocity of
10–15 cm s−1.

At depth, an overall bottom-intensified cyclonic gyre around the
Lofoten Basin was detected in a diagnostic regional circulation model
(Nøst and Isachsen, 2003) and in analyses of Argo float trajectories
(Poulain et al., 1996; Jakobsen et al., 2003; Orvik, 2004). The velocity,
estimated from ARGO float trajectories is 5–10 cm s−1 (Gascard and
Mork, 2008). It has been suggested that the cyclonic gyre is a bottom-
trapped branch of the deeper fractions of the NwASC, maintained by
eddy transport of the warm and salty AW into the Lofoten Basin and its
further downwards penetration by vertical diffusion (Ivanov and
Korablev, 1995b; Pereskokov, 1999; Orvik, 2004).

Russian hydrographic surveys in the 1970s and 1980s discovered a
quasi-permanent anticyclonic vortex in center of the Lofoten Basin,
named the Lofoten Vortex (hereafter LV, Ivanov and Korablev, 1995a,
1995b). The vortex is located at around 70° N, 2° E, has a diameter of
about 60–80 km, and is characterized by positive temperature and
salinity anomalies between 400 and 2000 m depths (Fig. 2, see also
Alekseev et al., 1991; Pereskokov, 1999) with the strongest signal found
at around 800 m (Alekseev et al., 1991; Romantcev, 1991). The ex-
istence of the LV was later confirmed by trajectories of neutrally-

buoyant floats and surface drifters (Søiland et al., 2008; Koszalka et al.,
2011). Ivanov and Korablev (1995b) suggested that the LV stays at
approximately the same position in the center of the Lofoten Basin due
to its interaction with the mean bottom-intensified cyclonic gyre or,
since the LV extends throughout the entire water column, with the
bowl-shaped topography itself (Raj et al., 2015).

Repeated oceanographic surveys from 1985 to 1991 (Ivanov and
Korablev, 1995а) show that the LV thermohaline anomalies strengthen
in winter and spring. This is accompanied by a reduction of the LV
radius and a strengthening of its maximum anticyclonic rotation velo-
city. Based on these observations, Ivanov and Korablev (1995а) sug-
gested that the LV regenerates periodically due to anomalously strong
convective mixing over its core in winter. The seasonality itself has later
been confirmed in eddy-resolving primitive equation simulations and in
altimetric observations by Köhl (2007) and Raj et al. (2015). However,
these authors attributed the regeneration not primarily to winter con-
vection but rather to the merger of the LV with other anticyclones in the
basin. In fact, drifter trajectories and satellite altimetry have confirmed
a higher level of eddy activity in the Lofoten Basin in winter and spring
(Köhl, 2007; Søiland et al., 2008; Koszalka et al., 2011). Both cyclones
and anticyclones appear to originate from instability of the Norwegian
current near the Lofoten Islands (Søiland et al., 2008; Koszalka et al.,
2011). Thus, Isachsen (2015) used time-averaged fields of an eddy-re-
solving numerical ocean simulation to calculate linear growth rates and
corresponding length scales based on linear quasi-geostrophic (QG)
vertical mode equations. The fastest unstable growth was found along
the steepest part of the continental slope off the Lofoten-Vesteraalen
islands. The current flowing the Mohn Ridge was also found to be un-
stable, but with lower growth rates. Steered by the bowl-shaped topo-
graphy of the Lofoten Basin, some of the anticyclones generated in the
boundary currents eventually approach and merge with the LV.

So both eddy mergers and winter convection appear to strengthen
this vortex. But the observed quasi-permanent state of the LV must
ultimately reflect a long-term balance between re-generation and dis-
sipation (or break-up) processes. As outlined above, the first process has
been studied to some degree. The second process, decay of the LV, has
not received similar attention and is therefore the main focus of this
paper.

Mesoscale vortices, like the LV, can in principle decay due to small-
scale turbulent diffusion and to instability triggered by external per-
turbations. However, since such vortices are typically surrounded by
strong potential vorticity (PV) gradients (Hua et al., 2013;
Bashmachnikov et al., 2015), turbulent diffusion is suppressed. In the

Fig. 1. Topographic map of the Lofoten Basin (depth in m) with
the major flows overlaid. One minute GEBCO topography is used.
Gray dashed contours mark 3000 m, gray solid contours – 3200 m
and solid black contours – 3250 m depth. Surface and deep cur-
rents are sketched with dark solid red and dashed blue arrows,
respectively. The magenta dot in the center of the LB (69.5 N and
3 E) is the most frequent position of the Lofoten Vortex (LV). The
magenta line around the dot limits the area where the LV center is
observed 80% of time for the 15 years of simulations with MIT
GCM. NwASC is the Norwegian Atlantic Slope Current, NwCC is
the Norwegian Atlantic Coastal Current. (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article.)
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case of the LV a decay time due to the effect of turbulent diffusion has
been estimated to be dozens of years (Søiland and Rossby, 2013). In
contrast, hydrodynamic instability of the vortex itself could be an ef-
ficient decay mechanism (Smeed, 1988b; Richardson et al., 2000;
Bashmachnikov et al., 2015).

A baroclinic vortex is subject to four main types of instability (Ripa,
1992; Cushman-Roisin and Beckers, 2011): baroclinic instability (due
to coupling of Rossby waves), hybrid and Sakai instabilities (due to
coupling of Rossby waves with frontally-trapped inertia-gravity waves),
Kelvin-Helmholtz instability (due to coupling between inertia-gravity
waves) and barotropic instability (Rossby waves are sustained by a
horizontal shear of the mean flow). Kelvin-Helmholtz and Sakai in-
stabilities are developed only at much higher Rossby numbers (Ro) than
observed in the LV. For low Rossby numbers and low ratio of vortex-
core thickness to water depth, hybrid and baroclinic instabilities may be
generated. As the ratio of vortex-core thickness to water depth de-
creases the instabilities develop at a progressively slower rate (Ripa,
1992; Cohen et al., 2015).

In two-dimensional incompressible and inviscid fluids, a circular
vortex with uniform relative vorticity (a Rankine vortex), which is a
stationary solution of the Euler equations, is stable to small-amplitude
perturbations on its contour (Lamb, 1885). This result also holds for a
two-dimensional vortex with uniform PV in a rotating environment, but
it does not hold for a baroclinic vortex in the ocean. Quite simply, in a
two-layer fluid (the simplest approximation of a baroclinic system) the
Rankine vortex may become unstable if the sign of the PV changes from
one layer to another (Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988;
Helfrich and Send, 1988). The instability theory for two-layer vortices
was further developed, in particular, in the works by Sokolovskiy
(1988), Paldor and Nof (1990), Ripa (1992), Mesquita and Prahalad
(1999), Sokolovskiy and Verron (2000), Benilov (2000, 2001, 2003,
2004, 2005a, 2005b), Thivolle-Cazat et al. (2005), Reinaud and Carton
(2009), Sokolovskiy et al. (2010), Carton et al. (2010a), (2010b),
Makarov et al. (2012), Cohen et al. (2015), Cohen et al. (2016).

Similar arguments apply in the three-layer model (Holmboe, 1968;
Davey, 1977; Wright, 1980; Smeed, 1988a, 1988b; Sokolovskiy, 1991;
Ikeda, 1993). A sufficient condition for instability is achieved when at

least one of the stratification parameters, γ1 or γ2 (inversely proportional
to the first and the second Rossby radii of deformation, respectively, -
see Appendix A), reach a certain threshold value (Sokolovskiy, 1997a,
1997b). Smeed (1988a, 1988b) has shown that for typical upper ocean
conditions, when the density jump across the lower interface (Δρ2-
between layers 2 and 3) is much less than that across the upper inter-
face (Δρ1- between layers 1 and 2), the instability develops as long
waves generated at the sloping isopycnal above the eddy core (the in-
terface between layers 1 and 2), and short waves generated at the
sloping isopycnal below the eddy core (the interface between layers 2
and 3). This result was theoretically and numerically confirmed by
Sokolovskiy (1997a, 1997b) for a “cylindrical” vortex in a three-layer
fluid, as well as for a “cone-shaped” three-layer vortex (i.e. when the
initially circular vortex patches have different radii in different layers).

Thus, stability analyses of circular geostrophic vortices give evi-
dence that the nonlinear evolution of such vortices can lead to a break-
down of an initially monopolar vortex into multiple structures
(Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988; Helfrich and Send,
1988; Sokolovskiy, 1988; Carton and McWilliams, 1989; Carton and
Corréard, 1999). Applications of the theoretical results to real ocean
data suggest that most vortices should be unstable (e.g., Ikeda, 1981;
Flierl, 1988; Helfrich and Send, 1988; Carton and McWilliams, 1989;
Ripa, 1992; Killworth et al., 1997; Benilov et al., 1998; Baey and
Carton, 2002; Benilov, 2003; Katsman et al., 2003). Observations, in
contrast, indicate that ocean vortices often persist for years (e.g., Lai
and Richardson, 1977; Bashmachnikov et al., 2015). A promising at-
tempt to solve this apparent contradiction was made by Dewar and
Killworth (1995), who considered a Gaussian vortex in the upper layer
and a relatively weak co-rotating circulation in the lower layer in a two-
layer shallow-water model. It was found that the deep flow can stabilize
the eddy or, at least, weaken its instability considerably. This idea was
further developed by Benilov (2004), who demonstrated that the deep
flow, corresponding to a uniform PV in the lower layer, stabilizes all
types of vortices, not only the Gaussian one. Benilov (2004) thus argued
that non-zero deep flows are a common feature for long-lived oceanic
eddies.

The Lofoten Vortex is long-lived vortex; this is an observational fact.

Fig. 2. A section of salinity (a) and of temperature (°C, b) across
the center of the Lofoten Vortex (69.7°N) at 24.08.2005 in the
MIT GCM simulations. Thin isolines mark potential density sur-
faces referenced to 500 m depth. The LV position and the mean
depths of the 3 layers used for stability analysis are marked with
dashed rectangles. GEBCO topography, interpolated to the model
grid, limit the data distribution from below (blue line). Magenta
lines mark the frequency of observation of the LV center along
this section (out of scale, the line edges mark zero number of
observations). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.)
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A first explanation of its dynamic stability was offered by Köhl (2007).
Building his results on a 2-layer study by Benilov (2005a), the author
argued that the LV may be stabilized by a 100-m bowl-shaped depres-
sion of the bottom topography. This explanation is questionable since it
would only apply for a first baroclinic Rossby radius of deformation in
the Lofoten Basin being several times larger than actually observed.
Also, as is shown in Figs. 1 and 2, most of the time the LV center is
situated not over a bottom depression, but is rather surrounded by a set
of small depressions, while high-gradient bowl-shape basin boundaries
are separated from the LV center by a distance of several vortex radii.

It is more likely that PV gradients between the LV core and the
surrounding ocean determine its stability characteristics. Thus, the LV
decay has to be studied in terms of barotropic or baroclinic instability.
For such investigation a detailed knowledge of the horizontal and
vertical structure of the LV is critical. Previous studies of remote sensing
and model data have given a relatively good picture of the horizontal
structure of the LV near the surface and its time variability (Köhl, 2007;
Soiland and Rossby, 2013; Volkov et al., 2015). The vertical structure of
the vortex, studied so far only from scattered in-situ observations
(Ivanov and Korablev, 1995a, 1995b; Blindheim and Rey, 2004;
Gascard and Mork, 2008; Soiland and Rossby, 2013; Raj et al., 2015), is
less well known. As outlined above, knowledge of this vertical struc-
ture, however, is key for an understanding of the vortex stability. A
closer look at the vertical structure of the LV is, therefore, also a focus
of this study.

The paper is structured as follows. An overview of data and methods
is given in Section 2. The following section begins by describing the
vertical structure of the LV, as obtained in eddy-permitting primitive
equation simulations nested into the global ECCO2 state estimate. This
includes a discussion of the time evolution of the main vortex para-
meters and a classification of the LV PV states in selected vertical layers
(Sections 3.1–3.3). These results are then used to study the stability of
the LV in a 3-layer QG model, both in the linear and nonlinear regimes
(Section 3.4), and also including the effects bottom slope and a back-
ground current (Section 3.5). Finally, temporal variability of the LV in
the primitive equation model is diagnosed and compared with the
predictions of the stability calculations (Section 3.6). In Section 4 we
summarize and discuss the results.

