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Observations of the surface-water fugacity of carbon dioxide (fCO2
sw) measured during 2005 in the

subpolar North Atlantic Ocean (58–621N, 10–401W) were used together with in situ ocean data and

remotely sensed data to develop algorithms to estimate fCO2
sw. Based on multiple regression we found

that sea-surface temperature (SST), mixed-layer depth (MLD), and chlorophyll a (chl a) contributed

significantly to the fit. Two algorithms were developed for periods depending on the presence of chl a

data. The correlation coefficient (r2) and the root-mean-square deviation (rms) for the best fit in

the period when chl a was observed (20 March–15 October) were 0.720 and 710.8matm, respectively.

The best fit for the algorithm for the period when no chl a was present (16 October–19 March) resulted

in a r2 of 0.774 and a rms of 75.6matm. Based on these algorithms we estimated seasonal fields of fCO2
sw

and the air–sea CO2 flux. The estimated net annual CO2 sink was 0.0058 Gt C yr�1 or 0.6 mol C m�2 yr�1.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The North Atlantic acts as one of the more important CO2

(carbon dioxide) uptake regions (‘‘sinks’’) of the world’s oceans
(Takahashi et al., 2002, 2008) due to extensive biological activity
and the cooling of the warm Atlantic surface water while it moves
northward. However, limited coverage of surface water CO2

fugacity (fCO2
sw) measurements has restricted our knowledge

about the actual role and magnitude of the northern North
Atlantic sink (north of 581N). Volunteer Observing Ships (VOS)
have played a major role in improving the temporal and spatial
resolution of the temperature (SST) and salinity measurements in
the global ocean, as well as of other oceanographic parameters.
Recently, some of the ships have been equipped with fCO2

sw

sensors, providing high-frequency measurements (1-min inter-
vals) along the ship’s track (Cooper et al., 1998; Lüger et al., 2004;
Chierici et al., 2006; Olsen et al., 2008). The ultimate goal of the
global fCO2

sw observation effort is to constrain regional ocean
carbon uptake on seasonal to interannual timescales to about
0.1 Gt C yr�1 (1 Gt ¼ 1012 kg), which requires the sea–air fCO2

difference to be determined accurate to between 3 and 20matm,
depending on ocean region (Sweeney et al., 2002). Given the
limitations of the VOS program (ships can only be in a single place
ll rights reserved.
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at a time), this requires development of robust routines for
extrapolation and interpolation of the in situ data. Near synoptic
data from space-borne sensors have been used to estimate
regional fCO2

sw fields through the application of algorithms that
take advantage of the correlations between fCO2

sw and remotely
sensed variables. In particular, satellite sea-surface temperature
(SST) data have been applied in regions like the North Pacific
(Stephens et al., 1995), the Equatorial Pacific (Boutin et al., 1999;
Cosca et al., 2003), and Sargasso and Caribbean Seas (Nelson et al.,
2001; Olsen et al., 2004; Wanninkhof et al., 2007). However, in the
northern North Atlantic the SST by itself has not been a good
predictor of fCO2

sw, particularly in summer (Olsen et al., 2003). Use
of chlorophyll a (chl a) has been suggested but either no strong
relationship has been found (Lüger et al., 2004; Nakaoa et al.,
2006) or else they are only valid on short spatial scales (Watson
et al., 1991). However, recently Olsen et al. (2008) observed clear
correlations between fCO2

sw and both chl a and mixed-layer depth
(MLD) in the northern North Atlantic. From this, we develop fCO2

sw

algorithms applicable to the northern North Atlantic using in situ

fCO2
sw values, remotely sensed chl a, and ocean MLD and SST from

an assimilation model. From these relationships seasonal fields
of fCO2

sw and sea–air CO2 flux are created. After a brief description
of the hydrography and the study area, we present the remotely
sensed and ocean data, and the field measurement program. We
use the data set to derive algorithms to calculate fCO2

sw values
in the northern North Atlantic. The fCO2

sw algorithms are used
to compute weekly fields of fCO2

sw, which are compared with the
observed fCO2

sw data and are validated with fCO2
sw measurements
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from an independent field program. We calculate the sea–air CO2

