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ABSTRACT. The range-dependent sound propagation problem differs in a
fundamental way from the range-independent problem, at least in the
geometric limit. In the range-independent problem the divergence between
neighboring ray trajectories is slow (power law behavior). In the generic
range—dependent problem some ray trajectories exhibit extreme sensitivity
to initial conditions (chaotic behavior) wherein neighboring trajectories
diverge exponmentially.  Using simple range-dependent models of oceanic
waveguides, involving both volume and %ounda.ry structure, the chaotic
behavior of sound rays is discussed and illustrated via the conmstruction of
Poincare sections, the calculation of power spectra, and the calculation of
Lyapunov exponents. It is argued that under chaotic conditions ray
trajectories are not computable beyond some finite predictability horizon.
Under conditions in which ray trajectories are predominently chaotic, the
growth in range of the complexity of the wavefield is shown to be
exponential: the number of eigenrays connecting a fixed source and receiver
grows exponentially while the average intenmsity of ray arrivals decays
exponentially.  Some preliminary attempts to investigate the extent to
which the chaotic behavior of ray trajectories carries over to finite
frequency wavefields are discussed.

1. INTRODUCTION

When it is assumed that the ocean's sound speed varies as a function of
depth only and the ocean boundaries coincide with surfaces of constant
depth, then the acoustic wave equation can be solved by a variety of
techniques which depend on separating variables.  This  assumption is
frequently unjustified. The solution to the range—dependent problem differs
in a fundamental way from the solution to the range-independent problem,
at least in the geometric limit. In the range-dependent problem there is
no Snell invariant, and ray trajectories may exhibit chaotic motion, i.e.,
extreme sensitivity to initial conditions. This extreme sensitivity to initial
conditions leads to a limited ability to predict acoustic fields.

In the following sections these ideas are illustrated by examining
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sound ray propagation in two simple range-dependent oceanic waveguides.
In the first, the ocean boundaries are flat %ut the sound speed in the ocean
volume depends on both depth and range. The second waveguide consists
of a range-independent downward refracting ocean volume overlying a
bottom with range—dependent bathymetric variations. The latter problem is
examined by infroducing an area—preserving mapping to replace the ray
equations. Both problems are discussed and analyzed in the context of
recent developments in the studies of integrable and nonintegrable
Hamiltonian systems. Our emphasis on Hamiltonian dynamics is natural
inasmuch as the acoustic ray equations have Hamiltonian form.

Detailed modern discussions of Hamiltonian systems can be found in
Henon (1983) and Lichtenberg and Lieberman (1982). Our presentation is
largely pedagogical, in the hope that readers who are not familiar with
these topics will be able to follow the presentation. We state without
proof many results which are discussed in the aforementioned references.
The novelty of our work is the application of these results to the
underwater sound propagation problem. Results of similar studies have
l()een )presented by Palmer et al. (1988) and Abdullaev and Zaslavskii
1988).

2.  RAY CHAOS IN THE OCEAN VOLUME

The ray equations consistent with the parabolic wave equation are (see
Tappert, 19('1727)

6H dp _ OH
a?='a'p‘aa%—-'a'z‘a (laab)
where
H(zpyr) = 5 p° + V(z1) . (1c)

Here z and r are depth and range, respectively, and, by equations (1), p =
dz/dr = tan @ where 6 is the ray angle with respect to the horizontal.

The potential V(z,r) may be thought of as either % (1 - cg/cz(z,r)) or
c(zr)/c, — 1 where ¢(zr) is the sound speed and c, is a reference value.

These equations define a Hamiltonian system with one degree of freedom.
Note that range is the time-like variable in these equations. If V = V(z)
(range-independent problem), the system is said to be autonomous. I V
= V(z,r) (range-dependent problem) the system is said to be
nonautonomous. This distinction i8 crucial. It i3 most easily understood
by examining the geometry of ray trajectories.

2.1 Ray Geometry

Solutions to equations (1) are trajectories z(r), p(r), which lie in the
three—dimensional space (z,p,r). We shall confine our attention to the
special case of sound speed structures which are periodic in r, cgz,r) = ¢(z,r
+ A). Then r can be defined modulo A without loss of generality.

Although this case is special, it suffices to illustrate all of the important
ideas. = Additionally, in the oceanic waveguides considered here, both ray
depth and ray angle are bounded. With these assumptions ray trajectories
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lie in the bounded three dimensional space (z,p,r). There are two
fundamentally different types of trajectory — those which fill volumes in
(z,p,r) and those which lie on two—dimensional surfaces in this three
dimensional space.

