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Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e.,
material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed
drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which
appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies.
Here we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of
an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we
obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size
particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size
particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface
float trajectories, as well as satellite-derived Sargassum distributions.
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Satellite-tracked drifting buoy trajectories and
satellite-derived algal distributions are commonly
used in oceanography to infer Lagrangian aspects
of the surface ocean circulation. At the same
time, dynamical systems techniques applied to
surface ocean velocities inferred from satellite
altimetry reveal persistent coherent Lagrangian
eddies. Paradoxically, buoys and algae display
dissipative-looking patterns in contrast to the
conservative-looking coherent Lagrangian eddies.
Here we show that the dissipative patterns are
due to inertial effects superimposed on the con-
servative fluid patterns produced by coherent La-
grangian eddies.

I. INTRODUCTION

The work reported in this paper provides an explana-
tion for the dissipative behavior of drifting buoys and
floating matter on the ocean surface near coherent La-
grangian (i.e., material) eddies. Such eddies impose con-
servative behavior on nearby fluid particles in incom-
pressible two-dimensional flows, which seems at ods with
the observed dissipative patterns.

A revealing example of observed dissipative behavior
is that of two RAFOS floats (acoustically tracked, sub-
surface, quasi-isobaric drifting buoys) in the southeast-

ern North Pacific (Fig. 1). Initially close together, the
two floats (indicated in red and green in Fig. 1) take
significantly divergent trajectories on roughly the same
depth level (320 m) relative to the floats positional un-
certainty, which does not exceed 10 km (Garfield et al.,
1999; Collins et al., 2013). This behavior at first sight
might be attributed to sensitive dependence of fluid parti-
cle trajectories on initial particle positions in a turbulent
ocean. But analysis of satellite altimetry measurements
reveals that the floats on the date of closest proximity fall
within a region of roughly 100-km radius characterized by
a bulge of the sea surface height (SSH) field (selected iso-
lines are indicated by dashed curves in Fig. 1). This SSH
bulge propagates westward at a speed slower than the
geostrophically inferred clockwise tangential speed at its
periphery, suggesting the presence of a mesoscale anticy-
clonic eddy capable of holding fluid (Chelton, Schlax, and
Samelson, 2011). Indeed, this SSH eddy may be identi-
fied with the surface manifestation of a California Under-
current eddy; such eddies, referred to as “cuddies,” have
been argued to be important transport agents (Garfield
et al., 1999). However, while one float is seen to loop
anticyclonically accompanying the eddy very closely, the
other float anticyclonically spirals away from the eddy
rather quickly, representing a puzzle.

Even more puzzling is that the two floats actually ini-
tially lie, as we show below, within the same coherent
Lagrangian eddy (Beron-Vera et al., 2013; Haller and
Beron-Vera, 2013, 2014). Representing an elliptic La-
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FIG. 1. Trajectories of two RAFOS floats (red and green
curves) and selected snapshots of a westward propagating
bulge of the satellite altimetric sea surface height (SSH) field
(dashed curves indicate selected isolines) in the southeastern
North Pacific. The dots indicate the positions of the floats on
the dates that the SSH bulge is shown.

grangian coherent structure (LCS; cf. Haller, 2014), the
boundary of such an eddy defies the exponential stretch-
ing of typical material loops in turbulence. In effect, the
eddy in question exhibits minimal filamentation and de-
formation over several months, and thus is expected to
trap and carry within both floats.

The behavior of one of the floats supports this sce-
nario and thus the altimetry-derived (i.e., geostrophic)
upper-ocean current representation that sustains the co-
herent Lagrangian eddy. Ageostrophic processes of var-
ious types may be acting in the upper ocean, but these
cannot explain the substantively different behavior of the
other float. Indeed, ageostrophic effects cannot be so dif-
ferent on two initially nearby fluid particles in a region
of mostly regular flow. Therefore, to resolve the puzzle,
effects of a different class must be accounted for.