2. Data and methods

2.1. Primitive equation model

Eddy-permitting numerical experiments of the Lofoten Basin and
surrounding ocean regions (see Fig. 1) have been performed with the
Massachusetts Institute of Technology primitive equation model (MIT
GCM, Marshall et al., 1997) nested into the ECCO2 (Estimating the
Circulation and Climate of the Ocean, Phase 2; http://ecco2.jpl.nasa.
gov) ocean state estimate of the North Atlantic and the Arctic Ocean
(Nguyen et al., 2011). ECCO2 is an accurate, physically consistent,
time-evolving synthesis of the ocean circulation by a least square fit of
full-depth ocean and sea ice dynamics to selected satellite and in situ
data. The eddy-permitting regional model used for this study adopts the
parameter set (surface heat and momentum fluxes, vertical mixing
coefficients, etc.) obtained in the optimized ECCO2 model. The nested
model run is integrated using a finite volume discretization with C-grid
staggering of the prognostic variables and has a horizontal mesh-size of
around 4 × 4 km in the Lofoten Basin. Given a first baroclinic Rossby
radius of deformation of 7–8 km (Nurser and Bacon, 2014) in the region
and a radius of the LV itself of about 30 km, the nested model is hence
eddy-permitting. The model has 50 vertical z-levels, their mean thick-
ness ranging from 10 m in the upper ocean to 456 m below 2000 m.

The General Bathymetric Charts of the Oceans (GEBCO) with one
arc-minute grid (Smith and Sandwell, 1997) is used as bottom topo-
graphy. The partial cell formulation (Adcroft et al., 1997) allows for an
accurate representation of the bathymetry in the model. The

computations were started from rest, using climatological temperature
and salinity from the World Ocean Atlas 2009 (WOA09) (Locarnini
et al., 2010; Antonov et al., 2010). Over the 1992–2013 period, the
simulations were forced with a 6-hourly atmospheric state obtained
from the 25-year Re-Analysis of the Japan Meteorological Agency
(JRA25-JMA) with the original 1.25 × 1.25° spatial resolution. Lateral
boundary conditions are taken from ECCO2 simulations. Time-mean
fields used in this paper are taken from the 1995–2010 time period,
leaving the first years for model spin-up. Further details on the model
description and set-up are given in Losch et al. (2010), Nguyen et al.
(2011) and Volkov et al. (2015).

Analysis of variations of the LV near-surface mean relative vorticity
in the MIT GCM and satellite altimetry observations (Raj et al., 2015;
Volkov et al., 2015) showed that the model adequately describes sea-
sonal and interannual variations in the LV dynamics at the sea-surface.
The model was also shown to adequately reproduce other details of
large-scale and mesoscale dynamics in the Lofoten Basin, as reported by
a number of observational studies (see, for example, Blindheim and
Rey, 2004, Gascard and Mork, 2008, Koszalka et al., 2011, Lumpkin
and Johnson, 2013).

2.2. Algorithm for obtaining characteristics of the LV

Our study is based on weekly 3D fields of the primitive equation
model temperature, salinity and velocity. The LV is identified at the
center of the Lofoten Basin by the deep penetration of its temperature
and salinity anomalies (Fig. 2), as well as its relative vorticity signature.
The analyses are done in a reference frame following the vortex, so
consecutive positions of the LV were tracked using the peak negative
relative vorticity at 700 m depth. The level chosen assures higher sta-
bility of the tracking algorithm, as the peak relative vorticity anomaly
of the LV core at this level nearly always exceeds the corresponding
anomalies of surface-intensified anticyclonic eddies propagating into
the basin from the NwAC. Specifically, every new position of the LV was
defined from the minimum of relative vorticity within a 40-km large
disk (slightly larger than the typical LV radius defined by Köhl, 2007),
from the vortex position at the previous step. To cope with the situa-
tions where the LV center has drifted by more than one LV radius after a
week, the algorithm undergoes three iterations for every time step, each
one starting with the newly defined position of the minimum of relative
vorticity. This “creeping” technique allows fixing the LV center, sepa-
rated by up to three LV radii from its previous position (this covers the
possibility of LV translation at unrealistic velocities of 20 cm s−1). The
procedure simultaneously avoids unwanted jumps of the LV position to
the center of a neighboring anticyclone, which happens to have a
stronger instantaneous relative vorticity anomaly. The robustness of the
algorithm was verified by visual inspection of subsequent vorticity
fields. The results show that the main LV core forms the strongest re-
lative vorticity anomaly even when secondary vortices are separated
from its skirt.

With the LV position identified, the vortex extent was deduced from
its relative vorticity field. Relative vorticity profiles were derived along
rays, originating from the LV center and covering an ellipse with 10°
increments (Fig. 3). Along each profile, the LV dynamic radius was
defined using two complementary algorithms. In the first algorithm, the
radius was defined as the minimum distance along each ray at which
either 1) the relative vorticity profile crosses zero, or 2) the relative
vorticity has a local maximum, or else 3) the rate of decrease of the
relative vorticity slows down significantly (below 25% of its maximum
rate along the ray). The latter two criteria help to avoid situations when
the LV core extends across connected filaments. In the second algorithm
only the first criterion was used. At times, special vorticity configura-
tions were the LV center is fully circled by two nested rings of higher
and then lower relative vorticity were identified (Fig. 3c). Those si-
tuations usually take place immediately after a full or partial merger of
a surface anticyclone with the LV. In these cases the LV radius was
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defined using the second algorithm.
Having collected the points of the LV boundary, the position of the

LV center was refined (from the first guess given by the tracking al-
gorithm) as the algebraic mean of the boundary coordinates. The LV
mean radius was further defined as the mean distance from the refined
center of the LV and the LV boundary points. The maximum and
minimum radii were obtained via a robust least-square fit of the
boundary points to an ellipse (Fig. 3).

2.3. Constructing a 3-layer isopycnal model

To study the vertical structure of the vortex in an isopycnal fra-
mework, potential density surfaces referenced to 500 m (σ0.5) were
computed with an increment of 0.02 kg m−3. The bulk of the analysis to
follow assumes a 3-layer structure of the vortex. Further, in Section 3.2,
it will be shown that the LV represents an S-vortex in the classification
of Morel and McWilliams (1997). For such vortices, negative potential
vorticity anomalies of the vortex core are vertically constrained with
positive potential vorticity anomalies above and below the core, re-
sulting from compression of isopycnals (see Figs. 4 and 5). Having this
in mind, the isopycnals that separate the water column into three layers
(with the second layer constituting the vortex core) were defined using
two other sets of reference isopycnals. The first set was taken as the two
isopycnals that show the maximum deflection above and below the LV
center from their mean position outside the vortex. Those isopycnals
are thus within the weakly-stratified core of the LV. The second set was
taken from the isopycnals that experience the strongest squeezing
above and below the core, i.e. the two isopycnals that have the smallest

ratio of the distances to the neighboring isopycnals over the LV center
to the mean distances between the same isopycnals. Finally, the two
isopycnals limiting the core from above and from below were selected
as those at mid-distance between the two sets defined above.

With the two isopycnals separating the three layers identified, mean
isopycnal depths were calculated. Deflections of the isopycnals in the
LV (η1 and η2) were then computed as the differences between the
isopycnal depth in the LV center and the mean depth of the same iso-
pycnal in an extended region around the LV.

3. Results

3.1. The vertical structure of the LV

Fig. 4 shows typical horizontal maps and vertical sections of relative
vorticity across the LV. The relative vorticity anomaly shows up as a
columnar pattern which reaches the ocean bottom. However, the vor-
ticity intensity sharply decreases and the vortex radius increases below
1000 m depth.

Time-averaged vertical profiles of selected geometric and dynamic
characteristics of the LV are presented in Fig. 5. The LV azimuthal ve-
locity, the relative vorticity and the dynamic radius reach their peak
values at 500–600 m, 700–800 m and 800–900 m, respectively. The
200–800 m layer is also characterized by the strongest temperature-
salinity anomaly (see also Fig. 2), as well as by the peak negative Ertel
PV anomaly. Ertel PV is defined as = +Π N f ω g²( )/E , where N is the
buoyancy frequency, f is Coriolis parameter, ω is the mean relative
vorticity of the LV core at a depth level and g is the gravitational

Fig. 3. Upper panels: relative vorticity distribution at 100 m depth (x10−5 s−1). Red and magenta lines connect the LV center and the LV boundaries in radial directions. Lower panel:
sampled profiles of relative vorticity for the distributions above, running from the LV center northwards. (a) – 10.02.1993; (b) – 08.09.1993; (c) – 11.11.1998. Red ellipse (upper plots)
and empty circles (lower plots) mark the LV boundary defined with the first algorithm (as described in the text); dashed magenta ellipse (upper plots) and gray stars (lower plots) mark the
boundary defined with the second algorithm (as described in the text). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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acceleration. Ertel PV anomaly is defined as the difference between
Ertel PV in the LV center and in the surrounding ocean.

Fig. 5 (as well as Figs. 2 and 4) shows that the LV core is intensified
below the sea-surface. This suggests that the LV vertical structure can
be split in 3 layers. The upper layer (layer 1), above the LV core, ex-
tends on average from the sea-surface to 50–200 m. In this layer, the LV
radius (R) increases with depth. The core layer (layer 2) extends from
50 to 200 m to 900–1100 m and is characterized by overall peak dy-
namic properties, as described above. In particular, the peak relative

vorticity anomaly is between−2 × 10−5 and−3 × 10−5 s−1. R in the
layer decreases with depth down to a minimum of about 25 km at
around 900 m. The lower layer (layer 3), from 900 to 1100 m to the
ocean bottom, is characterized by a more than a five-fold decrease of
relative vorticity (as compared to its peak value in layer 2) and by a
larger R of around 35 km.

Fig. 4. Horizontal maps at 100 m depth (left-hand panels) and vertical profiles (middle and right-hand panels) of relative vorticity (x10−5 s−1) in the Lofoten Basin: a- 24.08.2005; b-
13.09.2009. In the horizontal maps horizontal velocity vectors are overlaid; black and gray lines mark the position of vertical section along the LV semi-major and semi-minor axes of the
approximating ellipse, respectively. The vertical sections show cuts along the semi-major axis (middle panels) and semi-minor axis (right-hand panels) of the vortex. In the vertical
sections solid black isolines are σ0.5 and vertical white dotted and dashed lines mark the LV axis and boundaries (dynamic radii), respectively.

Fig. 5. Vertical profiles of selected time-mean characteristics of the
LV (from 1998 to 2012): black lines with circles are dynamic radii
(km) – the mean radius (solid line - Rav), the lengths of the semi-
minor axis (dashed line - Rmin) and of the semi-major (dotted line -
Rmax) axis; thick gray lines with crosses are relative vorticity profiles
(106 s−1) – the peak (solid line - ωmin) and averaged in the disk with
the radius R /2av (dashed line - ωav), thick gray line with squares is the
maximum azimuthal velocity (V , cm s−1); black dash-dot line is
profile of Ertel potential vorticity anomaly in the LV center (ΠE ,
1011 s−1). Gray horizontal bands present approximate positions of the
time mean upper and lower boundaries of the LV core.
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3.2. Time evolution of the LV parameters

In this section, the time evolution of the vertical structure and of the
horizontal geometry of the LV, in a 3-layer isopycnal framework
(Section 2.3), is considered. The time evolution of the mean layer
thicknesses outside the LV, the layer thicknesses in the LV itself and
layer deflections at the LV center (η1 and η2) are presented in Fig. 6. The
strong variability of the depth of the upper layer has both seasonal and
interannual pattern. During some years winter convection penetrates
into the LV core, and layers 1 and 2 merge for a couple of months, until
the late spring re-stratification of the upper ocean restores the 3-layer
structure of the LV. Fig. 7 shows the evolution of the layer-averaged
temperatures and potential densities referenced to 500 m depth (σ0.5) in
the LV. Seasonal fluctuations reach layer 2 although strongly reduced in
amplitude. Both Figs. 6 and 7 show that the first simulation years are
characterized by a noticeable evolution of the LV parameters, from
which we conclude that the LV structure is not fully developed in the
model until about 1998. Our further analyses the LV dynamics will
therefore be based on the period from 1998 to 2012.