flux based on the computed fCO2
sw, and we produce seasonal maps

of all study parameters for four seasons.
2. Study area

Olsen et al. (2008) showed that the surface-water fCO2

characteristics of the shelf regions of the northern North Atlantic,
such as the North Sea and the East Greenland Current, differed
significantly from the deep ocean regions. Here we focus on the
latter region, the area between 10–401W and 58–631N (Fig. 1).
This area encompasses the Rockall Trough (RTr), and parts of the
Iceland Basin (IcB), and the Irminger Basin (IrB), to 401W. Data
from regions with a bottom depth shallower than 500 m were
excluded, since they are considered as shelf seas. Our study area is
mainly influenced by the relatively warm and saline North
Atlantic Current, NAC, which enters the region from the south-
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Fig. 1. The location of underway measurements of fCO2
sw and SST used in this study perf
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west. The water partly continues northward into the Nordic Seas.
The rest circulates in the area, with a net movement towards
the west, progressively cooling and freshening along its way.
These waters are frequently referred as the Subpolar Mode Water
(McCartney and Talley, 1982), which mixes with waters of polar
origin in the Labrador Sea and forms the coldest and freshest
watermass the Subarctic Intermediate Water (SAIW). The SAIW
constitutes a large part of the Irminger Basin. The East Greenland
Current (EGC) affects the westernmost part in our study area with
low-salinity waters from the Arctic Ocean.
3. Data

3.1. Field measurements

The fCO2
sw and SST data were obtained onboard the container

carrier M/V Nuka Arctica in 2005 (Fig. 1) and are presented by
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Olsen et al. (2008). In 2005, data were obtained on 27 of the 30
trans-Atlantic crossings, starting January 7 and ending December
3. Generally the ship crosses the Atlantic at roughly 601N in about
5 days and spends approximately 1 week on the west coast of
Greenland and 3 days in Aalborg, Denmark. The data from 2005
have been made publicly available through the Carbon Dioxide
Information Analysis Centre (CDIAC) at http://cdiac.ornl.gov/
oceans/VOS_Program/nuka_arctica.html. We have used a total of
19,048 data points covering a full annual cycle in the region
between 40–101W and 58–631N. The fCO2

sw system installed
onboard the Nuka (since 2004) analyzes the CO2 concentration
in an air headspace in equilibrium with a continuous stream
of seawater using a LI-COR 6262 non-dispersive infrared (NDIR)
CO2/H2O gas analyzer. The system is similar to the instruments
described by Pierrot et al. (2008) and Olsen et al. (2008) describes
the specific instrumental set-up for the Nuka.
3.2. Ocean analysis data

We used the SST and MLD data set obtained from the
Forecasting Ocean Assimilation Model (FOAM) of the UK National
Centre for Ocean Forecasting (McCulloch et al., 2004). The FOAM
data were obtained at http://www.ncof.gov.uk/products.html
(McCulloch et al., 2004). This data set was also used in Olsen
et al. (2008) study. The data are provided as daily fields on a 1/91
resolution, corresponding to 12.3 km in latitude and 6.2 km in
longitude at 601N. FOAM uses ocean data (salinity, temperature)
from several sources; such as Argo profiling floats equipped with
salinity and temperature sensors, XBT’s (Expendable Bathyther-
mographs), and CTD’s (conductivity–temperature–depth-sensors)
as well as satellite-derived SST from the Advanced Very High
Resolution Radiometer (AVHRR). The daily FOAM data were
collocated with the Nuka fCO2

sw data with a distance separation
of between 0 and 7.8 km, and a mean value of 4 km.

Other SST products from different sensors were tested, such as
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and AVHRR. The AVHRR SST data were obtained from
the Physical Oceanography Distributed Active Archive Center
(PODAAC at the NASA Jet Propulsion Laboratory, Pasadena, CA, at
http://podaac.jpl.nasa.gov/poet) The SST data from the MODIS
instrument onboard the EOS Terra Satellite were provided by the
NASA/Goddard Earth Sciences Distributed Active Archive Center
(GES DAAC) at http://daac.gsfc.nasa.gov/. We also used the NOAA
Optimum Interpolation (OI) Sea-Surface Temperature V2
(Reynolds et al., 2002). A comparison of the different SST products
with the observed SST (from Nuka) showed that the SST data
generally agree well with the Nuka data SST (Table 1). SST from
Table 1

Summary of statistics of the DSST (remotely sensed/model SST–Nuka SST).