Here we argue theoretically, and show both numerically
and observationally, that such effects can be produced
by inertia, i.e., buoyancy and size finiteness. Inertial ef-
fects are commonly considered in atmospheric transport
studies. These range from studies aimed at explaining
observed motion of meteorological balloons (Paparella
et al., 1997; Provenzale, 1999; Dvorkin, Paldor, and Bas-
devant, 2001) and spread of volcanic ash (Haszpra and
Tél, 2011), to theoretical and numerical studies of partic-
ulate matter dispersal (Haller and Sapsis, 2008; Sapsis
and Haller, 2009; Tang et al., 2009). In oceanography in-
ertial effects have been also taken into account in several
problems including sedimentation (Nielsen, 1994), and
plankton sinking (Stommel, 1949), patchiness (Reigada
et al., 2003) and selfpropulsion (Peng and Dabiri, 2009).
However, they have been rarely considered in the motion
of drifting buoys, macroscopic algae, or debris. To the
best of our knowledge, their potential importance in in-
fluencing the motion of floats was only noted by Tanga
and Provenzale (1994).

Our theoretical results reveal that while the boundary
of a coherent Lagrangian eddy represents a transport bar-
rier for fluid particles, it does not do so for inertial par-
ticles. Instead, a coherent Lagrangian eddy attracts or
repels initially close inertial particles, depending on the

particles’ density ratio with the ambient fluid and on the
polarity (rotation sense) of the eddy.

We first validate these numerically using altimetry-
derived currents in several regions of the ocean. Next, we
use our findings to explain observed behavior in various
ocean areas starting with the aforementioned floats, then
proceeding with satellite-tracked surface drifting buoys
(drifters), and finally macroscopic algae (Sargassum) dis-
tributions.

We emphasize that because our approach uses
observationally-based velocity, it enables feature match-
ing and analysis of specific measurements. Furthermore,
our approach is self-consistent within the realm of incom-
pressible two-dimensional flows. This is in marked con-
trast with a previous approach to surface ocean pattern
formation (Zhong, Bracco, and Villareal, 2012), which
considered passive advection by the surface velocity from
a primitive-equation model (i.e., a truncation of the
three-dimensional velocity). This is destined to create
dissipative-looking patterns, but no actual passive tracer
follows such a virtual velocity field.

We also note that our results are not applicable to the
problem of accumulation of debris in subtropical gyres,
which has been recently investigated by Froyland, Stuart,
and van Sebille (2014) using probabilistic methods. The
so-called great ocean garbage patches are produced by
convergent wind-induced Ekman transport (Maximenko,
Hafner, and Niiler, 2011). The Ekman dynamics govern-
ing basin-scale motions are very different than the quasi-
geostrophic dynamics governing mesoscale motions, our
focus here. The former can produce dissipative patterns
on the surface ocean by themselves, but the latter cannot
unless inertial effects are taken into account, as we noted
above and demonstrate below.

The remainder of the paper is organized as follows.
Section 2.1 presents the mathematical setup required to
formally introduce the coherent Lagrangian eddy notion,
which is briefly reviewed in Section 2.2. The theoreti-
cal results relating to behavior of inertial particles near
coherent Lagrangian eddies are presented in Section 2.3.
In Section 2.4 further insight into inertial particle mo-
tion is provided. Numerical validation of the theoretical
results is presented in Section 3. In Section 4 the theoret-
ical results are used to explain observed behavior in the
ocean. A summary and discussion is offered in Section 5.
Finally, Appendix A includes details of the asymptotic
analysis leading to our theoretical results, Appendix B is
reserved for the description of the several datasets em-
ployed, and Appendix C gives some details of the various
numerical computations performed.

II. THEORY

A. Mathematical setup

We consider an incompressible two-dimensional veloc-
ity field, v(x, t), where position x ranges on some open
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domain of R2 and time t is defined on a finite interval.
Specifically, we consider

v =
g

f
∇⊥η, (1)

where η(x, t) is the SSH; the constants f and g stand for
Coriolis parameter (twice the local vertical component of
the Earth’s angular velocity) and acceleration of grav-
ity, respectively; and ⊥ represents a 90◦-anticlockwise
rotation. The velocity field (1) is representative of quasi-
geostrophic motions in the upper ocean, i.e., character-
ized by a small Rossby number, Ro := V/L|f |, where L
and V are typical length and velocity scales, respectively.
In particular, (1) is suitable to investigate transport near
mesoscale eddies, our focus here. Fluid particles evolve
according to