Fig. 8 shows LV radii, velocities and vorticities. The layer-mean
radii (Fig. 8a) of the LV in layers 1 and 3 are somewhat larger than in
layer 2: the ratios R R/2 1 and R R/2 3 are on average 0.98 and 0.93, re-
spectively. The ratio of semi-minor to semi-major axes at all depths is

on average 0.82 and decreases below 0.70 only for 10% of the time.
These results will be taken as justification for using a simple model of a
circular columnar LV (see also Fig. 3) in the analysis that follows.

The maximum azimuthal velocity (Vaz) in layer 1 (Vaz1) on average
reaches 90% of that in layer 2 (Vaz2), while in layer 3 Vaz3 is about 30%
of Vaz2 (Fig. 8b). Given the small variations of the LV radii with depth,
the relative vorticity varies with depth accordingly (ω, Fig. 8c). In
idealized 2-layer vortex models, a co-rotating deep flow of 5–10% is
already sufficient for stabilizing a vortex (Dewar and Killworth, 1995).
Further (Section 3.4) we will show that in a 3-layer QG-model the LV is
a subject of a weak vortex instability, while in the primitive equations
model with external forcing (Section 3.6) development of perturbations
in the LV is restricted to the vortex skirt.

QG PV for layers 1–3 is estimated as:

⎧

⎨
⎩

= +
= − +
= −

Π ω f η h
Π ω f η h f η h
Π ω f η h

/
/ /
/

.
1 1 1 1

2 2 1 2 2 2

3 3 2 3 (1)

Here hj is the thickness, ωj is the relative vorticity and ηj is isopycnal
deflection in the LV from their mean positions in the surrounding
ocean, for layers =j 1, 2, 3. Π2 is negative in the LV core, while
above and below Π1,3 are positive (Fig. 9a). Π2 outside the LV core

Fig. 6. a - Time evolution of the mean layer thicknesses (m)
outside the LV: layer 1 (h1, thick solid red line) and layer 2 (h2,
thick dotted magenta line); time evolution of the LV core thick-
ness (m), - separation between upper and lower interfaces of layer
2 at the LV center (h2LV , thin solid blue line). b - time evolution
thickness (m) of layer 1 in the LV center (h1LV , thin solid blue
line), and elevation of isopycnals over the LV (m): thick solid red
line is η1, thick dotted magenta line is | η2|. (For interpretation of
the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. a- Time evolution of layer-mean temperature (°C), b - time
evolution of layer-mean density σ0.5 (kg m−3) in the LV. Red line
with gaps represents layer 1, thick magenta line - layer 2; thin
blue line – layer 3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this
article.)
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( ≤ ≤R r 2R) is also negative on average (Fig. 9b), but its absolute value
is more than an order of magnitude smaller than Π2 in the core ( <r R).
The positive PV poles above and below the LV core are formed by
squeezing of isopycnals. This suggests that the LV represents a verti-
cally-shielded S-vortex structure (Morel and McWilliams, 1997). As the
LV is weakly horizontally shielded, its interactions with the mesoscale
structures around is expected to be stronger than for an unshielded
vortex (Carton, 1992; Carton et al., 2002).

3.3. Identification of typical LV PV structures

Figs. 6–9 reveal that the overall LV structure remains quite stable in
time, except for short periods of deep winter convection, penetrating
the LV core. Time-mean parameters of the LV are presented in Table 1.
At the same time, a notable time variability of LV parameters exists on
seasonal and shorter time scales. In this section we investigate whether
much of this variability falls within a smaller subset of typical config-
urations of the vortex. Typical configurations were identified using K-
means cluster analysis performed in the Π Π( , )1 2 parameter space. This

parameter space was chosen since layer PVs have a direct influence on
vortex stability and since Π1 and Π2 show the strongest variations in
time (see Section 3.2).

Fig. 8. (a)- time evolution of layer-mean LV radius
(km). (b) - time evolution of maximum azimuthal
velocity (cm s−1). (c) - time evolution of the mean
relative vorticity within the circle ≤r R /2j around

the LV center (s−1). Red line with gaps represents
layer 1, thick magenta line - layer 2; thin blue line –
layer 3. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. (a) - time evolution of the layer-mean QG PV (Eq. (1), s−1)
in the LV ( ≤r Rj, j = 1,2,3 is the layer number). (b) - time

evolution of the layer-mean QG PV (s−1) around the LV
( ≤ ≤R r 2Rj j). Red line with gaps represents layer 1, thick ma-

genta line - layer 2; thin blue line – layer 3. Note that y-scale of
panel (a) is in 10−4 s−1, while of panel (b) is in 10−5 s−1. (For
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Time-mean statistics of dynamic parameters of the LV.

Parameter Layer 1/
interface 1

Layer 2/interface
2

Layer 3/
bottom

Interface depth (z , m) 250 655 3000
Layer thickness (h, m) 250 405 2345
Interface deflection at the

LV center (η, m)
135 500 0

R, km 30.5 30.0 32.0
Vaz , cm s−1 −34 −37 −11
ω, s−1 -1.13 10−5 -1.32 10−5 -0.38 10−5

≤ω ω1,3 2 , % 97% – 100%
Π*10−4, s−1 0.75 −2.35 0.25
Π ±std 4.6 ± 1.9 −13.2 ± 5.6 1.4 ± 0.1
σ0.5(500 m), kg m−3 30.11 30.29 30.54
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The spread of the LV PV configurations in the Π Π( , )1 2 space is
shown in Fig. 10. The density distribution of the data-points (Fig. 10)
shows concentration around 4 distinct centers, marked at the plot as A,
B, C and D. Objective selection criteria, like Partition Index and Se-
paration Index decrease slower as the number of clusters exceeds 5,
while the Xie and Beni’s Index becomes leveled at number of clusters
over 3. For example, the Partition Index (the ratio of the sum of com-
pactness to separation distance between the clusters) decreases by 2.9,
2.3, 2.1, 0.2, with an increase of the number of clusters from 2 to 3,
from 3 to 4, from 4 to 5 and from 5 to 6, respectively. Therefore, 5
clusters were selected as the optimum number. In the cluster analysis,
distances along each of the axes in the Π Π( , )1 2 space were normalized
by the corresponding ranges of PV values. After such normalization, PV
points that lie within a non-dimensional distance of 0.3 from the center
of a given cluster were used to estimate the characteristic properties of
that cluster (Fig. 10). This avoids transitional states. In total, the four
main clusters (A, B, C and D, listed in Table 2) cover over 60% of the
model run duration (470 out of 784 model outputs). The mean vertical
distribution of isopycnals for each of the clusters are shown in Fig. 11.
The results are discussed in detail below.

Configuration A (Figs. 10b, 11a) is characterized by small deflec-
tions of isopycnals above the LV core (η1) compared to the mean
thickness of layer 1 (h1), and a comparatively large thickness of layer 2

(h2). The frequency of such a configuration grows from summer to
autumn, slightly decreases in winter and is very rare in spring. In late
autumn and winter the upper mixed layer deepens due to convection,
gradually eroding the upper boundary of the LV.

Configuration B (Figs. 10b, 11b) is a result of deep convective
mixing during the cold season, when the upper layer disappears and a
2-layer approximation of the LV becomes valid: h1 = 0 and η1 = 0; h2 is
anomalously large. This configuration occurs only in early spring. A
similar configuration is B1 (not shown in Fig. 11), for which the upper
layer exists but the limiting isopycnal over the LV lies much below
200 m, the depth of the upper mixed layer. Configuration B1 is episo-
dically observed from late autumn to early spring, being the most fre-
quent in winter.

Configuration C (Figs. 10b, 11c) is characterized by anomalously
large η1 compared to h1, while h2 is small. This configuration can be
observed during any season, but it is most frequent in late spring and
early summer, i.e. during the restoration of the seasonal pycnocline. Its
frequency decreases through summer and autumn and reaches its
minimum in winter.

Configuration D (Figs. 10b, 11d) is intermediate between A and C.
This most frequent configuration is the most often observed in summer.

For the study period from 1998 to 2012, from 470 points, used for
obtaining the characteristic parameters of each of the configurations
(see above), there are 98 points characterized by A-cluster (around
21%), 79 points – by B and B1-clusters (around 17%), 139 points – by
C-cluster (around 29%) and 155 points – by D-cluster (around 33%).
The rest of the points, not used for construction of the panels of Fig. 11,
mostly belong to either cluster D or to cluster A. The key vortex para-
meters for each of the four clusters are listed in Table 2.

Although the sequence A-B(B1)-C-D largely follows the seasonal
cycle, interannual variations in the upper ocean stratification under
varying atmospheric forcing result in some configurations having
overlapping maxima (Fig. 10b). Thus, we may observe configurations
A, C or D during summer. During mild and calm winters configurations
B (and B1) may not develop (Fig. 9a).

Fig. 10. – The state of the LV in Π Π( , )1 2 space (10−4 s−1) and the results of K-mean
cluster analysis. (a) small black dots show data points and gray shading indicates their
concentration (darker shading indicates higher density). The thicker red, magenta, blue,
cyan and green dots represent the Π Π( , )1 2 points identified as belonging to clusters A, B,
B1, C, and D, respectively. (b) Number of observations of different states as a function of
season over the period of simulations in MIT GCM. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Statistics of dynamic parameters of the LV for each of the clusters (Figs. 10–12).

Parameter Layer 1/interface
1

Layer 2/interface
2

Layer 3/bottom

Configuration A, 21%,
h±std (m), 190 ± 65 475 ± 65 2345
η±std (m) 70 ± 30 −510 ± 25
R±std (km) 31 ± 3 30 ± 2 32 ± 2
σ0.5±std (kg/m3) 30.00 ± 0.12 30.27 ± 0.05 30.54 ± 0.00
Π±std (10−4 s−1) 0.36 ± 0.05 −1.85 ± 0.14 0.26 ± 0.01
Π ±std 2.0 ± 0.7 −10.5 ± 2.0 1.5 ± 0.1
Configuration B, 17%,
h±std (m), 660 ± 30 2340
η±std (m) −490 ± 30
R±std (km) 31 ± 2 33 ± 3
σ0.5±std (kg/m3) 30.15 ± 0.11 30.55 ± 0.00
Π±std (10−4 s−1) −1.33 ± 0.14 0.25 ± 0.01
Π ±std −6.4 ± 0.6 1.4 ± 0.1
Configuration C, 29%,
h±std (m), 340 ± 50 310 ± 35 2350
η±std (m) 270 ± 50 −485 ± 35
R±std (km) 29 ± 2 28 ± 1 31 ± 2
σ0.5±std (kg/m3) 30.18 ± 0.06 30.33 ± 0.03 30.54 ± 0.00
Π±std (10−4 s−1) 0.98 ± 0.05 −3.37 ± 0.22 0.27 ± 0.01
Π ±std 5.6 ± 0.5 −19.7 ± 2.7 1.4 ± 0.1
configuration D, 33%,
h±std (m), 220 ± 50 425 ± 50 2355
η±std (m) 160 ± 40 −485 ± 40
R±std (km) 31 ± 3 30 ± 1 32 ± 2
σ0.5±std (kg/m3) 30.01 ± 0.14 30.25 ± 0.05 30.55 ± 0.00
Π±std (10−4 s−1) 0.86 ± 0.05 −2.22 ± 0.16 0.24 ± 0.01
Π ±std 4.8 ± 0.54 −12.7 ± 1.8 1.4 ± 0.1
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3.4. Instability analysis in a QG model

The findings in Sections 3.2 and 3.3 suggest that during the whole
period of observations the sign of PV in the LV core is opposite to the
signs of PV in the layers above and below. Thus, the necessary integral
condition for vortex instability is satisfied (Sokolovskiy, 1997b;
Cushman-Roisin and Beckers, 2011). The range of the vortex Rossby
numbers suggests that baroclinic or hybrid types of instability can be
expected (Ripa, 1992). For the LV the second derivative of azimuthal
velocity in radial direction exceeds variation of Coriolis parameter with
latitude, and the necessary condition for barotropic instability is also
satisfied (Cushman-Roisin and Beckers, 2011). The possible role of
baroclinic, barotropic or mixed instability will be the focus of following
sections. We start by studying the stability properties of the LV in a two
and three layer QG models.