FOAM AVHRR MODIS Reynolds

25th percentile �0.30 �0.27 �0.43 �0.05

Median residual 0.05 0.09 �0.07 0.20

75th percentile 0.38 0.34 0.21 0.5

Mean 0.02 0.01 �0.09 0.24

rms 0.52 0.57 0.50 0.44

N 19,047 8114 19,047 19,047

N denotes the number of data points used in the analysis. A negative mean denotes

a colder SST than the SST measured onboard the Nuka, and a positive a warmer.

Note that although AVHRR SST agrees well with Nuka SST (mean ¼ 0.01), the

analysis is based on less than half of the amount of data as the other SST sources.

The 25th percentile value (also referred as the lower quartile) indicates the limit

where 25% of the residuals fall below the value in the table. Similarly, the 75th

percentile (upper quartile) denotes the value where 75% of the residuals fall below.
the AVHRR has the smallest offset and the FOAM data the lowest
variance from the observations (rms). Since the AVHRR data set is
based on less than half of the amount of data as the other SST
sources, we consider the FOAM data as more reliable and in best
agreement with the observed SST from the Nuka data set.
3.3. Remotely sensed chlorophyll a data

We used the Level 3 merged chl a product created and
distributed by the Ocean Biology Processing Group (McClain et al.,
2006; http://oceancolor.gsfc.nasa.gov) using the satellite mea-
surements from MODIS (OC3 M algorithm), on the Aqua satellite,
and the Sea-viewing Wide Field-of-view Sensor (SeaWIFS, OC4V4
algorithm), on the OrbView-2 platform. This product has
increased coverage over the single mission products, which is
important for these high-latitude regions where cloud cover
severely limits the remotely sensed color. The data were
collocated with the fCO2

sw data obtained on the Nuka with a mean
distance separation of 4.0 km and a standard deviation of
75.6 km.

Satellite-derived chl a estimates cannot be obtained in the
presence of cloudy skies and during the Polar night. Therefore, few
chl a data were available for the period before 20 March and after
15 October 2005. This is not a significant issue as during this
period chl a is not critical for fCO2

sw algorithms, since it is believed
that there is little or no biological influence on surface sea-
water fCO2

sw. Following Lévy et al. (2005), chl a values greater
than 5 mg m�3 were considered unrealistically high and were
discarded.
4. Calculations

4.1. Estimation of fCO2
sw algorithms

To develop algorithms describing the fCO2
sw in the surface

water we use proxies that represent the main drivers of the fCO2
sw

in the northern North Atlantic: temperature, biological processes,
and physical mixing. The use of chl a as a proxy for fCO2

sw in
the northern North Atlantic has been investigated previously. In
the present paper algorithms to compute fCO2

sw from SST, chl a,
and MLD are explored using multiple regression based on the
Marquardt–Levenberg routine (Press et al., 1986), which is
implemented in the STATISTICA& software. By investigating the
fCO2

sw residuals (observed�predicted) in a set of step-wise
equations, we analyze the individual contribution of chl a, and
MLD to the overall fit. This is illustrated in Fig. 2A and B, where
the residuals from the regression: fCO2

sw
¼ 383.01–4.288� SST+

0.065�MLD, is plotted versus chl a. A positive residual means
that the predicted fCO2

sw is lower than the observed fCO2
sw, and we

observe a correlation between the more negative residuals (fCO2
sw

too high) and higher chl a values. Next, we study the residuals
when chl a is included in the algorithm for the equation:
fCO2

sw
¼ 384.82–3.579� SST–15.021� chl a+0.055�MLD; in this

case we observe no bias in the residuals versus chl a (Fig. 2B).
Including chl a improved the correlation coefficient (r2) from 0.62
to 0.68 and decreased the root-mean-square error (rms) from
714.4 to 712.8matm. The improvement by including chl a is
similar to the improvement by adding SST, which increased r2

from 0.62 to 0.68 and decreased the rms from 14.1 to 12.8matm.
Cubic and/or quadratic functions of SST were tested and showed
no significant improvement for the overall rms and r2 of the
algorithm. The inclusion of chl a data in the algorithm leads to less
biased residuals. This suggests that chl a is a useful proxy for the
biological CO2 drawdown during primary production. The same

http://cdiac.ornl.gov/oceans/VOS_Program/nuka_arctica.html
http://cdiac.ornl.gov/oceans/VOS_Program/nuka_arctica.html
http://www.ncof.gov.uk/products.html
http://podaac.jpl.nasa.gov/poet
http://daac.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov


ARTICLE IN PRESS

Fig. 2. Residuals (observed�predicted fCO2
sw, matm) from the equations: (A) fCO2

sw
¼ 383.01–4.288� SST+0.065�MLD and (B) fCO2

sw
¼ 384.82–3.579� SST–15.021� chl

a+0.055�MLD, plotted versus chlorophyll a (mg L�1). The black line shows the linear regression between the residuals and chlorophyll a.
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procedure was used to investigate the influence of MLD as
illustrated in Fig. 3A and B. In this case we note that the predicted
fCO2

sw is biased low (positive residual) at MLD shallower than
500 m (Fig. 3A), implying that MLD likely contributes to the fCO2

sw

algorithm. Fig. 3B shows the residuals when all three of the
parameters SST, chl a and MLD are included in the algorithm and
we see no correlation with MLD. Adding MLD in the algorithm
increased the r2 from 0.59 to 0.68 and decreased the rms from
14.5 to 12.8matm. From this analysis we conclude that both chl a

and MLD contribute significantly to improve the fCO2
sw field in our

study area during 2005. We explore quadratic, cubic, exponential
and logarithmic relationships for MLD and chl a and we find
that logarithmic functions of MLD and chl a improve the fit
significantly. Olsen et al. (2008) found an exponential relationship
between fCO2

sw and chl a, and MLD in a single regression. In our
case, logarithmic and exponential functions give the same r2 and
rms. Based on this investigation, we develop two relationships
based on observed fCO2

sw (fCO2
sw
obs), remotely sensed chl a data (20

March–15 October), and SST and MLD from FOAM. Eq. (1) gives
the best fit for the period between 20 March and 15 October when
satellite chl a data existed and Eq. (2) provides the best fit for the
rest of the year. The standard error of each parameter is given in
parenthesis after each parameter and N shows the number of data
points used in the evaluation. The annual range of fCO2

sw and the
independent variables are shown for the two algorithms (Table 2).
The units for the parameters are in matm, 1C, mg L�1, and m for,
fCO2

sw, SST, chl a, and MLD, respectively.
For 20 March to 15 October, 2005:

f COsw
2 ¼ 323:93ð�1:20Þ � 2:855ð�0:062Þ � SST

� 8:4950ð�0:161Þ � lnðchl aÞ

þ 10:2161ð�0:182Þ � lnðMLDÞ

N ¼ 13;031; r2 ¼ 0:72; rms ¼ 10:9matm (1)

16 October–31 December 2005 and 1 January–19 March, 2005:

f COsw
2 ¼ 298:93ð�0:90Þ � 0:1678ð�0:044Þ � SST

þ 14:0385ð0:118Þ � lnðMLDÞ

N ¼ 6017; r2 ¼ 0:77; rms ¼ 5:6matm (2)

The r2 values of the overall fit indicate how well the algorithm
fits the data. There are three factors that may explain the
unresolved variance of 28–23%: (1) differences in the temporal
and spatial resolution in the field measurements and the remotely
sensed and ocean analysis data, (2) uncertainties in the estimated
value (the error in NDIR-based seawater fCO2

sw data is generally
considered to be �2matm (Pierrot et al., 2008), as well as in
predictor variables (FOAM SST and MLD, and MODIS/SeaWiFS chl
a data), and (3) processes unrelated to SST, chl a, and MLD
affecting fCO2

sw.
Olsen et al. (2008) present the regression diagnostics from

single parameters relationships with SST, chl a and MLD. They
found that fCO2

sw in the deep basins had poor correlation with SST
in winter (r2

¼o0.01), and a strong correlation with MLD and chl
a in the summer. On an annual basis, the MLD was the best single
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predictor for fCO2
sw in the basins and the regression diagnostics for

the IcB and IrB were 9.4 and 11.3matm and r2 were 0.81 and 0.71,
respectively. This is similar to our results during the March–
October period (Eq. (1)), but for the rest of the year, the algorithm
is significantly improved by using both SST and MLD (Eq. (2)).