ẋ = v. (2)

Let F tt0(x0) := x(t;x0, t0) be the flow map that takes
time t0 positions to time t positions of fluid particles
obeying (2). An objective (i.e., frame-invariant) measure
of material deformation in (2) is the right Cauchy–Green
strain tensor,

C := (DF )>DF, (3)

where D stands for differentiation with respect to x0. For
any smooth v, F represents a diffeomorphism, which en-
sures invertibility of DF and thus positive definiteness of
C. Furthermore, incompressibility of v implies detC = 1.
Consequently, eigenvalues {λi} and normalized eigenvec-
tors {ξi} of C satisfy

0 < λ1 ≤ λ2 ≡
1

λ1
, ξi · ξj = δij i, j = 1, 2. (4)

B. Coherent Lagrangian eddies

Haller and Beron-Vera (2013) seek elliptic LCS as ma-
terial loops with small annular neighborhoods showing
no leading-order variation in averaged material stretch-
ing (Fig. 2).

Solving this variational problem reveals that elliptic
LCS are uniformly stretching: any of their subsets are
stretched by the same factor λ under advection by the
flow from time t0 to time t. The time t0 positions of λ-
stretching elliptic LCS turn out to be limit cycles of one
of the following two objective ODE for parametric curves
s 7→ r(s):

r′ =

√
λ2 − λ2
λ2 − λ1

ξ1 ±

√
λ2 − λ1
λ2 − λ1

ξ2, (5)

where the prime stands for s differentiation. More geo-
metrically, limit cycles of (5) are closed null geodesics of
the metric tensor C − λ2Id, which is Lorentzian in the
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FIG. 2. A closed material curve γ (red) at time t0 is advected
by the flow into F (γ) at time t. The advected curve remains
coherent if a thin material belt around it (light blue) shows no
leading-order variation in averaged stretching after advection.

domain satisfying λ1 < λ2 < λ2. This provides a rela-
tivistic interpretation of coherent Lagrangian eddies (for
details, cf. Haller and Beron-Vera, 2013, 2014).

The limit cycles of (5) will either grow or shrink under
changes in λ, forming smooth annular regions of nonin-
tersecting loops. The outermost member of such a band
of coherent Lagrangian loops will be observed physically
as the boundary of the coherent Lagrangian eddy. We re-
fer to these maximal elliptic LCS as coherent Lagrangian
eddy boundaries.

Limit cycles of (5) tend to exist only for λ ≈ 1. Ma-
terial loops characterized by λ = 1 resist the universally
observed material stretching in turbulence: they reas-
sume their initial arclength at time t. This conservation
of arclength, along with the conservation of the enclosed
area in the incompressible case, creates extraordinary co-
herence for elliptic LCS.

C. Inertial effects near coherent Lagrangian eddies

The Maxey–Riley equation (Maxey and Riley, 1983)
describes the motion of inertial (i.e., buoyant, finite-size)
particles, which can deviate substantially from that of
fluid (i.e., neutrally buoyant, infinitesimally-small) par-
ticles (cf. Cartwright et al., 2010). Here we consider a
simplified version of the Maxey–Riley equation appro-
priate for inertial particle motion in a quasigeostrophic
flow. We further derive a reduced form of this equation,
which will allow us to assess behavior near a coherent
Lagrangian eddy.

Specifically, ignoring added mass effects, the Bas-
set history term, and so-called Faxen corrections, the
Maxey–Riley equation for the motion of a small spherical
particle in the flow produced by (1) is given by

ẍ+ fẋ⊥ = δfv⊥ − τ−1 (ẋ− v) , (6)
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where the constants

δ :=
ρ

ρp
, τ :=

2a2

9νδ
. (7)

Here ρ and ν are the fluid’s density and viscosity, respec-
tively, and ρp and a are the inertial particle’s density and
radius, respectively. The left-hand-side of (6) is the iner-
tial particle’s absolute acceleration. The first and second
terms on the right-hand-side of (6) are the flow force and
Stokes drag, respectively.