For a 2/3-layer QG model of the LV, the LV is approximated as
stacked cylinders (see Figs. 8–9 and Tables 1–2), with PV anomalies
constant in each of the layers (Eq. (A6) in Appendix A). The non-di-
mensional vortex PV anomalies in each of the layers, used in the QG
model, are computed as:

⎧

⎨
⎪

⎩⎪

= +
= − +
= −

Π ω η h
Π ω η h η h
Π ω η h

/
/ /
/

,
1 1 1 1

2 2 1 2 2 2

3 3 2 3 (2)

where = ( )ω ω /j j
V
R , = ⋅η η Ro H/( )j j , =h h H/j j ( =j 1, 2, 3), H is water

depth and Ro is the Rossby number. The mean LV parameters in layer 2
(Table 1) were taken as the reference scales. This gives V = 37 cm s−1,
R=30 km (see Table 1), H=3000 m and f = 1.36 10−4 s−1. Hence,
the relative vorticity normalization scale is V R/ = 1.23 10−5 s−1 and

the Rossby number is =Ro V R f/( )=0.09. Averaging N 2 over the LV
core thickness (1000–1200 m, Fig. 10) and over the full H (10−6 s−2

and 10−7 s−2, respectively), the vortex Burgers number =Bu N H
f R

2 2
2 2

~0.05-0.10. The ratio of Ro Bu/ ~1 is relatively high, but we may still
expect the QG approximation to capture the major features of the LV
dynamics (Boss et al., 1996). F1 = 3.2 and F2 = 2.9.

For the mean dimensional characteristics of the LV (Table 1), and
with the scaling parameters as above, the following set of dimensionless
parameters is taken for numerical experiments:

= = =
= = =
= = − =

R R R
h h h
Π Π Π

1.033, 1.000, 1.067,
0.0833, 0.1383, 0.7784,
4.6, 13.2, 1.4,

1 2 3

1 2 3

1 2 3 (3)

We first examine the stability of the various clusters for the line-
arized problem of small perturbation amplitudes. The analytic solution,
which can be framed in terms of an eigenvalue problem for a set azi-
muthal modes m, is presented in Appendix A. It allows us to identify, for
each mode m, stable and unstable domains that are separated by neu-
tral surfaces in the space of PV Π Π Π( , , )1 2 3 . Fig. 12 shows sections of
these hyper-surfaces by a Π Π( , )1 2 plane at a fixed value of Π3=0.25
10−4 s−1 (see Table 2) for configurations A, C and D, and by a Π Π( , )2 3
plane at a fixed value of Π1=0 s−1 for configuration B (when no upper
layer exists). Calculations of a set of instability modes for each of the
clusters A-D are done for the sets of dynamic parameters presented in
Tables 1–2. The area of instability for an azimuthal mode m lie to the
right of the neutral stability curve, marked by the corresponding mode
number (Fig. 12 a, c, d) or in-between the two neutral stability curves of
the same mode number (Fig. 12 b). For each of the cluster configura-
tions (Figs. 10–12), the following azimuthal modes are unstable:

Fig. 11. Mean isopycnal depths (blue lines) across the LV for the four main clusters in Fig. 10. (a) - configuration A, which is the most typical for autumn and early winter, (b) -
configuration B, occurring in late winter or early spring, (c) - configuration C, the most typical for late spring, (d) - configuration D, the most typical for summer. Red stars mark the LV
limits. Magenta and red lines represent isopycnals, marking the upper and the lower boundaries of the LV core, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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configuration A – m = 2-3, configuration B – all m, configuration C – m
= 2-6 and configuration D – m = 2-4.

The growth rate for an azimuthal mode m is defined by the
imaginary part of the complex frequency m δ (Appendix A). For the
mean vortex parameters (Table 1, the thick gray circle in Fig. 12d)
we get linear growth rates ==Im δ2 0.0839,m 2 ==Im δ3 0.5364,m 3

==Im δ4 0.3316m 4 , i.e. > >= = =Im δ Im δ Im δ3 4 2m m m3 4 2 .
Therefore, theoretically, the 3rd and the 4th azimuthal modes are
growing much faster than the 2nd mode. The 1st azimuthal mode
has zero growth rate. These results are applicable for the most
frequent configuration D. The numerical experiments for three
other configurations (A, B and C, Table 2) indicate that, the 3rd

azimuthal mode dominate the instability also in configurations A
and B, and the 5th azimuthal mode – in configuration C. In all the
configurations, the most unstable perturbations have a e-folding
time scale of order of 60 days.

In a 2-layer model, all modes develop slower, but the lower modes
finally are more efficient in decay of the vortex (Table 3).

In the numerical non-linear QG study below we will present the
non-linear development of instability for azimuthal modes m = 2, 3
and 4 for the most typical 3-layer configuration of the LV characteristics
(Table 1) and for the 2-layer configuration B (Table 2). Under the as-
sumption of a piecewise-constant potential vorticity distribution, si-
mulating the vortex patch, the so-called Contour Dynamic Method

Fig. 12. Same as in Fig. 10 but now with the addition of neutral stability curves based on QG calculations for each of cluster configurations. Filled large colour circles at each of the plates
mark the central set of the corresponding cluster (as in Fig. 10), the small black dots of the same colour – the rest of the points, belonging to the corresponding cluster. The yellow, red,
black and blue are lines of neutral stability curves for azimuthal modes m=2, m=3, m=4 and m=5, respectively. (a) the LV PV anomalies (10−4 s−1) in Π Π( , )1 2 parameter space for
configuration A; (b) the LV PV anomalies (10−4 s−1) in Π Π( , )2 3 parameter space for configuration B; (c) the LV PV anomalies (10−4 s−1) in Π Π( , )1 2 parameter space for configuration
C; (d) the LV PV anomalies (10−4 s−1) in Π Π( , )1 2 parameter space for configuration D. The unstable domains of the azimuthal modes are located to the right of the lines with the
corresponding labels (in-between the lines of the same mode for (b)). The gray circle in plate (d) marks the PV anomalies of the reference vortex, used for the QG non-linear simulations.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
A measure of vortex instability: the volume of the central part of the vortex after 5 months for =ε 0.02j and for =ε 0.2j , in percent of its initial volume. In some cases for =ε 0.02j the
volume ratio at the end of the 5-month period is 100%. For those cases the ratio at the end of the 8-month simulation period is also presented in parentheses.

Perturbation intensity: =ε 0.02 =ε 0.20

Azimuthal mode: m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

3-layer configuration (D)
Layer number (j) 1 100% (37%) 15% 46% 31% 5% 36%

2 100% (37%) 27% 89% 44% 20% 46%
3 100% (17%) 16% 99% 0% 6% 15%

2-layer configuration (B)
Layer number (j) 2 100% (59%) 100% (45%) 100% (54%) 71% 51% 52%

3 100% (36%) 100% (20%) 100% (165) 100% 26% 17%
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(Zabusky et al., 1979) can be applied to a three-layer quasi-geostrophic
model (Sokolovskiy, 1991; Sokolovskiy and Verron, 2014). The hor-
izontal along-contour resolution in the Lagrangian model has 240 nodes
for a circle contour of a unit radius. The number of points increase
proportional to the growth of a contour length to keep the original
along-contour resolution. In the following experiments (Figs. 13–18)
the vortex is immersed in a motionless fluid over a flat bottom. An

experiment with a background mean flow and variable bottom topo-
graphy is presented in Appendix B.

The non-linear QG model is formulated for each of the layers j as:

=
dΠ
dt

0,j

(4)

where the layer PVs are defined as in Eq. (2) and d
dt
is the full derivative.

Fig. 13. Evolution of instability in the numerical QG
model for small-amplitude = =ε j( 0.02, 1, 2, 3)j

mode-2 =m( 2) initial perturbations (see Eq. (A.8),
Appendix A). The most typical parameter state
(Table 1, within configuration D) is used for the
model set-up. Each frame shows vortex patches in
the upper (red upper contour plots in a plate), middle
(magenta middle contour plots in a plate) and lower
(blue lower contour plots in a plate) layers as func-
tion of non-dimensional time. The dimensionless
time unit corresponds to 12 days. (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 14. The same as Fig. 13 but for =m 3.
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Fig. 15. The same as Fig. 13 but for =m 4.

Fig. 16. Evolution of instability in the numerical QG
model for finite-amplitude = =ε j( 0.2, 1, 2, 3)j

mode-2 =m( 2) initial perturbations (see Eq. (A.8),
Appendix A). The most typical parameter state
(Table 1, within configuration D) is used for the
model set-up. Each frame shows vortex patches in
the upper (red upper contour plots in a plate), middle
(magenta middle contour plots in a plate) and lower
(blue lower contour plots in a plate) layers as func-
tion of non-dimensional time. The dimensionless
time unit corresponds to 12 days. (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Two sets of runs were made, one with small-amplitude initial per-
turbations, =ε 0.02j and another with larger perturbations, =ε 0.2j (see
Appendix A, Eq. (A.8)), In the first case the amplitude of the pertur-
bation displacements of the vortex boundary are small compared to the

mean dynamic radius of the LV, in the second case they are comparable
to the mean dynamic radius.

For small-amplitude initial perturbations (Figs. 13–15) the predic-
tions of the linearized theory are largely confirmed. In the 3-layer

Fig. 17. The same as Fig. 16 but for =m 3.

Fig. 18. The same as Fig. 16 but for =m 4.
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model, for a perturbation with m = 2, the main core undergoes a strong
elliptical deformation, but keeps its integrity for months (Fig. 13). Two
secondary eddies eventually separate from the main core after 6–7
months, but a fairly significant volume of the vortex patch remains in
the central part at the end of the 8-months simulation period (Table 3).
This demonstrates a significant stability of the vortex to such pertur-
bations: the percentage of volume left in the vortex core at the end of
the 5-month simulation period is the largest of all modes (Table 3).
Azimuthal mode 3 develops faster and secondary eddies separate from
the main core already within 4–5 months (Fig. 14). Mode 4 instability
develops nearly as fast, especially in the top layer (Fig. 15). Still, de-
velopment of secondary eddies of mode 4 is generally limited to the
periphery of the vortex, in particular for layers 2 and 3. In these layers
the core volume of the main vortex practically does not change after 5-
months of development of the instability (Table 3). This suggests a
relatively low efficiency of mode 4 in the LV decay for small-amplitude
perturbations.

Increasing the amplitude of the initial perturbations by an order of
magnitude leads to rather significant changes in the development of the
instabilities (Figs. 16–18). In this case, the linear stability analysis
provides less reliable predictions. For all azimuthal modes allowed for
the most typical LV vertical structure (2–4), secondary vortex patches
are formed within 3–4 months, and after 5 months the main vortex core

in the upper and lower layers have decreased significantly in size
(Table 3). In the middle layer, the instability with m = 3 (Fig. 17) is the
most efficient in breaking up the vortex in the 3-layer case (Table 3). In
the 2-layer winter configuration B the 2nd mode develops much slower
than the 3rd and the 4th ones in the case of finite-amplitude pertur-
bations. The instability with m = 4 initially develops nearly as fast as
that with m = 3 in the LV core (Table 3). Still, for =ε 0.20, further
development of the instability modes (not shown) suggests a stronger
decrease of the LV volume due to the instability with m = 3 at the end
of the 8-month period.

The results of this Section may be summarized as follows. For a
realistic set of parameters, both the linear analytical and nonlinear
numerical QG models suggest that the LV is weakly unstable. The LV
core keeps its integrity at least over 4–5 months, but its volume de-
creases. For finite-amplitude disturbances, the instability develops
somewhat faster and the LV loses more than 50% of its initial volume
within the above-mentioned period of time. In the 2-layer case per-
turbations develop at a noticeably slower rate, which suggests a higher
stability of the LV in winter (configuration B). Perturbations with the
azimuthal mode 3 appear to be overall more efficient in facilitating
vortex break-up than other modes. This distinction is more pronounced
for small-amplitude initial disturbances. In many cases the rates of
development of 2nd or 4th modes are close to that of the 3rd one. In
these cases, other modes than the 3rd one may become dominant in the
course of non-linear interactions between the modes in the full com-
plexity of the realistic LV dynamics. For stronger deflection of iso-
pycnals (configuration C, Fig. 10) higher azimuthal modes may start
dominating the instability.