All trajectories are of the latter type (termed "regular") if the system
is integrable, i.e., if there exists a constant of the motion I(z,p,r) for which

dl _ 9l dz dl d al _
T~k tpa TrE=-0- (2)

If such a function exists each trajectory lies on a surface of constant I,
thereby reducing the dimension of the accessible space from three to two.
In a bounded phase space these surfaces are tori. Thus, in an integrable
system with a bounded phase space, ray trajectories lie on a set of nested
tori.

This is the situation encountered in a range-independent environment.
Here H(z,p) is a constant of the motion — the first two terms on the rhs
of (2) cancel by (1) and the third term is zero. In range-dependent
environments it is extremely rare that there exists a constant of the
motion: generically, in range-dependent environments, the acoustic ray
equations are nonintegrable. Before discussing this situation further we
introduce a simple technique - first used by Poincare — which is now
commonly used to distinguish between area and volume filling trajectories.
To distinguish between the two cases one need only examine a
two—dimensional slice of the three-dimensional space. On this slice, volume
and area filling trajectories in (z,p,r) will fill areas and lie on smooth
curves, respectively.

For the periodically range dependent problems considered here, the
simplest way to comstruct such a Poincare section is to view the ray
trajectories, z(r), p(r), stroboscopically at integer multiples of A, z(n)),
p(n)), n = 0,1,2,.. Some examples are shown in figure 1. Here, the
trajectories, z(r), p(r), were numerically computed for many sets of initial
conditions, z(0), p?o), using a perturbed Munk (1974) potential,

V(zt) = e T+ 7-1) + 6 %5 e 2z/Bcos (27r/X). (3)
Here n = 2(z - z,)/B is a scaled depth coordinate, z, = 1 km is the
sound channel axis depth, the depth scale B = 1 km, and ¢ = 0.0057. In
figure 1 the wavelength of the range dependent perturbation A was taken
to be 10 km while the perturbation strength § was varied.

The first plot in figure 1 corresponds to the range-independent case,
6 = 0. Here, for each set of initial conditions, the succession of points
plotted all lie on smooth curves. (In some cases the curves appear to be
broken because so few (500) points are plotted.) This is expected because
in this case the ray equations are integrable. As the strength of the
range—dependent perturbation § increases, some of these closed curves break
up into a series of closed curves ("islands") surrounded by speckled regions
("chaotic seas").  This phenomenon is due to a resonance between
unperturbed (6 = 0) rays and the range dependent perturbation. The rays
which form the five island structure, for instance, have a wavelength very
close to 50 km. The 10 km wavelength perturbation induces a 5:1
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Figure 1. Poincare sections computed using the potential V(z,r) given in equation (3). In
both cases the initial ray depth z; = 1 km and the Initial ray angles are 6, = 5°6°, ... 15°.

500 points are piotted for each ray trajectory. Left: § = 0. Right: é = 0.0l
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Figure 2. Power spectra of two ray trajectories z(r). Left: 2 =1 km, 00 =1°% §=0
Right: 2z, = 1 km, §, = 12°, § = 0.01.
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Figure 3. Plots of (1/r) In l/\l(f” vs. r for the same two trajectories used in figure 2.
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resonance and 5 islands are formed. The ray trajectories which form the i
speckled regions surrounding the islands Snot seen in all cases) are termed i
“chaotic". They correspond to volume filling (in (z,p,r)) rays. A further '
increase in the strength of the range-dependent perturbation causes the -
regular barriers (termed "KAM invariant tori" for reasons discussed below) 1.
separating neighboring chaotic seas to break down, thereby forming larger '
connected chaotic regions.
All of this behavior is typical of integrable bounded Hamiltonian
systems which are subjected to a nonintegrable perturbation. A central
result to understanding this problem is the Kolmogorov—Arnol'd—Moser _
KAM) theorem which states that when an integrable Hamiltonian system [
range-independent sound speed structure) is subjected to a nonintegrable | 1
|

range—dependent) perturbation, regular “motion is preserved for most

trajectories. ~ Stated somewhat differently, the KAM theorem guarantees

— % ! that most of the regular tori associated with an integrable Hamiltonian I
GLE (DEG) system survive a smjl perturbation to the Hamiltonian, although the tori |
= In equation @). In become slightly distorted. When coupled with numerical simulations of the |
are § = 5°6°, .. 15", type shown in figure 1, this theorem provides important insight into the ,
= 0.01. ! behavior of acoustic ray trajectories in weakly range-dependent oceans. i