The simplified form of the Maxey–Riley equation (6)
was priorly considered by Provenzale (1999) with the fol-
lowing differences. First, the fluid relative acceleration,
ρ(∂tv + v · ∇v), was included. This term is one order
of magnitude smaller in Ro than fv⊥ and thus is conve-
niently neglected here. Second, a centrifugal force term
was included too, but this is actually balanced by the
gravitational force on the horizontal plane. Third, a ver-
tical buoyancy force term was considered, but this in the
end played no role as the focus was on motion on a hor-
izontal plane, as here.

We introduce the small nondimensional parameter:

ε := τ
V

L
=

2

9δ

( a
L

)2
Re =

St

δ
� 1, (8)

where Re and St are Reynolds and Stokes numbers, re-
spectively. Consistent with the quasigeostrophic scaling
assumptions leading to the fluid velocity field (1), we can
set

ε = O(Ro). (9)

In Appendix A we show that inertial particle motion
characterized by (9), e.g., the motion of particles much
smaller than the typical lengthscale of the flow, is con-
trolled at leading order by

ẋ = vp = v + τ (δ − 1) fv⊥, (10)

which is the reduced form of the Maxey–Riley equation
we shall use. This reduced equation is valid up to an
O(ε2) error, after particles reach the vicinity of an at-
tracting slow manifold exponentially fast.

Comparison of (2) and (10) reveals that the fluid ve-
locity, v, and inertial particle velocity, vp, differ by a dis-
sipative O(ε) term. In the northern hemisphere (f > 0)
this term acts to deflect the motion of positively buoyant
(δ > 1) finite-size or light particles to the left of the mo-
tion of fluid particles, while it acts to deflect the motion
of negatively buoyant (δ < 1) finite-size or heavy parti-
cles to the right; in the southern hemisphere (f < 0) it
acts the opposite way (Fig. 3).

Inertial effects, therefore, should promote divergence
away from, or convergence into, coherent Lagrangian ed-
dies when otherwise fluid particles circulate around them.

Specifically, let γ be the boundary of a coherent La-
grangian eddy at time t and Uγ the region γ encloses.

v

v

� .ı � 1/ f v?

� .ı � 1/ f v?

southern hemisphere

v

� .ı � 1/ f v?

northern hemisphere

v
� .ı � 1/ f v? light

light

heavy

heavy

FIG. 3. Velocity contributions to inertial particle’s velocity:
light (heavy) particle motion deflects to the right (left) of fluid
particle motion in the northern hemisphere and vice versa in
the southern hemisphere.

Up to an O(ε2) error, the flux across γ is given by

Φγ =

∮
γ

(v − vp) · dx⊥

=

∫
Uγ

∇ · (vp − v) d2x

= τ(1− δ)f
∫
Uγ

ω d2x, (11)

where the loop integral is taken anticlockwise and ω :=
−∇ · v⊥(= gf−1∇2η) is the fluid’s vorticity. Inspection
of expression (11) leads to the following conclusions:

1. cyclonic (fω > 0) coherent Lagrangian eddies at-
tract (Φγ < 0) light (δ > 1) particles and repel
(Φγ > 0) heavy (δ < 1) particles; while

2. anticyclonic (fω < 0) coherent Lagrangian eddies
attract (Φγ < 0) heavy (δ < 1) particles and repel
(Φγ > 0) light (δ > 1) particles.

Our results concerning heavy particles confirm the nu-
merical observations of Provenzale (1999) and extend
them to the behavior of light particles.

Our computations below are based on the reduced
Maxey–Riley equation (10), which we refer to as the in-
ertial equation. This follows the terminology of Haller
and Sapsis (2008), who obtained the reduced form of a
system similar to (6) in a nonrotating frame. Consid-
ering (10) is advantageous computationally and, as we
will show, sufficiently accurate for the verification of our
theoretical results.

D. Inertial Lagrangian Coherent Structures

While motion of inertial particles is not constrained by
LCS, it is tied to analogous exceptional invariant curves
referred to as inertial LCS (or iLCS ; cf. Haller and Sap-
sis, 2008).