For further discussion on the predictive capacity of MLD, SST,
and chl a to estimate fCO2

sw the regression coefficients are
normalized. The b coefficients are the regression coefficients
when all variables are standardized to a mean of 0 and a standard
Fig. 3. Residuals (observed�predicted fCO2
sw, matm) from the equation (A)

fCO2
sw
¼ 414.40–5.7563� SST–18.123� chl a and (B) fCO2

sw (SST, chl a, MLD),

plotted versus MLD (m). The black line shows the linear regression between the

residuals and MLD.

Table 2

fCO2
sw (matm) SST (1C)

(a) The range of the fCO2
sw and the independent variables (SST, chl a, and MLD) in the data

Minimum value 283 4.34

Maximum value 391 14.13

Mean 342 9.97

Standard deviation 720 72.30

(b) The range of the fCO2
sw and the independent variables (SST and MLD) in the data used

Minimum value 345 4.15

Maximum value 395 12.19

Mean 374 8.40

Standard deviation 712 71.92
deviation of 1. The advantage of using b coefficients instead
of using the non-standardized (or raw regression coefficients, B),
is that the magnitude of the b coefficients allows for a direct
comparison of the relative contribution of each independent
variable in the prediction of the dependent variable (i.e. fCO2

sw). In
Table 3, we have summarized the beta coefficients (b) for each
predictor variable in order to evaluate the relative contribution of
each predictor to the overall fCO2

sw prediction for Eqs. (1) and (2).
The b coefficients show that chl a and MLD both have a larger
contribution than SST. For instance, during the winter, when
ln(MLD) contributes with 0.87 and SST of 0.03 to the estimated
fCO2

sw. The strong ln(MLD) contribution in Eq. (2) is also observed
in the improved correlation coefficient (r2) from 0.18 using only
SST, to 0.77 using both MLD and SST and the decreased root-
mean-square error (rms) from 710.6 to 75.6matm, respectively.

We checked the collinearity diagnostics to investigate for
unwanted cross-correlation between the independent variables.
One possible factor to check for collinearity is to use variance
inflation factors (VIF), where a VIF45 indicates the presence of
cross-correlation between independent parameters (Belsley et al.,
1980). Our approach (Eq. (1)) resulted in a VIF for SST, ln(chl a),
and ln(MLD), of 1.96, 1.46, 1.93, respectively, meaning that our
variables do not cross-correlate significantly.

The fCO2
sw algorithms (Eqs. (1) and (2)) were used to compute

weekly fields of fCO2
sw in the northern North Atlantic at a

resolution of 11 Lat�11 Lon�1 week for the region bound by
581N, 401W; 581N, 101W; 631N, 401W; 631N, 101W. The ln(chl a),
SST, and ln(MLD) data were provided at a higher resolution as
described above and each parameter was averaged onto the 11�11
grid prior to the calculations.

4.2. Comparison between observed fCO2
sw and the computed fCO2

sw

fields

The measured fCO2
sw data from the Nuka were averaged onto

the same grid resolution as the fields estimated above, giving a
total of 683 bins. The weekly mean residuals of the computed
chl a (mg L�1) MLD (m)

used in Eq. (1) for the period 20 March–15 October

0.01 10

4.91 798

0.66 88

70.51 7127

in Eq. (2) for the period 16 October–19 March

– 57

– 1193

– 295

– 7204

Table 3

The beta coefficients (b) allow for a comparison of the relative contribution of each

independent variable to the overall prediction of the dependent (i.e. fCO2
sw) using

Eqs. (1) and (2).

b (chl a period, Eq. (1)) b (no chl a period, Eq. (2))

SST �0.26 �0.03

ln (chl a) �0.30 –

ln (MLD) 0.64 0.87

The b coefficients are regression coefficients, where all variables have been

standardized to a value between a mean of 0 and a standard deviation of 1. This

makes it possible to compare the relative contribution of each independent

variable in the prediction of the dependent variable (i.e. fCO2
sw).
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fCO2
sw (matm) from algorithms (Eqs. (1) and (2)) and the bin-

averaged fCO2
sw data from the Nuka are shown in Fig. 4. Negative

residuals indicate that the computed values are lower than the
measured fCO2

sw. The mean and standard deviation for all residuals
for the whole period are 0.5 and 76matm, respectively. The
largest bias between the observed and calculated values are
observed from week 16 to week 35 (i.e. mid-April to end
of August), of �2matm (mean value) and a standard deviation
of 78matm. In this dynamic period all parameters change rapidly;
SST changes abruptly due to surface water warming, the MLD
stabilizes, and the onset of biological primary production changes
chl a. The occurrence of the largest bias in this period is likely due
to the different time scales of the expression of these processes on
fCO2

sw and parameters such as chl a and temperature. The signal of
high chl a values due to primary production is short lived relative
to the timescale of recovery of the depression on fCO2

sw caused by
phytoplankton blooms.
4.3. Validation with independent field measurements