The Poincare sections shown in this figure give some geometric insight
into the difference between regular and chaotic ga precise geﬁnition will be
given later) ray trajectories. An important observation is that regular
trajectories, because each such trajectory is constrained to lie on one of a
set of smooth embedded surfaces, diverge from each other only very slowly.
3 Chaotic trajectories, on the other hand, form a tangled web in phase space, |
i becoming hopelessly intertwined with many other trajectories, possibly with |
i very different initial conditions. Under such conditions the motion of |
3 individual ray trajectories cannot be predicted at long range and

neighboring trajectories diverge very rapidly. These ideas will be discussed
in more detail below.

ST ey

=i

120 0.25 0.8 0,38 9.40 045 090
f{1/kn)

1 km, 00 = “°| §=0

e T T

k

i

W 2.2 Power Spectra _ |
i

o Sl

Power spectra of z(r) provide additional insight into the difference between
regular and chaotic trajectories. Spectra of regular trajectories consist of a -.
finite number of isolated lines while spectra of chaotic trajectories are |
continuous and appear to be noisy. The connection between regular motion |
and discrete spectra can be seen geometrically. Motion on a torus is most 1
naturally described using action—angle variables. In these coordinates the i
motion is periodic. ~ Because the transformation between action—angle !
variable and z(r), p(r) is generally nonlinear, harmonics will be present in '
spectra of the latter. These spectra remain discrete, however. The i
connection between regular trajectories and discrete spectra can also be |

rationalized by noting that the long time evolution of such systems are
predictable: all that is required is a knowledge of the wavenumbers, j
amplitudes, and phases of a finite number of sinusoids. The long time -

evolution of a chaotic system is, on the other hand, effectively
unpredictable. This is consistent with a continuous, noisy spectrum. These il
ideas are illustrated in figure 2. Here, power spectra of z?:) for two rays il
are shown. The first case corresponds to § = 0, the range-independent ik
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ries used in figure 2.
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trajectory shown consists of a small number of lines, as expected. The
second spectrum was computed using one of the rays which fills the large
chaotic sea in the § = 0.01 calculation shown in figure 1. The spectrum
of this chaotic trajectory is broad band and noisy.

2.3 Lyapunov Exponents

We have seen that Poincare sections and power spectra are useful for
addressing the question of whether a ray trajectory is chaotic. ~ The
Lyapunov exponent provides more information - it i8 a measure of how
chaotic a trajectory is. The most important feature that distinguishes
chaotic and regular motion is that under chaotic conditions neighboring ray
trajectories diverge exponentially while under regular conditons the
divergence is governed by a power law. The Lyapunov exponent is a
quantitaive measure of this divergence. After describing how Lyapunov
exponents are calculated, we consider some of the implications of chaotic
motion.

The variational equations follow from the ray equations (1) upon
setting ¢ = &, n = 0p,

#H  PH

£ — € 0 1 (€
4 | e 2 “
dr ) _#H _&H _2 ol |,
%2 9z0p %
These equations describe how s elements &6p of phase space are

stretched along a ray trajectory. The variational equations (4) and the ray
equations (1) define a system of four coupled equations which can be
integrated to give z(r), p(r), &(r), and f5(r) given a knowledge of their
initial conditions z(o), p(0), £(0), and n(o). The variational equations can
be combined to give

2
d v, _
P2t a0 ®
Assume that £,(r) and & r), with
d¢
§O =1, z © =0, (62)
d§2 }
GO =0, O =1, (6b)

are two solutions to (5). They are linearly independent as their Wronskian
is unity,

d¢ d¢
W(r) = W(o) = &(0) f (0 - & (0) g (0) = 1. (7)

(The Wronskian is constant because the coefficient of d Zdr in (5) is zero
Note that from the first of the variational equations
then follows from (7) that the Jacobi matrix

) défdr = . iz
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51(1') 52(1')

I(r) = 8)
« U (r) 7/2(r) (

has determinant 1. The Jacobi” matrix allows us to study sensitivity to
initial conditions, s o

dz(r) -a;—o(r) -3‘70-(1') dz, dz
= J(r) (9)

dp(r) 3%«) g%o(r) dp,, dp, |

Let A(r) and u(r), i = 1,2, with |A1(r)| > [Ay(r)| denote the
eigenvalues and eigenvectors of J(r). Because det IJr) =1, A(r) Ap(r) =

1. The solution to (9), [dz dp]T, i8 a linear combination of Alr) uy(x).
Under chaotic conditions

|A1(r)| ~ e’ and |,\2(r)| veTasr g, (10)
The Lyapunov exponent is defined as
y £ lim %ln |2, (@] - (11)
Ir= o

For a reéula.r trajectory (10) is replaced by power law growth and decay of
Ay (1) an Ao(r), respectively, and v defined in (11) is zero.