3.5. Instability analysis in a QG model with sloping topography

In the previous sections stability of the Lofoten vortex in the 3-layer
QG model is done under assumption of the flat bottom and the sur-
rounding fluid at rest. Meanwhile, observations and model results
(Sections 1 and 2.1) show that the bottom of Lofoten Basin is gently
sloping southwestwards down from 3000 to 3250 m over 250 km, and
then sharply rise to 2000–2500 m at the ridge following Jan Mayen

Fracture Zone and to 1500–2000 m at the Vorming plato over less than
70 km distance. The Lofoten vortex (Fig. 1) is positioned over the gentle
slope in the central part of the basin. In this case the scaling factor of
the planetary β-effect, = ⋅⋅ − −− − −

− − m~ 0.6 10β
f

m s
s

8.6 10
1.3 * 10

7 112 1 1
4 1 , is several times

less than the topographic β-effect, ⋅∇ − − −m~ ~3.1 10H
H

m km
m

(3240 3000 ) / 250
3100

7 1.
Incorporation of planetary or topographic β-effect increases stability to
the mean flow (Cushman-Roisin and Beckers, 2011; Hetland, 2017), but
for an axisymmetric vortex the stabilization by a gently sloping bottom
of the Lofoten Basin is not obvious, as PV now varies along the circular
particle path. The cyclonic circulation along the inner part of the Lo-
foten Basin boundaries (Poulain et al., 1996; Gascard and Mork, 2008)
increases horizontal shear gradients at the LV boundary. The current
and topography impose perturbations to the vortex, so instability here
is generated within the system and is not artificially imposed as in the
previous section.

With a barotropic north-easterly mean flow, the so defined “back-
ground” state are taken into account by adding new time-independent
terms to the right-hand side of Eq. (A.7):

∑= − + − = =
=

p x y U y V x σ T i j( , ) , 1, ... ,8; 1, 2, 3;j
i

i ij0 0 0
1

8

(5)

where

Here p j0 is an analytically estimated pressure perturbation in each
layer j, which is added to the pressure perturbations by the vortex
(A.7), to make the total pressure (streamfunction) field. U V,0 0 are
current velocity components at infinity, σi is the bottom elevations over
3000 m (negative for a depression) normalized for the area of the cir-
cular topographic forms with coordinates of the centers c c( , )ix iy , and
= − + −r x c y c( ) ( )i ix iy

2 2 ;U0 andV0 are the scales of the zonal and the
meridional components of the mean barotropic flow. Other notations
are presented in Appendix A.

As the first step, an effect of a relatively small localized bottom
depression on the LV stability (Köhl, 2007) is numerically verified
(Appendix B). Although it was previously shown that the LV, most of
the time, is not situated over any of the 50-m bottom depressions in the
center of the Lofoten Basin (Figs. 1 and 2), episodically it is observed
over one or another depression. Non-linear QG simulations show that,
as in Section 3.4, instability filaments are formed 2–3 months after the
beginning of the simulations, triggered by interaction of the LV with the
topography and the mean flow. Topographically induced deformations
of the vortex are especially pronounced in the lower layer (Fig. B1).
During 2–3 months, we observe over 50% reduction of the volume of
the LV main core in the upper 2 layers, while the LV is totally destroyed
within 5 months (Fig. B1). Thus, the decay rate is close to that of the
flat-bottom case, when finite-amplitude perturbations are imposed
(Section 3.4). Thus, localized bottom depressions and the background
current alone may lead to a relatively fast decay of the LV in the QG
model.

Another interesting result of Appendix B is that all the filaments and
submesoscale eddies, formed as a result of the LV instability, remain
inside the Lofoten Basin for at least 6 months of the simulations. This
may have implications for mechanisms of maintenance of the observed
anomalously thick layer of Atlantic water in the Lofoten Basin (Björk
et al., 2001; Søiland and Rossby, 2013).

As the second step, we neglect the effects of relatively small de-
pressions around the mean position of the Lofoten vortex (Fig. 1), but
take into account the large-scale effect of the gently sloping bottom
topography in the central part of the basin. For this, we approximate

=
⎧

⎨
⎪

⎩⎪

− − − − ≤

− − ≥
= =
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T
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the realistic topography of the central part of the Lofoten Basin with 8
circular non-concentric cylinders with radii of 175, 147, 125, 105, 80,
60, 45, 30 km and depths of the plains equal to those of the outer rings
of 3000, 3100, 3150, 3200, 3225, 3230, 3235 and 3240 m, respectively
(Fig. 19).

Fig. 19 presents configurations of the streamlines for the back-
ground initial conditions, when the mean flow at infinity is =U 100
cm s−1 and =V U40 0. Specifically, the bottom elevation between 3000
and 2000 m and the background velocity field forms open streamlines,
cyclonically skirting the eastern part of the basin, while along its wes-
tern boundary the strait northwards current is formed (Fig. 19). This
simulates the mean upper ocean circulation in the Lofoten Basin
(Fig. 1). At this point, we note that in the results below all moving
vortex patches remain within the 3000 m circle, and the topography
outside the 2000-m contour does not directly affect the LV. We also
note that in the southwestern part of the deep Lofoten Basin, a pattern
with closed streamlines is formed, separated with a separatrix stream-
line (the thick black line in Fig. 19). This area disappears for higher

velocity of the background flow (U0 > 50 cm s−1, not shown).
Numerical experiments for the configuration above (Fig. 19) pro-

vide the evolution of the LV in the presence of a gently sloping topo-
graphy and the background flow of are presented in Figs. 20 and 21. As
in Appendix B, the initially circular vortex patch is not artificially
perturbed, as the background deformation flow field itself generates
sufficiently strong non-linear instability perturbations at the vortex
boundary.

The evolution of the LV suggests the fundamental role of existence
of the separatrix in the mean current field in evolution of the vortex
patches in the area. In particular, Figs. 20 and 21 differ only by the
initial position of the vortex in the area: inside the central area of the
closed streamlines of the mean flow: the vortex center initially coin-
cides with the stationary elliptic point (Fig. 20), or the vortex initial
position is moved towards the hyperbolic point of the separatrix
(Fig. 21). This leads to quite different evolutions of the initially circular
vortex patches, as well as to different vortex decay times.

Positioned in the central part of the basin (Fig. 20), even 7 months
after the beginning of simulations (t=18), the vortex keeps the nearly
circular shape. This radically differs from the flat-bottom case with no
mean flow (Figs. 14–18), or from the results of Appendix B (Fig. B1).
The separation of the vorticity patches starts only about a 1 year after
the beginning of simulations (t=24-30). As in Appendix B, the during
the vortex decay topography efficiently traps the vorticity patches,
which stay within the loop of the separatrix during all the period of
simulations.

Positioning the vortex closer to the hyperbolic point, leads to its
much faster decay (Fig. 21). Deformed by the current shear, the vortex
becomes strongly elliptic already 1–2 months after the beginning of the
simulations. However, it takes 6–8 months ( = −t 15 21) before the
vortex breaks into separate vorticity patches. At the end of the modelled
evolution, a significant fraction of the vorticity patches remain within
the region, surrounded by the separatrix.

At the limit, when the vortex is positioned in the hyperbolic point
(not shown), the main vorticity patch stretches along the separatrix
faster than in Fig. 21. Still, separation of vorticity patches from the
main vortex body is observed only 5–7 months after the beginning of
the simulations. In this case, nearly all vorticity patches drift out of the
central region.

To summarize the results of this paragraph, in a more realistic case
of slowly varying topography and with the effect of the mean current,
as in of the Lofoten Basin, in the 3-layer QG model demonstrates a
significantly slower decay of the vortex, especially when the vortex is
entered in the ellyptic point of the background velocity field.

3.6. Disturbances at the LV dynamic boundary in the primitive equation
model

Looking for clean evidence of instability in the full-complexity and
forced primitive equation simulations is not trivial. Nevertheless, we set
out to look for such evidence by diagnosing the relative strength of
various PV azimuthal modes near the LV dynamic boundary in the MIT
GCM model. The development of the modes will be related to variations
in the LV volume and relative vorticity field — to see whether sig-
natures of the QG predictions can be found. We also investigate whe-
ther time variability of the LV dynamic parameters are related to the
intensity of perturbations at its boundary. The near-surface level
(200 m) was chosen since the linear QG model predicts the perturbation
amplitudes to be largest in the upper layer. In fact, the primitive
equation model shows that azimuthal perturbations in the LV core and
in lower levels have 5–10 times smaller magnitudes than those in upper
levels.

Could the higher intensity of perturbations at the selected level in
MIT GCM partly be attributed to the atmospheric forcing, in fact, the
selected level is most of the time below the seasonal pycnocline
(Fig. 11) and, thus, not directly affected by the atmosphere (except for

Fig. 19. The initial state of the QG model with varying topography and the mean flow.
The topography presents a set of nested non-concentric cylinders with different depths
and radii (marked alternatively with yellow and blue, see text for details). The dashed
blue contour presents the 2000 m isobath; with radius of 600 km, it marks the boundary
of the Lofoten Basin in the model. Thin gray contours are the streamlines. Thick black line
marks the separatrix, which limits the area, where particles are not advected out of the
simulation region by the mean flow. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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the short phases of deep convection – configuration B). Furthermore,
the azimuthal perturbations grow by an order of magnitude within the
time scales of 3–7 months (Fig. 22). This growth cannot be directly
forced by high-frequency atmospheric motions (typical synoptic time
scales are of order of a week), but can be attributed to a development of
eddy dynamic instability, as observed in the QG model.

The intensities of the perturbations were estimated in three circular
rings around the vortex center. The inner ring is positioned at the edge
of the LV core, at a distance of ±R drav1 ( =R Rav av1 is the dynamic
radii, where relative vorticity vanishes). The second ring covers the
inner skirt of the LV, at ±R drav2 (Rav2 is the mean distance from the LV
center, where relative vorticity reaches its first local maximum). The
third ring covers the outer skirt of the LV, at ±R drav3

( = +R R dr2av av3 2 is in the outer part of the eddy, where the rotation
velocity of the vortex decreases to 10% of its maximum value). The
distance dr above is selected as the half distance between Rav1 and Rav2.
All three rings lie inside the LV, defined as the region of anticyclonic
rotation. Within each ring, the PV ( = +Π N f ω g²( )/E ) around the LV is
averaged in the radial direction to form 3 circular distributions with 10°
azimuthal increment. In order to make the results comparable with the
QG model estimates (Section 3.4), the circular distributions are trans-
formed into deviations of PV contours from the radial shape
( = ′

∂ ∂∼ε R
Π

Π r
1

/av
E

E
, where ∼Π r( )E is the mean value of ΠE at a fixed radial

distance from the LV center and ′ = − ∼Π Π ΠE E E is the deviation, Rav is

the time mean LV radius). The variability within those circular dis-
tributions is further decomposed into sets of azimuthal modes by wa-
velet techniques using Morlet mother wavelets for the periodic circular
domain (Torrence and Compo, 1998).

The wavelet coefficients of relative vorticity peak at the 1st (anti-
symmetric) azimuthal mode (period = 360°), the 2nd mode (period =
180°), the 3d mode (period = 120°), the 4th mode (period = 90°) and
the 5th mode (period = 60°). Assuming a near-sinusoidal shape of the
wavelet coefficients for each of the wavelengths of interest, the in-
tensity of each mode is estimated to be 1.4 times the standard deviation
of its wavelet coefficients. The intensities of the 1st and the 5th modes
are always significantly less than those of modes 2–4 (as also observed
in Carton et al., 2014).