Of particular interest for our purposes here are hy-
perbolic iLCS of attracting type. These can be ob-
tained by applying recent LCS theory results (Haller and
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Beron-Vera, 2012; Farazmand and Haller, 2013; Faraz-
mand, Blazevski, and Haller, 2014; Haller, 2014) on sys-
tem (10). Specifically, iLCS at time t0 which attract
nearby inertial particle trajectories over [t0, t] are invari-
ant curves s 7→ r(s) that satisfy

r′ = ξp1 or r′ = ξp2 (12)

and
√
λp2 > 1 or

√
λp1 < 1 (13)

for t < t0 or t > t0, respectively. Here {λpi } and
{ξpi } are eigenvalues and eigenvectors, respectively, of
the Cauchy–Green tensor, Cp, derived from system (10),
which is an objective measure of deformation in that
system. In forward time, segments of these invariant
lines squeeze and stretch, respectively. As a result, they
can be referred to as inertial squeezelines and inertial
stretchlines, respectively. In a similar manner as the
λ-lines discussed above, these invariant lines admit a
null geodesic interpretation. In this case, the relevant
Lorentzian metric tensor is given by CpΩ− ΩCp, where
Ω is a 90◦-anticlockwise rotation matrix (Farazmand,
Blazevski, and Haller, 2014).

III. SIMULATIONS

Here we present numerical results that confirm our the-
oretical predictions for the motion of inertial particles
near coherent Lagrangian eddies in the ocean.

In each of our numerical tests a coherent Lagrangian
eddy was detected assuming that fluid trajectories are
governed by (2) with the velocity field given in (1); the
SSH field is constructed using satellite altimetry measure-
ments (Fu et al., 2010). All eddies were detected from
90-day forward integration and found to have λ = 1.
Successive positions of the boundaries of the eddies past
the detection time were obtained from advection. Iner-
tial particles were assumed to have a = 0.25 m, which is
a realistic radius value for commonly employed spherical
drifting buoys. Both light and heavy particles were con-
sidered, with δ = 1.1 and 0.9, respectively. These density
ratio values are generally representative of surface float-
ing and slowly or sinking buoys, respectively. For typical
oceanic mesoscale eddies, with diameter L ∼ 150 km
and tangential velocity at the boundary V ∼ 0.1 m s−1,
these inertial particle parameter choices give ε ∼ 0.01.
This ε value turned out to be small enough for particle
motion obeying the Maxey–Riley equation (6) to exhibit
behavior qualitatively similar to that satisfying the iner-
tial equation (6) employed in our simulations.

We begin by discussing the results of tests involving
light and heavy particles initially located on the same
position on the boundary of a coherent Lagrangian eddy.
The results are summarized in Fig. 4, which consider a cy-
clonic (left panel) and an anticyclonic (right panel) eddy,
both indicated in light blue. The eddy in the left panel is

identifiable with an Agulhas ring, while that in the right
panel with a cold-core Gulf Stream ring. The arclength
of the boundary of each eddy on the detection date is re-
assumed 90 days after (recall that the eddies have λ = 1).
Coherence is nevertheless observed well beyond 90 days
consistent with previous analyses of the satellite altime-
try dataset (Beron-Vera et al., 2013; Haller and Beron-
Vera, 2013). This is evident from the complete absence
of filamentation. The light (green) and heavy (red) par-
ticles behave quite differently than the fluid particle (yel-
low) initially lying on the same position as the inertial
particles on the boundary of each eddy. The fluid par-
ticle remains on all dates shown on the boundary of the
Lagrangian eddy carrying the particle. Consistent with
our predictions, the light (heavy) particle spirals out of
(into) the Agulhas ring, while it spirals into (out of) the
cold-core Gulf Stream ring.

05-Aug-06 24-Nov-06

03-Sep-06 07-Jan-07

35ıN

37ıN

39ıN

77ıW 73ıW 69ıW 65ıW

04-Oct-06

34ıS

30ıS

32ıS

28ıS

5ıW 0ı 5ıE 10ıE 15ıE 20ıE

22-Feb-07

FIG. 4. Simulated trajectories of light (green), heavy (red),
and fluid (yellow) particles initially on the boundaries of two
mesoscale coherent Lagrangian eddies (light blue) extracted
from altimetry-derived velocity. Advection for the fluid par-
ticles is supplied by the altimetry-derived velocity, and heavy
and light particle motion is controlled by the inertial equa-
tion (10). The eddies are identifiable with a cyclonic cold-core
Gulf Stream ring (left panel) and an anticyclonic Agulhas ring
(right panel).