An independent validation of the fCO2
sw prediction from our

algorithm corresponding to the winter period (from �October to
March, Eq. (2)) was performed by using measured fCO2

sw obtained
at the ship R/V Skogafoss traveling in the same region during 2005
(Fig. 5). The validation is based on fCO2

sw data measured during
five cruises performed in January, February, March, October and
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Fig. 4. Weekly mean residuals (predicted�observed) between computed fCO2
sw

(Eqs. (1) and (2)) and bin-averaged fCO2
sw data measured onboard the Nuka.

Resolution is 11 Lat�11 Lon�1 week, resulting in a total number of 683 bins. The

mean and standard deviation of the residuals were 0.54matm, and 75.6matm,

respectively.
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indicates the region for which the validation analysis was performed. The value of the
November 2005, giving a total number of 8144 data points.
The mean residual fCO2

sw between the computed fCO2
sw (Eq. (2))

and the bin-averaged fCO2
sw data from the Skogafoss for a total of

64 bins, resulted in a mean of 0.4matm and the rms in the
computed fCO2

sw is generally within 710matm.

4.4. Air–sea CO2 flux calculation

Using the computed fCO2
sw (Eqs. (1) and (2)) we calculated the

air–sea CO2 flux, F, according to

F ¼ K0 � kðf COsw
2 � f COair

2 Þ (3)

where K0 is the solubility, k is the transfer velocity for air–sea CO2

exchange, and fCO2
air and fCO2

sw are the atmospheric and sea-
surface fCO2, respectively. Solubility was calculated according to
Weiss (1974) using the FOAM SST and salinity data.

Weekly mean transfer velocities were calculated according to
Wanninkhof (1992):

k ¼ 0:31

P
U2

10

n

Sc

660

� ��0:5

(4)

where U10 are the individual Level 2B daily wind-speed retrievals,
at a spatial resolution of 25 km from the SeaWinds sensor on the
QuickSCAT satellite (obtained at Physical Oceanography Distrib-
uted Active Archive Center (PODAAC) at http://podaac.jpl.nasa.
gov/). n is the number of U10 retrievals in each 11 Lat�11 Lon�1
week grid cell, and Sc is the Schmidt number computed according
to Wanninkhof (1992) from the FOAM SST fields. The atmospheric
CO2 data used here were obtained from the Global Monitoring
Division Carbon Cycle Greenhouse Gases Group of NOAA/ESRL
(http://www.esrl.noaa.gov/gmd/ccgg/index.html). We used linear
regression on data of the monthly mean mole fraction of CO2 in
dry air (xCO2) at Storhofdi, Vestmannaeyjar, Iceland (63.31N) and
Mace Head, Ireland (53.31N) to obtain the equations describing
the latitudinal gradient of monthly mean xCO2. Using these
equations an atmospheric xCO2 value was determined for each
grid cell and the mole fractions were converted to atmospheric
CO2 partial pressure according to

pCOair
2 ¼ xCO2ðslp� pH2OÞ (5)

where slp is sea level pressure and pH2O the partial pressure of
water vapor at SST and salinity. Gridded fields of six hourly slp for
2005 were obtained from the NOAA-CIRES Climate Diagnostics
Center, Boulder, CO, USA, from their web site at http://www.
cdc.noaa.gov/, and originate from the NCEP/NCAR Reanalysis
project (Kalnay et al., 1996). The slp data were supplied on a
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2.51 Lat�2.51 Lon grid were re-gridded using a triangle-based
cubic spline interpolation to fit the 11 Lat�11 Lon�1 week grid
size of the fCO2

sw fields. The pH2O was calculated from FOAM SST
Fig. 6. Seasonal fields of surface wat

Fig. 7. Seasonal fields of remotely sens

Fig. 8. Seasonal fields of the m
after Weiss and Price (1980). The atmospheric pCO2 was converted
to fCO2

air after Weiss (1974), following the procedure described in
Dickson and Goyet (DOE, 1994).
er fugacity of CO2 (fCO2
sw, matm).