Temporal distributions of the intensity of the dominating 2nd to 4th
azimuthal modes are presented in Fig. 22. The elliptic mode =m( 2) is
the dominating one, while the energy of higher modes decreases with
the mode number. The modes show a considerable amount of co-
variability. The median deformations of the circular vortex structure by
the 2nd, 3rd and 4th modes represent 12%, 5% and 3% of the dynamic
radius at Rav1, 16%, 11% and 7% at Rav2, and 25%, 20% and 16% at
Rav3. The presence of the 2nd (elliptic) mode, especially pronounced at
Rav1, is a result of eccentricity of the LV core which is observed most of
the time. The relative intensities of the higher modes increase with the
distance from the LV center (Rav1 to Rav3): on average from 50% to 80%

Fig. 20. Simulations of the LV evolution in a QG model, when a barotropic background flow and varying bottom topography is approximated with 8 circular non-concentric cylinders
with varying plain-depth and radii, and the northeasterly mean flow is added (see Fig. 19 and text for details). The LV is initially centered at the elliptic point of the mean background
velocity field. As before, the LV set-up is presented by its most typical parameter state (Table 1, within configuration D). Each frame shows vortex patches in the upper (red upper contour
plots in a plate), middle (magenta middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as function of non-dimensional time. The unperturbed (initial)
position of the separatrix is given for reference. The dimensionless time unit corresponds to 12 days. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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for the 3rd mode and from 25% to 65% for the 4th mode—relative to
the intensity of the 2nd mode. In the radial direction the perturbations
of the 2nd mode are less correlated than those of the higher modes. For
the 2nd mode the correlation coefficients at Rav1 with the same mode at
Rav2 and Rav3 are 0.70 and 0.50, respectively, while for the higher
modes the same coefficients are 0.90 and 0.75, respectively.

The typical time scale for growth of the perturbation in the MIT
GCM model ranges from 3 to 7 months (Fig. 22). This is close to the
period of development of baroclinic instability in the idealized QG
model of the LV. As the perturbations develop the LV dynamic radius
(also shown in Fig. 22) typically stays rather stable. Only after the
perturbations reach high amplitudes at Rav1 and Rav2, a notable decrease
of the LV radius is seen. Thus, during the most dramatic events in mid-
2000 and in mid-2005 the LV radius decreases by about 5 km over 3–4
months. This forms about 15% of the initial LV radius. Assuming a
circular shape of the LV, this means about 70% of the LV volume is
maintained within the dynamic core. The normalized perturbation in-
tensity in the MIT GCM model (ε in Eq. (A.8)) reach 0.1–0.2. According
to QG model calculations, for such values of ε, the LV instability should
decrease the LV volume by at least 50% within 4–5 months (Figs. 15–17
and Table 3). The primitive equation model shows considerably smaller
LV volume decay. After separation of a part of the LV skirt, the LV
volume (limited by its dynamic radius) is restored in 1–2 months.

Growth of the perturbation intensity typically goes in parallel with a
decrease of the LV rotation rate. The magnitude of the relative vorticity
of the vortex core (mean relative vorticity within 0.5 R) presents sig-
nificant negative correlations with the intensity of the perturbations at
the LV boundary (Fig. 22a). The correlation coefficients are about −0.5

for all the modes and for each of the 3 selected distances from the LV
center. With a 1-year sliding average, the correlation coefficients range
from −0.7 to −0.8. Cross-correlations with the azimuthal mode coef-
ficients show that, on average, the absolute values of the core relative
vorticity reach a minimum 1–2 weeks after the perturbation dis-
turbances have reached their maximum. The overall rate of the de-
crease is small. During a period when no merger of LV with other an-
ticyclones is registered (2004–2005), the monthly rate of the decrease
of the magnitude of the LV relative vorticity is estimated to 2–3.5%.
This suggests a decrease of the LV rotation by 10–18% during the 5
months period.

The angular momentum, being a product of the relative vorticity
and the squared radius, accounts for relative vorticity distribution in
the radial direction. Contrary to the core relative vorticity, the absolute
value of the integral angular momentum of the LV core positively
correlate with the intensity of perturbations (Fig. 22b). The correlation
coefficients are not high, but significant: 0.25–0.40. This may stand for
a redistribution of the relative vorticity from the LV center to the LV
boundary with the growth of the perturbations (Fig. 22a,b).

The intensity of the perturbations in the LV core negatively correlate
with the strain around the core (Fig. 22c). The correlation coefficients
are significant and range from −0.20 to −0.40, depending on the
distance from the LV center and on the azimuthal mode. We consider
this to be a sign of the external strain favoring concentration of in-
stability in the vortex skirt, further detached from the LV as isolated
filaments.

In Fig. 22d we present potential and kinetic energy anomalies, in-
tegrated over the LV volume. The internal volume was taken over the

Fig. 21. As in Fig. 20, but the initial position of the LV is shifted southwestwards, towards the hyperbolic point.
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cylinder with the radius R1.6 (where the dynamic radius R is a function
of depth and time). The integral kinetic energy is computed as

∭=KE ρ V dx dy dz0.5 2 , the integral barotropic potential energy
anomaly as ∬=PE g ρ SLA dx dy0.5s s

2 , and the integral baroclinic

potential energy anomaly as ∭= ∂
∂PE g Δρ dx dy dz0.5 /i
ρ
z

2 (Oort

et al., 1989). Here V is the azimuthal velocity, g is the gravity accel-
eration, ρ and ρs are water density (subscript s stands for the sea-sur-
face), SLA is the sea-level anomaly over the LV, Δρ is water density
anomaly in the LV relative to the background, and ∂

∂
ρ
z
is the background

pressure gradient. For computation of anomalies of potential energy in
the LV core, the reference state was taken as the mean at distances

R R[2 : 4 ] from the LV center. The anomalies relative to the basic state are
estimated in each point of the LV core. PEi is dominating the total en-
ergy, while KE is several times less, and PEs is 4 orders of magnitude
less than PEi. Fig. 22d demonstrates that PEs and KE have a very im-
mediate reaction on the eddy merger events, while PEi increase can be
delayed after a merger. In most cases merger occurs during the periods
of the deep winter convection, and it is difficult to distinguish between
the two mechanisms of the LV regeneration. Closer look in Fig. 22d
suggests that both mechanisms are responsible for the LV re-generation,
maintaining the LV integrity against dissipation, previously suggested
by Ivanov and Korablev (1995a) (1995b), Köhl (2007), Volkov et al.
(2015). In particular, several peaks in PEs, PEi and KE occur during
summer mergers (2001, 2003, 2009), as well as during winters with no
mergers (2000, 2004, 2005, 2010), but no significant peaks are ap-
parent, when none of these events take place. During winter convection
events, an increase in PEs and PEi is observed, while KE often does not
increase (as during convection periods of 2004, 2005 and 2012). This
explains why Volkov et al. (2015), using relative vorticity as a measure
of the LV strength, did not find winter convection to have an effect on
the LV.

In summary, the LV instabilities, developing in the primitive

equation model share a number of features of the vortex instability
predicted by the non-linear QG model. However, instabilities appear to
mostly develop in the LV outer skirt and do not penetrate deep into the
LV core (see also Mahdinia et al., 2016). Our interpretation of the ob-
servations above is that a frontal geostrophic dynamic model may be
more appropriate for re-producing the observed features (Cushman-
Roisin, 1986). External strain also favors concentration of instabilities
in the skirt and formation of filaments at the LV boundary. Separation
of the filaments from the LV removes angular momentum, slowing
down its rotation, rather than eddy volume. The migration of the en-
ergy of the perturbations towards the skirt prevents from further pe-
netration of the perturbations in the core, and allows the core to persist
during longer periods of time.

We also note that the correlation of the relative vorticity of the LV
core with the perturbation intensity 0.7–0.8) is much larger than cor-
relation of the relative vorticity of the LV core with a number of mer-
gers (0.3). Sliding averages with a 1-year window size are used in both
cases.

4. Summary and discussion

In this paper we have presented a study of the vertical structure and
stability of the semi-permanent anticyclonic Lofoten vortex (LV). The
results are based on eddy-permitting numerical simulations with the
MIT GCM and on idealized 3-layer QG model calculations.

The MIT GCM fields demonstrated that the LV is a columnar vortex,
extending from the sea-surface to the bottom, with a dynamic radius R
of about 30 km (Fig. 4, Table 1). The first baroclinic Rossby radius of
deformation Rd in the Lofoten Basin is about 7 km (Nurser and Bacon,
2014; also obtained from the MIT GCM results), so R ~4Rd. The vertical
structure of the LV contains a noticeable baroclinic component. The
vortex core is found between 50–200 m and 900–1100 m and is asso-
ciated with a maximum in azimuthal velocity and relative vorticity as

Fig. 22. LV variability in the MIT GCM model at
200 m depth (a-c). In panels (a-c), black, blue and
red lines show the variability of perturbations with
azimuthal modes 2, 3 and 4, respectively. Panel (a)
depicts the normalized perturbations in ring 1 (cen-
tered at Rav), panel (b) – in ring 2 (centered at 1.5
Rav) and panel (c) – in ring 3 (centered at 2 Rav). The
perturbation intensities are normalized as:
= −v v v v( )/av std4 4 , where v av4 and v std4 are time-

mean and standard deviation of the perturbation
intensity (v) of azimuthal mode 4 in ring 1.
Variability of the normalized LV dynamic radius
(Rav) are shown with green lines. In panels (a-c) LV
radius and other parameters below are normalized
as: = −v v v v( )/av std, where vav and vstd re time-mean
and standard deviation of the corresponding vari-
able. In addition, the following dynamic character-
istics of the LV core are shown with cyan lines (for
better visibility the lines are centered at y-value 5):
panel (a) – normalized absolute value of the relative
vorticity of the LV core (ω, averaged within 0.5 Rav
from the LV center); panel (b) –normalized absolute
value of the integral angular momentum (IAM, in-
tegrated within the circle Rav); panel (c) – normal-
ized strain around the LV core (STR, mean in the ring

≤ ≤R r R2av av). In panel (d) time variations of bar-
otropic potential energy anomaly (PEs), baroclinic
potential energy anomaly (PEi) and kinetic energy
(KE), integrated over the LV core volume. The time
series are normalized and vertically displaced for
better visibility. The LV mergers with other antic-
yclones are marked with black solid vertical lines.
Shaded areas are winter periods of deep mixing. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)
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well as a minimum in dynamic radius. The core is characterized by a
weaker stratification, giving rise to a pronounced negative PV anomaly
with respect to the surrounding ocean conditions.

The vertical structure of the LV varies in time, demonstrating sea-
sonal and intra-seasonal changes. A large part of this variability falls
within four-five distinct clusters in the phase space of layer-mean QG
PV of layers 1 and 2 (Fig. 10). Each cluster is characterized by a certain
configuration of isopycnals, mostly differing by depth of the isopycnals
at the top of the vortex core relative to their depths in the surrounding
ocean (Fig. 11). The LV states in the PV space are mostly concentrated
near the centers of one of these clusters. This means that the transitions
between the states are rather rapid. The transitions between the states
are formed by variation of the upper ocean stratification over the LV
core, which is a function of atmospheric forcing. A 3-layer vertical
structure, with the core in the middle layer, is found to be an adequate
representation of the vortex most of the time (clusters A, C and D). The
2-layer configuration (clusters B and B1) is observed 17% of time. It
occurs during some late winters or early springs, when deep convective
mixing erodes the upper ocean stratification over the LV and reaches
the LV core.

In-situ observations (Ivanov and Korablev, 1995a, 1995b; Raj et al.,
2015) are too few to allow a detail classification of all LV vertical states.
Still the observations confirm the existence of at least the two limiting
states derived from the MIT GCM: a summer-autumn configuration (A,
C, D) and a winter configuration (B, B1). Observations also confirm
differences in the amplitude of seasonal variation of the thickness of the
upper layer over and outside the LV presented in MIT GCM. Specifi-
cally, the observed summer to winter mean variation of the mixed layer
depth in the Lofoten Basin is from 50 to 200–400 m (Nilsen and Falck,
2006; Rossby et al., 2009), while over the LV itself is reaches
500–600 m (Alekseev et al., 1991; Nilsen and Falck, 2006). The dif-
ference is also indirectly confirmed by an observed two-fold amplitude
difference of seasonal variation of the depth of the upper ocean iso-
pycnals: in the center of the Lofoten Basin (where the LV is situated) as
compared to that along the basin boundaries (Rossby et al., 2009).