We now provide more explicit support to our predic-
tions by presenting the results from the computation of
the pointwise flux of inertial particles across the bound-
ary of a coherent Lagrangian eddy. Across a material
loop γ, the pointwise flux of inertial particles is given by
(vp − v) · nγ , where nγ is the outer unit normal to γ.
Taking γ as the boundary of the eddy identified above
as an Agulhas ring, the latter is plotted in Fig. 5 on 24
November 2006 as a function of the boundary parameter
s, chosen to be an azimuthal angle. The pointwise fluxes
of light (solid green) and heavy (solid red) particles are
everywhere inward and outward, respectively, along the
boundary of the anticyclonic eddy in question. Thus our
sign predictions for the total flux extend to the pointwise
flux in this example.

We now turn to illustrate in Fig. 6 that the evolution
of inertial particles is tied to attracting iLCS. This is
done for patches of light (green) and heavy (red) parti-
cles lying initially outside the coherent Lagrangian Agul-
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FIG. 5. Pointwise flux on 24 November 2006 of simulated light
(green) and heavy (red) particles across the boundary of the
anticyclonic coherent Lagrangian eddy identified in the previ-
ous figure as an Agulhas ring. Solid and dashed curves corre-
spond to simulations based on the inertial (10) and Maxey–
Riley (6) equations, respectively.

has ring discussed above (light blue). Shown attracting
iLCS (black) were computed as most stretching inertial
stretchlines through each patch. This was done on the
eddy detection time from a 90-day-forward integration.
The evolution of each inertial stretchline was determined
by advection. After experiencing substantial stretching
the heavy particle patch is repelled away from the eddy.
By contrast, the light particle patch spirals into the eddy.
As expected, the attracting iLCS forms the centerpiece of
the patch in each case. For completeness, the evolution of
a fluid patch (yellow) is also shown. In this case, too, the
patch evolution is tied to its centerpiece attracting LCS,
computed also as the most stretching stretchline through
patch. Consistent with the material nature of the bound-
ary of the coherent eddy, the fluid patch spirals around
the eddy without penetrating it.

Finally, we show that for the parameters chosen, the
qualitative behavior near a coherent Lagrangian eddy de-
scribed by the Maxey–Riley (6) equation is captured by
the inertial equation (10). This is illustrated in Fig. 5,
where the dashed lines correspond to pointwise flux cal-
culations based on the Maxey–Riley equation. This cal-
culation involves trajectories started earlier, with a small
(10% of the fluid velocity) perturbation to the veloc-
ity given in (10). While strict convergence of inertial-
and Maxey–Riley-equation-based flux calculations has
not been attained after 30 days of integration, both flux
calculations agree in sign and share a similar structure.
The slow convergence to the inertial manifolds arises
from the highly unsteady nature of the altimetry-derived
flow. Under such conditions, pronounced convergence
is only observable near sufficiently persistent attracting
sets. This is illustrated in Fig. 7, which shows trajecto-
ries of light (green) and heavy (red) particles lying on 24
November 2006 at the same position on the boundary of

24-Nov-06

14-Dec-06

03-Jan-07

31ıS

32ıS

1ı 2ıE 3ıE

FIG. 6. Simulated evolution of patches of light (green), heavy
(red), and fluid (yellow) particles initially outside of the co-
herent Lagrangian Agulhas ring in the previous figures (light
blue). Centerpiece attracting iLCS and LCS for the inertial
and fluid particle patches, respectively, are indicated in black.
Advection for fluid the particles is supplied by altimetry-
derived velocities, and inertial particle motion is controlled
by (10).

the coherent Lagrangian Agulhas ring considered in the
pointwise flux calculations. As in Fig. 5, solid and dashed
curves correspond to calculations based on inertial and
Maxey–Riley equations, respectively. Once again, while
details of inertial- and Maxey–Riley-equation-based tra-
jectories are different and convergence can only be ex-
pected when particles are heavy, our predictions are seen
to hold well: the heavy particle is attracted by the anti-
cyclonic coherent Lagrangian eddy in question, whereas
the light particle is repelled away from it.