ed chlorophyll data (chl a, mg L�1).

ixed-layer depth (MLD, m).
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5. Seasonal variability of fCO2
sw, chlorophyll, MLD and sea–air CO2

flux in 2005

We evaluated the seasonal variability by averaging the weekly
fCO2

sw fields into four seasons defined as follows; winter: 1
January–19 March (Eq. (2)); spring: 20 March–2 July (Eq. (1));
summer: 3 July–15 October (Eq. (1)), and fall: 16 October–31
December (Eq. (2)). Figs. 6–11 show the seasonal fields of; fCO2

sw,
(Fig. 6); chl a, (Fig. 7); MLD, (Fig. 8); DfCO2, (Fig. 9); wind speed,
(Fig. 10); and sea–air CO2 flux, (Fig. 11). In winter, we observe
relatively constant fCO2

sw values throughout the whole region
of about 380matm, with slightly higher values in the far west. In
spring, fCO2

sw values have decreased relative to winter values,
which are due to the biological CO2 drawdown being larger than
the effect of increasing temperatures. The biological CO2 draw-
down continues and fCO2

sw reach lowest values in summer
of about 325matm in the east, and 340matm at about 401W.
The lowest fCO2

sw values in spring and summer coincide with
Fig. 9. Seasonal fields of DfC

Fig. 10. Seasonal fields of
highest chl a values (Figs. 6 and 7). Increasing fCO2
sw values are

observed in fall, due to the vertical mixing which brings subsur-
face waters rich in CO2 to the surface, as the MLD deepens (Fig. 8).
Fall fCO2

sw values are typically 370matm across the area. However,
in the proximity of the Reykjanes Ridge, the fCO2

sw reaches
above 385matm, which coincides with deeper MLD. This may be
a signal of enhanced upwelling over the ridge. High fCO2

sw values
of about 390matm were also measured along the Reykjanes Ridge
onboard the R/V Skogafoss in November 2005 (see values in Fig. 5).
This suggests that the higher fCO2

sw values along the ridge are
real and not an artifact of the algorithm or a limitation of our
approach.

The fCO2
air values (not shown) vary from lowest values of

362matm in summer to highest values of about 376matm in
spring. During fall and winter values are about 369 and 374matm,
respectively.

Winter DfCO2 (Fig. 9) are about 10matm supersaturated in the
west, and decrease gradually to reach values that are close to
O2 (fCO2
sw–fCO2

air, matm).

wind speed (m s�1).
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equilibrium with the atmosphere in the eastern part of the study
area. The gradual fCO2

sw decrease in spring and summer results in
undersaturation ranging from 20matm in the western part to
40matm in the eastern part. Note that Fig. 9 shows the DfCO2

(fCO2
sw–fCO2

air) so that negative values denote lower values in the
ocean than in the atmosphere, thus indicating undersaturated
surface water. We observe the largest undersaturation of 40matm
in the surface water in the eastern area in summer, which is also
where we find the highest chl a values. The largest super-
saturation is observed in fall along the Reykjanes Ridge (RR), and
coincides with the deep MLD in this area, as noted above. Except
for the feature along the RR, fall values are generally close to the
atmospheric CO2 level.

Fig. 10 shows the remotely sensed wind speed fields. Both the
highest and the lowest wind speeds are observed in the western
part with wind speeds up to 13 m s�1 in winter (southwest) and
lowest values of 8 m s�1 in spring and summer. The central area
has winds ranging from 11 to 8 m s�1 with highest wind speeds in
winter and fall. In spring and summer wind speeds are uniform
and about 8 m s�1 in the whole study area.

Fig. 11 shows the seasonal sea–air CO2 fluxes (mmol m�2 d�1),
negative values denote an ocean CO2 sink, and positive values
denote an ocean source of CO2. In winter, we observe outgassing of
CO2 in the whole area, which is most intense in the western part
of 6 mmol m�2 d�1. This is also where we observe the largest CO2

supersaturation and the highest wind speeds. On the other hand,
in spring and summer the region acts as an oceanic sink of about
6 mmol m�2 d�1. Since the wind speed in spring and summer is
relatively constant and uniformly distributed, the CO2 flux pattern
follows that of DfCO2. In the fall, we observe the largest variability
in the CO2 flux, and the flux varies from zero to an oceanic CO2

source of about 4 mmol m�2 d�1 in the region near the Reykjanes
Ridge, which is a result of the high fCO2

sw values at this location
during fall. The annual net oceanic across the region uptake was
about 5.8 Mt C yr�1 ( ¼ 0.0058 Gt C yr�1, M ¼ 106, G ¼ 109).
6. Conclusion