Observations and MIT GCM data suggest moderate variations of
dynamic characteristics of the LV, episodically re-generated during
merger or winter convection events. A gradual decrease of the LV dy-
namic parameters by about 3% per month in-between the regeneration
events, detected in MIT GCM results, suggests a decay time of order of
2–3 years. Calculations presented by Søiland and Rossby (2013) in-
dicate that small-scale turbulent diffusion gives characteristic decay
times of dozens of years. In this paper we investigated the alternative
mechanism of vortex dynamic instability, often considered to be one of
the principal mechanisms for decay of mesoscale eddies (Carton, 2001;
Cushman-Roisin and Beckers, 2011). In Section 3.4 it was noted that the
LV vertical and horizontal structure satisfies the necessary condition for
vortex dynamic instability (Sokolovskiy, 1997b; Cushman-Roisin and
Beckers, 2011), and the observed range of Ro (0.03-0.15) and Bu (0.05-
0.1) numbers suggest that baroclinic or mixed instability can efficiently
develop (Ripa, 1992; Carton et al., 2014; Cohen et al., 2015).

An example of development and propagation of the LV perturba-
tions of the 2nd azimuthal mode, observed in the MIT GCM is presented
in Fig. 23. The period of rotation of the perturbation is around 20 days
and the phase speed of the perturbation is around 12 cm s−1. This is
about 3 times less than the maximum azimuthal velocity (40 cm s−1) of
the vortex. This ratio corresponds well to that of a baroclinically-un-
stable azimuthal mode-2 propagating around an anticyclonic eddy
(Paldor, 1999).

In the realistic MIT GCMmodel the LV, most of the time, keeps away
from the steep basin boundaries, which may deform and force stripping
of the vortex. The LV, though, often interacts with other finite-ampli-
tude eddies, both cyclones and anticyclones. However, the direct effect
of stripping of a part of the LV skirt by the current shear due to presence
of other eddies is not observed during such interactions. Following
model results (for example, Ciani et al., 2016), we consider the LV to be

affected by another eddy after the distance between their centers be-
comes less than 3 LV radii. Then, the typical time of contact of the LV
with other eddies is of order of 2–4 weeks, while the instability de-
velops over 5–8 months, a much longer time scale. The perturbations at
the LV boundary continue developing even when there is no direct
contact with other eddies. For example, in Fig. 23, rotation of pertur-
bations around the LV occur while eddies around keep relatively sta-
tionary positions or move away from the LV. Therefore, we assume that
relatively slowly developing dynamic instability to be the main reason
for gradual decay of the LV in-between the re-generation events. Con-
tact with other eddies may trigger instability of the LV which then
develops further, fed by the LV energy.

To observe how the dynamic instability develops in the LV, a de-
tailed analysis of the LV stability properties has been done with linear
and non-linear QG models. In these models we used a simplified LV
structure, based on the analysis of MIT GCM results in Sections 3.1–3.2:
the 3-layer ocean, where the LV is approximated by patches of constant
PV. Series of experiments with an artificially perturbed vortex with the
predefined perturbations intensity and the motionless flat-bottom ocean
(Section 3.4), and with an initially unperturbed vortex and the realistic
mean flow and varying bottom topography (Section 3.5) are conducted.
The first series of experiments show that the LV is baroclinically un-
stable, and that baroclinic instability can split the original vortex into
parts within 4–8 months (Section 3.4). Even in relative simplicity of the
QG model, the development of perturbations in the LV fairly well agrees
with the MIT GCM realistic simulations on several key features. As in
the primitive equation model, the QG models (Section 3.4) predict re-
latively slow development of the instability in the LV - of order of
several months. The slightly higher rates of LV decay are observed in
the upper and the lower layers, compared to the middle (core) layer.
This can be explained by a much stronger radial PV gradient at the core
levels, which forms a barrier for the particle exchange between the LV
core and the surrounding fluid. Also, similar to the primitive equations
model, the QG models suggest a dominance of the azimuthal modes
=m 2, 3, 4 for the most typical configurations of the vertical PV

structure in the LV.
However, important differences are also observed. A notable dis-

crepancy between the QG models over a flat bottom and the primitive
equation model is a difference in the LV volume loss as a result of the
development of perturbations. In the small-amplitude linear and the
finite-amplitude non-linear flat-bottom QG simulations, over half of the
initial LV volume is expected to be dispersed by the instabilities within
4–8 months (Section 3.4). For large-amplitude mode-3 initial pertur-
bations, the LV in the upper layer breaks up into 4 eddies (including the
remains of the LV core) of nearly equal size already within about 3
months, and the vortex completely disintegrates within 5 months. The
overall rate of the core decay is thus 20–30% per month. The MIT GCM
simulations, only the strongest instability events lead to a notable vo-
lume loss from the LV core, and this loss does not exceed 10–20% of its
initial volume (Fig. 22).

Differences in development of instability between the full-complexity
primitive equation model and the linear QG model are not surprising
since perturbations experienced by the LV cannot be considered small-
amplitude. But the differences between the primitive equation model and
the non-linear QG model are less obvious and demand more investiga-
tion. As mentioned in the introduction, at low Rossby numbers (0.1 in
the LV) and low vortex-core thickness ratio to water depth
( =ν h H/LV2, =0.20-0.25 in the LV) the hybrid (Rossby-Kelvin wave) and
the baroclinic (Rossby wave) instabilities may arise (Ripa, 1992), as well
as the barotropic instability. The first type can exist in the primitive
equation model, but not in the QG model, while the second and the third
types may be generated in both models. And yet, instability in the pri-
mitive equation model appears to develop much slower and never results
in a significant decrease of the vortex core volume.

There may be several reasons for this. An obvious one is the dif-
ference in the vertical PV structure in and around the vortex in the 3-
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layer QG model and in the 50-layer MIT-GCM. In particular, when the
PV gradient is zero in a layer, this layer does not support development
of Rossby waves. Therefore baroclinic, hybrid and Sakai instabilities
cannot develop intensive perturbations in this layer. In the limiting case
of the 2-layer QG model, the vortex then becomes stable to any external
perturbations, independent of weather it is a sea-surface or a mid-depth
intensified vortex (Dewar and Killworth, 1995; Benilov, 2004; Cohen
et al., 2015; Sutyrin, 2015; Cohen et al., 2016). In the 3-layer QG model
used in Section 3, a small radial PV gradient in the lower layer (on
average only 5% of that at the level of the LV core) is still sufficient for
supporting Rossby wave instabilities, as it is shown by the numerical
experiments. In a realistic vortex, such a ‘compensation’ layer can be
formed below or above the vortex core, where the anticyclonic rotation
is balanced by compression of isopycnals. In the 50-layer MIT GCM the
radial PV gradient changes sign above and below the LV, and isopycnic
layers with a very weak or zero PV gradients do exist. Inside these
comparatively thin layers the amplitudes of Rossby waves decrease
exponentially from the layer boundaries, reducing coupling between
the layers (Sutyrin, 2015). Therefore, one could argue, the simplified 3-
layer PV structure in the QG model is able to support overall higher
rates of development of baroclinic instability, as compared to MIT GCM.

Furthermore, it has been numerically observed that, under certain
conditions, non-linear effects may stabilize linearly-growing perturba-
tions even though sufficient instability conditions are met (Sutyrin,
2015). Thus, for vortex instability in a QG model, a non-linear satura-
tion of growing finite-amplitude perturbations on elliptical vortices
have been observe (Flierl, 1988; Ripa, 1992). Even being present in the
non-linear QG and in the primitive equation models, details of the non-
linear evolution may differ between both models (Boss et al., 1996). For
example, it is expected that frictional effects and the turbulent en-
vironment result in a faster damping of perturbations in the primitive
equation model, as compared with the QG model.

A QG experiment with more realistic background conditions

(Section 3.5) showed, that adding the large-scale gently sloping topo-
graphy (around 1 m km−1) and the barotropic mean flow (of
10 cm s−1), as observed in the Lofoten Basin, reduce the LV decay rate,
brining it closer to that in the MIT GCM. The time for instability to
penetrate into the vortex core and to break it into separate vorticity
patches in the QG model now increases to 1 year (Fig. 20). Sloping
topography is particularly important, as an experiment with the mean
flow and a localized topographic depression (Appendix B) rather show a
decrease in the LV decay time (2–5 months, Fig. B1), as compared to the
motionless flat-bottom background case. Overall, steep topographic
features are known to trigger instability in oceanic vortices, and even
their breakdown (Thierry and Morel, 1999; Van Geffen and Davies,
2000; Richardson et al., 2000; Bashmachnikov et al., 2009), and the
increase in the time of the eddy decay over a sloping bottom has not
been expected. A possible reason is that the PV variations due to to-
pography forces mode 1 in the vortex perturbation (Fig. 20), which
decays at a lower rate extracting energy from the faster decaying modes
2–4. Further experiments are required to study this phenomenon.

A difference in the area of concentration of the perturbation energy
is also noted. In contrast to the nonlinear QG model (Section 3.4),
where instability penetrates deep into the LV core and splits up the
vortex of nearly equal size within a few months, instability in MIT GCM
typically develops only within the skirt of the vortex. It results in se-
paration of elongated filaments and small (submsoscale) relative vor-
ticity patches (Section 3.6). The latter is consistent with the develop-
ment of baroclinic instability observed in a primitive equation model of
eddies with low Burger numbers (Mahdinia et al., 2016). Stripping of
the skirt of an oceanic mesoscale vortex, as a result of baroclinic in-
stability, has also been observed in the ocean and supported by nu-
merical model studies (Ménesguen et al., 2012). The general effect of
stripping of an eddy skirt in an external strain field has also been ob-
served in some model studies (Maximenko and Orlov, 1991; Mariotti
et al., 1994).

Fig. 23. Relative vorticity (x10−5 s−1, left panels) and vertical velocity (x10−2 cm s−1, right panels) at 513 m depth for four consecutive moments of time (a, b, c, d) with the time
interval between panel sets of 3 days. White star marks the LV center, gray circle marks the LV dynamic radius, and gray segment starting at the LV center – the position of maximum of
vertical velocity of perturbations of the second azimuthal mode. Black point with white circle and white point with black circle mark a cyclone and an anticyclone in the vicinity of the LV.

I.L. Bashmachnikov et al. Deep-Sea Research Part I 128 (2017) 1–27

21



In the MIT GCM weak background current and other eddies yield the
main source of strong localized velocity shear around the LV. Such in-
teractions can suppress development of instabilities in the vortex core
(Dewar and Killworth, 1995). In fact, in Section 3.6 we noted that the
intensity of the external strain (strongly intensified as the LV interacts
with other eddies) is negatively correlated with the intensity of the
perturbations at the LV boundary. It can be speculated that external
strain formed at the vortex boundary is responsible for concentration of
energy of the developing instabilities at the outer part of the vortex
patches, and remove the energy of growing perturbations before they
penetrate deep into the core. Further wrapping of these filaments around
the vortex may prevent the core from breaking into larger fragments.

In our MIT GCM simulations, during the in most of the events of
filamentation, the volume of the LV core does not vary as a result of
development of instability. This is not the case for the kinetic energy
and angular momentum of the LV core, clearly affected by the devel-
opment of the perturbations in this model. Thus, in the present study, a
significant negative correlation (−0.7 to −0.8) between the intensity
of the azimuthal disturbances and the mean relative vorticity of the
core is detected (for annual sliding means). Therefore, after the fila-
ments separate from the skirt, removing angular momentum, the ori-
ginal radial momentum distribution is restored via translation of the
angular momentum outwards from the core. These variations in redis-
tribution of dynamic properties within the LV core are not reproduced
in the QG models, considering dynamics of patches of homogenous PV.