Plots of (1/r) In |A;(r)| v8 r are shown in figure 3 for the same two

trajectories that were used to produce figure 2. For the regular trajectory
this curve appears to be approaching v = 0, while for the chaotic
trajectory the curve appears to be approaching a value of v close to (200
km)_l. This behavior is consistent with the results shown in both figures
1 and 2.

We now consider one of the implications of exponential sensitivity to
initial conditions associated with chaotic ray motion. Suppose we attempt
to find the eigenrays connecting a fixed source and receiver separated by a
distance r. This might be done by computing the trajectories of many
rays, each leaving the source with a different angle 4, out to range r. If
the ray depth at range r lies within some specified tolerance of the receiver
depth we say that we have found an eigenray. Suppose we find by trial
and error that in order to meet this tolerance criterion at range r, the ray
launch angle must be specified with n. bits of precision. It is natural to

ask how n varies as a function of r. Under chaotic conditons n. is

proportional to r. The proportionality constant is the (scaled) Lyapunov
exponent. If, for instance, @ must be specified with 12 bits of precision at

T =120 km and v'(= v/ln 2) is (10 km)—l, then each 10 km increase in
fange would require another bit of precision in the specification of the

launch angle. In this example 20 bits would be required to find eigenrays
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at r = 200 km, 30 bits would be required at 300 km, etc. One quickly
runs into limitations imposed by finite precision computers. On a machine
in which floating point numbers are stored with a 24 bit mantissa,
eigenrays could be found only out to a range of somewhat less than 240
km in our example. At longer ranges, attempts to iteratively search for
eigenrays are doomed to failure. Computed ray trajectories at these longer
ranges will have effectively forgotten their initial conditions. With these

ideas in mind, it is natural to refer to 1 as a '"predictability horizon", an
order of magnitude estimate of the range over which a ray trajectory can
be predicted.

These ideas also provide some insight into a commonly given
definition of chaos: chaos is unpredictable behavior in a low order
dynamical system associated with extreme sensitivity to initial conditions.

3. RAY CHAOS INDUCED BY BOUNDARY INTERACTIONS

We now turn our attention to sound ray propagation in a simple ocean
model in which ray trajectories interact with a range dependent boundary.
The techniques used to study this problem differ somewhat from those used
earlier.  Here, the ray dynamics are studied using an area preserving
mapping.

3.1 An Area Preserving Mapping

We consider sound ray propa%::)tion in a topless ocean in which the sound
speed increases with height above the bottom so that rays are downward
refracted. We assume that the bottom bathymetry zb(r) is known and

that the bottom is rigid so that rays are specularly reflected. Let T and
8, be the range and angle (in radians) at which a ray intersects the
bottom. The situation is shown schematically in figure 4. If z,(r) is

small compared to the turning height of a ray, then the bottom
displacement can be neglected when determining the intersection of the ray
with the bottom. This approximation allows ‘the ray dynamics to be
studied usinog the mapping
e+l = 0, + 2z (rn) , (12a)
Te1 =T + B(0n+1) . (12b)
Here zl')(r) is the bottom slope and B(#) is the increment in range of the

ray that leaves (and returns to) the bottom with angle 4. Equation (12a)
says that upon reflection the outgoing ray an%e is equal to the incoming
ray angle plus twice the local bottom slope. Equation (12b) incrementally
updates the total range traversed by a ray.
We shall assume that
zp,(r) = - h cos (kr) (13)

and
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ww=ﬂ%}i=—y (14)

1
with z positive down. The bottom slope zb(r) is easily computed from

(13). The range increment B(4) can be computed using (14) and the ray
equations (1),

B(f) = 2tan f=29. (15)
Inserting these expressions for the bottom slope "and range increment into
the mappin§ (12) gives )