IV. OBSERVATIONS

In this section we discuss four sets of ocean observa-
tions that can be explained using our predictions for the
motion of inertial particles near mesoscale coherent La-
grangian eddies.

The first set of observations, discussed in the Intro-
duction, concern two RAFOS floats in the southeast-
ern North Pacific. The floats took divergent trajecto-
ries despite their initial proximity within an anticyclonic
mesoscale eddy. This eddy was revealed from the Eule-
rian footprints in the altimetric SSH field of a California
Undercurrent eddy or “cuddy.” As we anticipated in the
Introduction and now explicitly show in the top panel
of Fig. 8, the altimetry-derived velocity field sustains a
coherent Lagrangian eddy in nearly the same position as
the SSH eddy. The eddy, obtained from a 90-day-forward
integration with λ = 1, is depicted (in light blue) on the
detection date and two subsequent dates. The trajectory
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3ıW 0ı 3ıE

24-Nov-06

15-Feb-07

11-May-07

FIG. 7. Simulated trajectories of light (green) and heavy (red)
particles initially lying on the same location on the boundary
of the coherent Lagrangian Agulhas ring of the previous fig-
ures (light blue) based on inertial (solid) and Maxey–Riley
(dashed) equations.

of each of the two floats is indicated by a curve, with
their initial position highlighted by a dot. The diver-
gent behavior of the float trajectories can be explained
by inertial effects as follows. Note that the float indi-
cated in green takes a slightly ascending trajectory (Fig.
8, bottom-left panel), whereas the float indicated in red
takes a slightly descending trajectory (Fig. 8, bottom-
right panel). Thus the ascending float represents a posi-
tively buoyant (i.e., light) object, whereas the descending
float represents a negatively buoyant (i.e., heavy) object.
The radius of the looping trajectory taken by the ascend-
ing float is seen to increase as the float drifts westward
accompanying the anticyclonic coherent Lagrangian eddy
revealed from altimetry, which is eventually abandoned
by the float. This behavior adheres closely to what we
have predicted for light particles. The radius of the loop-
ing trajectory taken by the descending float is not seen to
decrease as the float drifts westward accompanying the
eddy in question. However, in marked contrast with the
ascending float, the descending float remains within this
eddy. This behavior adheres to what we have predicted
for heavy particles near anticyclonic coherent Lagrangian
eddies.

The second set of observations concerns trajectories
of satellite-tracked surface drifters deployed in the Gulf
of Mexico ahead of hurricane Rita in September 2005.
The drifters were deployed inside a Loop Current ring
detected from its Eulerian footprints in the altimetric
SSH field. A 30-day-forward integration of the altimetry-
derived velocity field reveals that the anticyclonic SSH
eddy contains a λ = 1 coherent Lagrangian eddy with
a radius of roughly 100 km, about 25-km smaller than
that of the approximately circular area occupied by the
SSH bulge. Figure 9 shows the coherent Lagrangian eddy
(light blue) on the detection date and two subsequent po-
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FIG. 8. (top panel) Trajectories of the two RAFOS floats in
Fig. 1 (green and red curves) and snapshots of an anticyclonic
coherent material eddy detected from altimetry (light blue).
The dots indicate the positions of the floats on the dates that
the eddy is shown. (bottom-left panel) Depth of the green
float as a function of time (black) with linear trend indicated
(green). (bottom-right panel) As in the bottom-left panel,
but for the red float.

sitions obtained from advection. The trajectories of the
drifters (a total of nine) are depicted in green (positions
on the date shown are indicated by dots). Hurricane
Rita made landfall about one week prior to the detec-
tion date, so neither the altimetry signal nor the motion
of the drifters are affected by the high winds associated
with this tropical cyclone system. Three drifters lie in-
side the eddy on the detection date, while the remain-
ing six are located outside of the eddy, but close by its
boundary. Overall, the drifters undergo growing looping
trajectories. More than one month after the detection
date, all nine drifters are found away from the center of
the eddy, with three lying on its border and six lying well
away from it. Noting that the drifters maintain afloat on
the ocean surface, this behavior can be expected, given
that anticyclonic coherent Lagrangian eddies repel away
light particles according to our results.
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FIG. 9. Trajectories of satellite-tracked surface drifters (green
curves) and snapshots of a coherent Lagrangian Loop Current
ring detected from altimetry (light blue). The dots indicate
the positions of the drifters on the corresponding date.