Another discrepancy between the QG models (Section 3.4) and the
primitive equation model (Section 3.6) is the structure of the pertur-
bation of the LV. In the QG models the rate of development of the first
four azimuthal perturbation modes are rather close, but the 3rd mode is
predicted to be the most unstable (Table 3). In contrast, the 2nd azi-
muthal mode is dominating the LV perturbations in the MIT GCM, al-
though the 3rd and the 4th modes are also pronounced. This develop-
ment of the perturbations in the LV in MIT GCM ends in ejection of
mostly two instability filaments, while three instability filaments are
ejected during only a few events. For a vortex structure similar to that
of the LV, the dominance of the 2nd azimuthal mode, during devel-
opment of the baroclinic and the mixed instabilities in a primitive
equation model, was also obtained in Mahdinia et al. (2016).

A possible reason may be the single-mode predictions of the QG
model experiments, which do not capture possible non-linear energy
exchange between a set of different equally strong modes during the
initial stages of their development. With the observed close rate of
development of the first four azimuthal modes in MIT GCM, interac-
tions between different modes may lead to a faster growth of one mode
at the expense of others. The difference between the models may also
result from the simplification of the LV vertical structure in the QG
models. Thus, in a study of mid-depth anticyclonic eddies with a 5-layer
linear QG model, Carton et al. (2014) showed that for large eddies (R
on order of 2-5 Rd, as in the case of the LV) the 3rd azimuthal mode is
the most unstable one. However, experiments with a continuously
stratified QG model (Nguyen et al., 2012) have also shown that the 3rd
or the 4th azimuthal modes start dominating over the 2nd mode only as
the eddy Burger number falls below 0.07–0.08. As the LV Bu~0.05-
0.10, in the more realistic continuous-stratification conditions, either
the 2nd or the 3rd azimuthal modes are expected to dominate (see also
Baey and Carton, 2002).

Finally, in the full-complexity of MIT GCM model, interactions with
other eddies are observed to primarily force elliptic deformations (the
2nd azimuthal mode) in the LV. The interaction with cyclones can also
force perturbation of the 1st azimuthal mode (Carton et al., 2014).
Although the latter is not observed to develop to large amplitudes in the
LV, it can have indirect effects on the neighboring modes in the MIT
GCM: (a) the forced mode can alter the radial distribution of intensity of
the LV perturbations, driving them away from the most unstable normal
mode and slowing down their growth; (b) the nonlinear wave-wave
interactions of mode 1 with mode 3 may force Additionally, Volkov

et al. (2013) identified dipole and quadrupole wave patterns in the
Lofoten Basin as 1st and 2nd modes of topographic Rossby waves in a
bottom depression. Interaction of the LV with the instantaneous circu-
lation structures, formed by the Rossby waves, can trigger the devel-
opment of the corresponding azimuthal modes in the LV.

We have noted a range of differences between the LV decay in QG
and primitive equation calculations. A common and key finding is
that perturbations at the LV boundary do not develop to penetrate deep
into the LV core to cause the vortex breakdown, contrary to what was
observed in QG simulations with the motionless flat-bottom back-
ground. Adding a realistic background current and single a step-like
bottom depression show a similar or even faster decay rate. Adding a
realistic background current and a gently sloping bottom topography
decrease the LV decay rate, bringing the QG simulations closer to those
of MIT GCM. However, either the development of the baroclinic in-
stability in Section 3.4 or a mixed baroclinic-barotropic instability in
Section 3.5 result in a relatively long decay time of the LV, over 5–12
months, for external forcing, notably eddy mergers or deep convection
in the core region, to interrupt the development of the instability and
re-build the LV. Further experiments will be conducted to deeper in-
vestigate the mechanisms governing the LV decay.

Volkov et al. (2015) analyzed components of the relative vorticity
balance for the same MIT GCM model fields. The authors found that
time variations of the relative vorticity of the LV core are principally
correlated with the intensity of eddy fluxes of relative vorticity through
the LV boundaries, and suggested that winter convection should be of
minor importance in restoring the LV. In this study it is demonstrated
that the LV barotropic and the baroclinic potential energy anomalies
clearly intensify, both during mergers and winter convection events,
while the LV integral kinetic energy is not always affected. We also
observe that the LV relative vorticity does not always increase after a
merger (the LV-integrated angular momentum typically does). Mean-
while, it was demonstrated that, on the annual time scale, the LV re-
lative vorticity and its volume strongly correlate with the intensity of
the detected wave-like perturbations, rather than with the number
merges per year. It is also noted that the LV volume/intensity are re-
stored a few months after the minimum relative vorticity of the core is
reached, even when no merger or deep winter-spring convection are
detected. The detailed mechanisms governing the LV re-generation thus
remain to be further investigated.
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Appendix A

Under the QG approximation without external forcing, the conservation of PV (Π ) hold true within each layer (Pedlosky, 1987).

=d Π dt/ 0,j j

where = ∂ ∂ + ∂ ∂ + ∂ ∂d dt t u x v y/ / / /j j j .

The three-dimensional potential vortex
⎯→⎯
Π is related to the hydrodynamic pressure perturbation relative to the hydrostatic-equilibrium pressure

(→p ) by the linear differential operator:
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2 are Froude numbers, ′ = −g g ρ ρ ρ( )/1 2 1 0, ′ = −g g ρ ρ ρ( )/2 3 2 0); f is the constant
Coriolis parameter, g is the acceleration due to gravity, ρ0 is the mean density value, L is the horizontal scale and H is the vertical scale, such that the
depth of ocean equals to + +H h h h( )1 2 3 , where h h h, ,1 2 3 are the non-dimensional depths of the upper, the middle end the lower layers, respectively
( + + =h h h 11 2 3 ).

A diagonalization method, described in detail in (Kamenkovich et al., 1982), transforms Eq. (A.1) to:
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Here λj are the eigenvalues of the spectral equation → + → =Tq λq 0 and→q j( ) =j( 1, 2, 3) are its eigenvectors, E is an identity matrix. The model
is solved under the rigid-lid condition. Therefore, the eigenvalue of the barotropic mode ( =j 1) is zero. In any point x y( , ) the components wj of the
auxiliary vector ⎯→⎯w from the right-hand part of Eq. (A.1) can be determined with the use of Green function Gj:
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where = − ′ + − ′r x x y y( ) ( )2 2 , = −γ λ1,2 2,3 and K z( )0 is the modified Bessel function of order 0 (hereinafter, without a special mention, we shall
also use the modified Bessel functions of order n K z( )n and I z( )n ).

Let us suppose, that the potential vorticities Wj are piecewise-constant functions of the type

= = ⎧
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0

, 1, 2, 3,j j j j
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where Πj are constant and areas σj initially represent the circles with the radii Rj. Following Sokolovskiy (1991), we can then write the expressions for
the pressure in the layers:
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Here, as before, = − ′ + − ′r x x y y( ) ( )2 2 , but now ′x and ′y are the coordinates of the points of integration located on the contours Cj of initially
circular vortex patches σj; ′ ′ν x y( , )j is a parameter continuously varying counterclockwise along the contour Cj; = −M r r r π( ) (ln 1/2)/42 ,

= − =M r γ r K γ r γ n( ) ( ( ) 1)/2 , ( 1, 2)n n n n1 , = ′ − ∂ ′ ∂ − ′ − ∂ ′ ∂N x x y ν y y x ν r[( )( / ) ( )( / )]/j j
2 and qjk, sjk are the elements of matrices Q, S from (A.3) and

(A.4).
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The equations (Eq. (A.7)) form a theoretical basis for the so-called Contour Dynamic Method (Zabusky et al., 1979) and demonstrate that, for the
assumptions made, perturbations of pressure (streamfunction) in each of the fluid layer j are fully determined by an evolving configuration of the
boundaries of the vortex patch Cj. This equation set can be solved numerically with a three-layer version of the Contour Dynamics Method
(Sokolovskiy, 1991; Sokolovskiy and Verron, 2014).

It is easy to obtain from (Eq. (A.7)) that the appropriate distributions of azimuth velocities have the form:
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The general scheme of stability analysis for an axisymmetric three-layer vortex with relatively small azimuthal perturbations in the shape of the
vortex patches forming the vortex is presented below. Following (Sokolovskiy, 1997a, 1997b) let us represent the contours Cj, which are the lines of
constant potential vorticities in polar coordinates r θ( , ), in the parametric form:

= + − < < =f θ t R R ε i m θ δ t ε j( , ; ) [1 exp[ ( )]], 1, 1, 2, 3.j j j j j (A.8)

Here, PV perturbations of amplitude Πj (see Eq. (A.6)) of an azimuthal mode number ≥m 1 are superimposed on the unperturbed state in the
area ±R εj j. The imaginary part of the complex number δ defines time evolution of the amplitude of the azimuthal mode m. The total differentiation
of (Eq. (A.8)) with the respect to time gives us the set of equations:

+ − = =f f V f V f j0, 1, 2, 3,j jt j
θ

jθ j
r

j
( ) ( )

(A.9)

whereV j
θ( ) andV j

r( ) are the azimuthal and the radial components of velocities in the j th layer, and the subscripts t and θ denote partial differentiation
with the respect to the appropriate variables.

Taking into account Eq. (A.8), we perform a linearization of Eq. (A.9) and obtain a system of linear algebraic equations for the small amplitude
perturbations (see details in Sokolovskiy, 1997a, 1997b). The system reduces to the set of characteristic equations:

− =B δ E 0 (A.10)

Here matrix B contains terms:
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Here Δnj is Kronecker delta-symbol; =T 1/2nn
(0) , = =T m I γ R K γ R n( ) ( ), ( 1, 2, 3)nn n j n j

(1,2)
1,2 1,2 . Note that coefficients of the system of equations (Eq.

(A.10)) depend on all external parameters, as they contain the terms from matrices (Eq. (A.3)) and (Eq. (A.4)). Expressions for the variables Uj and
Tnk

j( ) at ≠n k depend on the shape of the vortex under study and have a lengthy form. For the case ≥ ≥R R R1 2 3, these expressions are presented in
(Sokolovskiy, 1997a, 1997b). From (A.8) it follows that the instability condition for a mode number m is determined by the inequality >δIm 0,
which occurs only if exists a single real root of the cubic equation for δ in Eq. (A.9).

Appendix B

In Section 3.4 the LV was simulated as an idealized vortex over flat topography and with zero background flow. Here we will study the vortex in
more realistic conditions.

The general shape of the bottom of Lofoten Basin, deepening to southwest, is simulated with 2 not-concentered circular bottom depressions of
3040 m (yellow filled circle in Fig. B1) and 3080 m (green filled circle in Fig. B1) depths with the diameters of 200 and 90 km, respectively. A
northeasterly barotropic mean flow with the initial velocity of 52 cm s−1 is imposed to simulate the western and eastern branches of the NwAC
(Fig. 1). Observations (Skagseth et al., 2008) and the MIT GCM model results (not shown) suggest that the NwAC reaches ocean bottom, having a
pronounced barotropic component.

A barotropic north-easterly mean flow (taken =U V0 0 = 52 cm s−1 at infinity) and normalized bottom elevations over 3000 m, negative for a
depression (σi, i=1, 2) added, new terms appear on the right-hand side of (A.7), described by Eq. (5). As in Appendix A, evolution of the contours,
limiting the areas of constant PV in each of the layers (Πj), is estimated by numerical evaluation of displacements of its nodes for the total pressure
field, defined above.

The upper left panel in Fig. B1 shows the background and initial conditions. Specifically, the mean flow forms closed isolines of cyclonic
circulations (inside the thick black drop-like structure), roughly reminding what is observed in the Lofoten Basin (Fig. 1). The LV is immersed in the
flow inside the green contour (Fig. B1, upper left panel). In this case, contrary to Appendix A, the instability of the LV is not imposed, but is generated
by the external combination of the topographic and the mean-flow.

The remaining panels show the evolution of instability. There is clear sign of topographic trapping of both the vortex and the filaments emerging
from instability. A significant distortion of the main core with a further loss of the LV to eddies and filaments occur after model time 5–8, e.g. 2–3
months after the beginning of the simulations. By the fifth month of the simulations (t = 1 2.5), the LV core nearly totally destroyed, except for the
middle layer, where it is spilt in several smaller structures. This study, even if simplified, demonstrates that the even if LV is over one of topographic
depressions of the central part of the Lofoten Basin, it cannot stabilize the LV.
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