1 = 6, + 2kh sin kr , (16a)
and

_ 2

I'n+1 = l'n + -g- 0D+1 . (16b)
In terms of the dimensionless variables p, = kr and ¢ = 2k0n/g these
equations become

n

¢n+1 = ¢, + 7vsinp , (17a)
and
pll+1 = pll + ¢n+1 ] (17b)
where the stochasticity parameter
2
y = 4k“h (18)

The dimengonless mapping (17) has been extensively studied by
others (see, e.g., Lichtenberg and Lieberman, 1982). It is referred to as
the "standard map." The mapping depends on the single dimensionless
parameter 7 which, in our case, is four times the ratio of %ottom curvature
to ray curvature. It is easily verified that the mapping is area—preserving ,

0y11 %y
09, ap,

det =1. (19)
Oppy1 9Ppp

%, O,

This condition, which may be thought of as a discrete form of Liouvilles
theorem, guarantees that the Hamiltonian character of the ray equations Sl)
is faithfully reproduced in the mapping (17). Stated somewhat differently,
area—preservation (19) dictates that ¢, and p are canonically conjugate

variables (like z and p in the ray equations (1)).
The simpliest way to study the mapping 1s to compute its iterates for
a set of initial conditions (¢O, po). Some examples are shown in figure 5.

Note that ¢n and p, are plotted modulo 2x. This is because the mapping

(17) is 2x periodic in both variables.  Results for several values of
stochasticity parameter 7y are given. If A = 2x/k = 100 m and g = 0.067

km™! then v =0, 0.5, 1.0, and 2.0 correspond to h = 0, 2.1, 4.2 and 8.4

\
1
i
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f mm, respectively. This figure should be interpreted in precisely the same
way that figure 1 was interpreted. @~ When, for a given ray, successive

(14) iterates lie on smooth curves, the motion is regular. A succession of
iterates that fills an area in an apparently random way signifies chaotic
asily computed from motion. This figure shows the same qualitative behavior that was seen in
easily figure 1. The stochasticity parameter 9, like § in figure 1, is a measure of
asing (14) and the ray the strength of a nonintegrable (range-dependent) perturbation to an
integrable (range-independent) problem. As 7 is increased chaotic seas
(15) surrounding regular islands are formed. A further increase in 4 causes
) neighboring chaotic seas to merge. For values of 7 less than the critical
d range increment into value 7, » 0.97, the chaotic seas are all bounded. For 7 > 7, @ large
(16a) chaotic sea exists wherein ray trajectories may wander without bound in
the ¢ — p plane. This phenomenon is referred to as "global chaos".
(16b) 3.2 Lyapunov Exponents
ind ¢, = 2k0 /g these Lyapunov exponents for the mapping (17) (in base 2 these have units bits
per bounce) are computed in much the same way that they were computed
(17a) for the continuous ray trajectories. Differentiating the mapping (17) gives
d¢n+1 d‘pn
(17b) = Mn+1 (20)
dp n+l dp n

where, by area-preservation, the determinent of the real 2 x 2 matrix

(18) M, ., is 1. TIterating (20) gives
extensively studied by rd d¢
). It is referred to as %n _ o )
the single dimensionless : =J, (

atio of bottom curvature
)ping is area—preserving ,

Ldpn dp,,
where the Jacobi matrix J = M M__, .. M; also has determinant 1.

Like equation (9) this equation can be used to study sensitivity to initial
conditions. The same argument leading to our earlier definition of the

(19) Lyapunov exponent (11) applies here. ~The Lyapunov exponent for the
mapping (17) is then
_li 1 1
y=lim Ly (1) (22)

. souvill . :
rlsggetﬁef(]):g‘l;l e(t)lfualgliglxlxzﬂﬂ(lag where I,\r(ll)l is the modulus of the larger of the two eigenvalues of J .

ted somewhat differently, We defer until later giving an example of such a calculation.
are canonically conjugate

3.3 Eigenrays
o0 compute its iterates for

. We turn our attention now to eigenrays. Because our analysis is based on
es are shown in figure. 5. the mapping (17) we restrict our attention to situations in which both
is is because the mapping source and receiver lie on the bottom. Specifically, we examine the
ts for several values of behavior of eigenrays as the range r between source and receiver increases.

Fans of rays for both a flat bottom and a sinusoidal bottom with

= 100 m and g = 0.067 amplitude h" = 10 cm and wavelength 27/k = 200 m are shown in figure

yh = 0, 2.1, 42 and 84
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6. In both cases the sound speed gradient c g = 0.1 secl. These
correspond to stochasticity parameters of y =0 and y = 5.9, respectively.
These models are used to produce all of the numerical results shown in this
section. For 7 = 5.9 almost all rays are chaotic.