To obtain a regional CO2 estimate with a precision of 0.1 Gt C
yr�1 in the North Atlantic Ocean, the error on regional DfCO2

estimates should not exceed 11matm for the region north of 541N
(Sweeney et al., 2002). By using remotely sensed chl a data
and ocean analysis SST and MLD, we estimated fCO2

sw within
711matm for the period 20 March–15 October. During the rest
of the year the estimated fCO2

sw (from MLD and SST) has an
estimated accuracy of 76matm. Comparison with independent
data indicates an overall accuracy of within 710matm for the
winter period (16 October–19 March).

We find that SST, chl a and MLD contributed significantly to the
estimate of fCO2

sw in our study area. Since little is known about
the interannual fCO2

sw variability, and further studies must be
carried out to determine the consistency of estimated fCO2

sw from
algorithms from year to year. Therefore it is of great importance
to continue large-scale international efforts aiming at measuring
the fCO2

sw (e.g., Volunteer Observing Ships and buoys) as well as
the parameters describing the drivers for the fCO2

sw change. Efforts
also should include the development and optimization of remote
sensing capabilities both on regional and global scales.
Acknowledgements

This is a contribution to the Swedish Research Council for
Environment, Agricultural Sciences and Spatial Planning (Formas
Project #2004-797), the REmote Sensing Carbon UptakeE (RESCUE,
96/05) project funded by the Swedish National Space Board,
CARBON-HEAT (185093/S30) of the Norwegian Research Council,
and the EU IP CARBOOCEAN (GOCE 511176-2). Data from the
Skogafoss were provided by Denis Pierrot and Kevin Sullivan of
the Cooperative Institute of Marine and Atmospheric Sciences and
were funded by the NOAA Climate Observation Division. We are
grateful to the owners, captains, officers and the crew of the M/V
Nuka Arctica of Royal Arctic Lines Denmark and the Skogafoss of
Eimskip lines, Iceland for their support and participation in the
Volunteer Observing Ships (VOS) monitoring program. We are
also grateful for comments and questions raised by two reviewers
and guest editor Dorothee Bakker which greatly improved the
manuscript.

References

Belsley, D.A., Kuh, E., Welsch, R.E., 1980. Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity. Wiley, New York.



ARTICLE IN PRESS

M. Chierici et al. / Deep-Sea Research II 56 (2009) 630–639 639
Boutin, J., Etcheto, J., Dandonneau, Y., Bakker, D.C.E., Feely, R.A., Inoue, H.Y., Ishii, M.,
Ling, R.D., Nightingale, P.D., Metzl, N., Wanninkhof, R., 1999. Satellite sea
surface temperature: a powerful tool for interpreting in situ pCO2 in the
equatorial Pacific Ocean. Tellus 51B, 490–508.

Chierici, M., Fransson, A., Nojiri, Y., 2006. Biogeochemical processes as drivers of
surface fCO2 in constrasting provinces in the North Pacific Ocean. Global
Biogeochemical Cycles 20, GB1009.

Cooper, D.J., Watson, A.J., Ling, R.D., 1998. Variation of pCO2 along a North Atlantic
shipping route (UK to the Caribbean): a year of automated observations.
Marine Chemistry 72, 151–169.

Cosca, C.E., Feely, R.A., Boutin, J., Etcheto, J., McPhaden, M.J., Chavez, F.P., Strutton,
P.G., 2003. Seasonal and interannual CO2 fluxes for the central and eastern
equatorial Pacific Ocean as determined from fCO2–SST relationships. Journal of
Geophysical Research 108 (C8), 3278.

DOE, 1994. In: Dickson A.G., Goyet, C. (Eds.), Handbook of Methods for the Analysis
of the Various Parameters of the Carbon Dioxide System in Sea Water; version
2. ORNL/CDIAC-74.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,
Janowiak, J., Mo, K.C., Ropelewski, C., Leetmaa, A., Reynolds, R., Jenne, R., 1996.
The NCEP/NCAR reanalysis project. Bulletin of the American Meteorological
Society 77, 437–471.
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