Eigenrays for the mappin% are easily found by constructing the curves
r( 00), range vs. launch angle for rays which have n — 1 bottom bounces.

Several examples of such curves are shown in figure 7. Ei§enra,ys for a

receiver at range r correspond to the solutions of rn( 00 = 1, ie,

intersections of a curve r n(00) with a horizontal line. Of course, to find

all of the eigenrays at range r this process must be repeated for many
values of n. Before we show the results of carrying out this procedure,
however, it is instructive to take a closer look at one of the rn(00) curves

for the sinusoidal bottom.
Figure 8 shows a succession of blow ups of the r13(00) curve for 5.0°

< 00 < 5.5°. In the uppermost curve the sampling interval Af = 10'4

degrees. In the lowermost curve Af = 10_8 degrees. It would have been
difficult to guess that such a small sampling interval is necessary after only
12 bounces. This number is not absolute. Our numerical simulations
indicate that for each additional two bounces Af must be decreased by
roughly a factor of ten.

Figure 9 shows the number of eigenrays N as a function of range r,
computed using the procedure outlined above.  Because of the huge
difference in the number of eigenrays for the flat and sinusoidal bottom

cases, different angular apertures were used: 4° for the flat bottom and 0.5
degrees for the sinusoidal bottom. This figure shows clearly that for the
flat bottom N(r) grows linearly while for the sinusoidal bottom N(r) grows
exponentially (~ exp (r/1.9 km) in this figure).

Because the number of eigenrays is growing exponentially in the
sinusoidal bottom case, energy conservation dictates that the corresponding
average intensity

1 N

o -1
y =N L) ‘[37’8]1 0i| ’ @)
where 49i is the launch angle of an eigenray, should decay exponentially in
range. This quantity is plotted as a function of range in figure 10. In
this figure I~ exp (-r/2.0 km).  This is consistent with exponential

growth of the number of eigenrays.

One would expect that the exponential growth of the number of
eigenrays and the corresponding exponential ~decay of their average
intensities is related to an average Lyapunov exponent for the rays under

consideration (recall 50° < b, < 55°).  Because these rays are

predominantly chaotic and most lie in the same chaotic sea the notion of
an "average Lyapunov exponent" is a sensible one. For an individual ray

i
|
i
1




1

0.1 sec . These

= 5.9, respectively.
ssults shown in this

structing the curves
1 bottom bounces.
’. Eigenrays for a
r(8) =1, ie,

Of course, to find

repeated for many
out this procedure,
f the r (§,) curves

3(00) curve for 5.0°
interval Af = 107

It would have been
necessary after only
umerical simulations
ist be decreased by

function of range r,
cause of the huge
d sinusoidal bottom

flat bottom and 0.5
clearly that for the
| bottom N(r) grows

:xponentially in the
at the corresponding

(23)

xcay exponentially in

ge in figure 10. In
ent with exponential

of the number of
r of their average
t for the rays under

use these rays are

;ic sea the notion of
‘or an individual ray

151

1201

80

DEPTH (m)
. 3
5

...",a"
e
“0 nv"“ fif v g
el "\\ g
i U il ]
" | /\\w.'w."
!
! '"'""m i
o mmmn uIrHIH
0
120

DEPTH (m)

Range (km

I"‘ il

i ‘,.V" I
"A‘ " ‘u t‘/‘\"“\\%‘i‘l,’/“

‘\f J \\‘l ‘
\l\\‘\""/// \"l ’\,,\
\"

Figure 6. Fans of rays corresponding to launch angles 5.0° < 4, < 5.5° over flat (upper

panel) and sinusoidal (lower pancl) bottoms.




152

|
[
40000
¥
{
1 |
30000 |- 10
4 |
- L]
]
g 20000 F s 1
< L \
ol 1 |
d 1
; ‘ I
1 10000 R ]
| 4 i
p=]
1 {
o 1 n 1 A q{ A A " i L A A A 1 A
5.0 [X] [¥] 83 s4 8.8
]
40000 |
10
0o | ! ]
{1
i 5 ' 7
¥ i 20000 -
g <
| [}
.W.
10000 1 p
L am]l
o L A A 'l e A A A A A 1 A A A A 5 A
0 s 5.2 5.3 $4 .8
ANOLE (deg)

Figure 7. Plots of r vs. 8, for Nlat {upper panel) and sinusoldal (lower panel) bottoms.




gm=]

10

,nd sinusoldal (lower panel) bottoms.

'l
|

153

e et

) VW;MX}MWM%H,WW NW

$ WW\MMW\;» f
530 ;230 5.231

) MWW
3 5.2305 5.23lOSS

e~ — ——

5.23052 5.230522
Launch aAngle (deg)

Figure 8. Plots of T3 Vs 00 for a sinusoidal bottom. Each plot is a magnlfied version of
some portion of the plot above,




20000

15000

10000

A — -
=
- - -
. & .
.
: .
“ -
.
. 18 ..
. 2 :
- :
D :]
. £ :
: = :
" Am z n.
. g3 -
: :
: ?]
. ° ”.
:
.
s .
.
) , , . T
< - e < ~ < I ] g £
SAVUNIDT 40 YIENAN SAYYNTONT 40 HIUWAN

0000

15000

1000

- - ~ -

SAVUNIOM S0 ¥IUWNN 50 01901

RANGE (m)

r

=

>

z

=z

=

3 b0

a0

o=

a2

S=

o8
o

e
3

2

an—

=

«

i

-

o

[=3

o

=

o

E]

2

L]

a

z

o

Center panel: N vs r flor a sinusoidal bottom.

Plots of the number of eigenra,

for a fat bottom.
vs r for & sinusoidal botlom.

Figure 9.



20000

1 of range r. Upper panel: N vs r

ntom.  Lower panel: log N

155

107!

1072

Average Intensity

1073}

4

" N

1075

5 Range (km) 10

15

20

Figure 10. Plot of average eigenray intensity as a function of range for the sinusoidal bottom

problem.

20

. I
0 1

® & ® o an oo sm————

0 2

4

N

8 8

10

Figure 11.  Plot of In I,\r(ll)l vs. n for 51 rays whose lauch angle 5.0° ¢ 00 < 5.5°. The
average slope of the plotted poiuts is an estimate of the average Lyapunov exponent.

0 5

Range (km) 10

15 55

25

Figure 12. Plot of reduced travel time Ty - r/c_ vs. range r for the sinusoidal bottom

o

problem. Each cluster of points correspond to a fixed number of bottom bounces N, with N

increasing upwards and to the right.




156

the Lyapunov exponent v is defined by equation (22). To maintain
consistency with the results shown in figures 6-10, however, we have

plotted in figure 11 In |,\I(11)| vs n, n = 0,1,2... 10, for 51 rays in the

band 5.0° < 00 < 5.5°. The average slope of the points plotted is an
- estimate of the average Lyapunov exponent Vav' From the figure Vou ¥
1.3/bounce. Using 2.9 km/bounce as an average range increment — see

figure 6 or 7 — this corresponds to Voy ® (2.2 km)_l. This is in rough

agreement with our earlier results.

The distribution of travel times T as a function of range r gives
additional insight into the complexity of the wavefield under chaotic
conditions. In figure 12, T(r) is plotted for many (not all) rays in the

band 1.0° < 00 < 5.0° Each cluster of points in this figure corresponds

to a different number of bottom bounces n. This figure shows that travel
times for rays which have hit the bottom only a few times are tightly
bound and clusters corresponding to different n are distinct. As n
increases, travel time spreads grow and clusters corresponding to different n
overlap with their neighbors. This figure shows that after a small number
of bounces the wavefield is highly structured and predictable. After a large
number of bounces, however, the wavefield is largely unstructured and
appears to be unpredictable. This is chaos.

y 4. A SEARCH FOR WAVE CHAOS

Our discussion up until now has focused on chaotic behavior of ray
trajectories in models of range-dependent oceanic waveguides. It is natural
to ask, "To what extent does the unpredictability associated with chaotic
ray trajectories carry over to finite frequency wavefields?" In this section
we present some preliminary numerical results which address this question.
It is natural to refer to chaotic behavior in finite frequency wavefields, if it
exists, as "wave chaos."

In another context this phenomenon, a controversial one, is referred to
as "quantum chaos." To date, most of the work on quantum chaos (see,
e.g., Berry, 1987) has been concerned with the distribution of energy levels
of quantum systems which exhibit chaotic motion in the classical limit. It
is known that these energy levels obey different statistics in (a) systems
which are classically chaotic and (b) systems which are classically regular.
These important results provide little insight into our underwater acoustics
problem, however. The reason is that these results apply to the solutions
to boundary value problems whereas our underwater acoustic waveguide
problems are initial value problems.

In this section, we confine our attention to one of many ideas which
might be used to investigate wave chaos. The idea is reversibility or, more
specifically, lack of reversibility in chaotic systems. The ray equations (1)
can be integrated backwards in range by simply changing the sign of r. It
is straightforward to verify that under regular conditions a ray trajectory
can be computed forward, out to a very long range, and backwards, only
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to recover the initial conditions, z(0), p(0). For a chaotic trajectory this
procedure does not work at ranges longer than a few e-folding distances,

v The reason is that at longer ranges the initial conditions of the ray
will have been forgotten. One way to investigate wave chaos is to ask
whether finite frequency wavefields "forget" their initial conditions in a
similar fashion.

We have addressed this question by examining solutions to the
parabolic wave equation,

iglré+ml€—§¥—k0V(z,r)¢=0, (24)
(0}
which are computed using the split-step Fourier algorithm s]Tappert, 1977).
In (24), k) = /co where w is the angular frequency of the sound waves
and the acoustic pressure )
B -1/2 1kor
u(z,r) = Y(z,r) (kor) e . (25)

It should be noted that the wave equation (24) reduces to the ray
equations (1) in the high frequency limit. The split step Fourier algorithm
is well suited to looking at reversibility because depth dependent complex
wavefields 9(z) can be stepped backwards as well as forwards in range
using this technique.

Figure 13 shows examples of forward and back propagated fields out
to a range of Tmax — 18.53 km. These wavefields were computed using an

acoustic frequency of 16 kHz. The azimuthal spreading factor in (25) was
neglected in both the forward and back propagation problems. The initial
(r = 0) field for the forward propagation calculation was a narrow
downward directed gaussian beam. The ocean structure was chosen to
coincide with the sinusoidal bottom problem described in the previous

sections. The potential V(z,r) is given by (14) with ¢, = 1510 m s and

the bathymetry is given by (13) with h = 61 c¢cm and 2r/k = 185 m.
This choice of parameters corresponds to a stochasticity parameter (eg. 17)
7 = 448. The PE runs require a finite ocean depth and bottom sound

speed. We used 98 m and 1740 m s—l, respectively. In the back
propagation calculation, the complex conjugate of the forward propagated
field at I hax is used as the initial condition and the bathymetry is
reversed.

In this environment ray trajectories are highly chaotic and one would
expect that ray theory accurately describes the acoustic wavefield at 16
kHz. Figure 13 shows rather dramatically, however, that the wavefield at

= I .. has not forgotten its initial conditions. Furthermore, our
investigation of the dependence of back-propagated fields on r indicates
that the results degrade slowly as Tax 18 increased. There is no evidence

of exponential degradation of back—propagated fields. These and other

numerical simulations that we have performed suggest that wave chaos does
not exist.
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5.  DISCUSSION AND SUMMARY

We have argued that the generic range-dependent sound propagation
problem differs in a fundamental way from the range-independent problem,
at least in the geometric limit. In the range-dependent problem at least
some ray trajectories exhibit chaotic motion wherein neighboring trajectories
diverge from each other exponentially. Under conditions in which ray
trajectories are predominantly chaotic we have shown that the complexity
of the geometric wavefield grows exponentially in range. In the range
independent problem, wavefield complexity also grows in range but at a i
much slower (power law) rate.

In this paper we have restricted our attention to periodically ,
range-dependent models of ocean sound channels. It is natural to ask how .
this situation differs from the more realistic nonperiodic range-dependent .‘.
problem. An important difference is that in the latter problem the phase i

space (z,p,r) is not bounded. As a result Poincare sections cannot be

constructed. Power spectra and Lyapunov exponents are still useful

diagnostic tools to identify chaotic motion. In all cases there is

uncertainty associated with taking the limit r - » in estimating the

Lyapunov exponent (11). The best one can do is to say that over some

range of r v appears to be approaching a well defined value. We are !

currently investigating the behavior of ray trajectories in numerically

simulated ocean sound channels containing realistic mesoscale induced i

perturbations. The results are not yet complete. 1

Under chaotic conditions ray trajectories are not computable, due to {
{
{

extreme sensitivity to initial conditions, beyond some finite predictability
horizon. This leads us to question whether there might be a fundamental
limitation on our ability to compute finite frequency wavefields. The
preliminary numerical experiments which we have performed suggest that
no such limitation exists.
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