The third set of observations involves the trajectory
of a surface drifters tracked by the Argos satellite sys-
tem, which was deployed inside an Agulhas ring, named
Astrid, as part of the Mixing of Agulhas Rings Experi-
ment (MARE) (van Aken et al., 2003). (Two additional
drifters were deployed during MARE whose trajectories
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have not been possible to access. However, all three
drifters behave similarly as it can be seen in Fig. 6 of
van Aken et al. (2003).) Detected from its Eulerian foot-
prints in the altimetric SSH field, ring Astrid was sub-
jected to a detailed survey. Hydrographic casts across
ring Astrid indicated the presence of a warm and saline
core. Acoustic Doppler current profiling revealed that
Astrid had, in addition to the baroclinic flow around its
core, a significant barotropic component. A 30-day for-
ward integration of the altimetry-derived velocity field
reveals a coherent Lagrangian eddy with λ = 1. This
eddy has a mean radius of roughly 100 km, about half
that of the approximately circular region spanned by the
SSH bulge. Figure 10 shows selected snapshots of the co-
herent Lagrangian eddy (light blue) on three dates start-
ing from the detection date. The trajectory of the Argos-
tracked surface drifter is indicated in green (dots indicate
the positions of the drifter on the corresponding dates).
The drifter is seen to develop counterclockwise looping
trajectories. This grows in radius and quite quickly the
drifters abandon the vicinity of the eddy. The coher-
ent Lagrangian eddy is rather short lived, thereby not
revealing the presence of a well-developed Agulhas ring
(possibly consistent with the lack of a well-defined core
in the in-situ velocity measurements). However, over the
lifespan of the eddy, the drifters’ behavior is consistent
with our predictions for a light particle. Therefore, our
results offer an explanation for its motion.

34ıS

36ıS

38ıS

40ıS

14ıE 16ıE 18ıE 20ıE
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FIG. 10. Trajectory of an Argos-tracked surface drifter (green
curve) and snapshots of a short-lived coherent Lagrangian Ag-
ulhas ring detected from altimetry (light blue). A dot indi-
cates the position of the drifter on the corresponding date.

Finally, the fourth set of observations involves distri-
bution of floating Sargassum on the sea surface in the
western North Atlantic inferred from the Medium Res-
olution Imaging Spectrometer (MERIS) aboard Envisat
(Fig. 11, top panel). Sargassum corresponds to Maxi-
mum Chlorophyll Index (MCI) values exceeding −0.25
mW m−2 sr−1 nm−1. Detected on 4 October 2006, the
feature of interest takes a spiraled shape and lies in-
side a coherent Lagrangian cold-core Gulf Stream ring
as revealed from altimetry. In the bottom-left panel of
Fig. 11 the material boundary of this cyclonic coherent
ring is shown overlaid on the Sargassum feature in ques-
tion. This was obtained in Section 3 from advection of
a coherent Lagrangian eddy boundary computed on 5
August 2006 from a 90-day-forward integration of the

altimetry-derived velocity field (cf. Fig. 4, top-right pan-
els). The accumulation of the floating Sargassum inside
the Gulf Stream ring is consistent with the behavior of in-
ertial particles near cyclonic coherent Lagrangian eddies,
which attract light particles according to our results. The
spiraled shape of the Sargassum distribution inside the
ring is consistent too with the spiraled shape acquired
by altimetry-based attracting light iLCS (parameters are
as in Section 3). Selected iLCS are shown overlaid on
the Sargassum distribution in the bottom-right panel of
Fig. 11. These were obtained as backward-time light in-
ertial squeezelines initialized along the boundary of the
Gulf Stream ring on the date shown. The direction of
the spiraling inertial particle motion along these iLCS is
inward, as direct integration of the inertial particle equa-
tion reveals.
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FIG. 11. (top panel) Maximum Chlorophyll Index (MCI) in
the western North Atlantic inferred from the Medium Reso-
lution Imaging Spectrometer (MERIS) aboard Envisat on 4
October 2006. Floating Sargassum corresponds to MCI values
in excess of −0.25 mW m−2 sr−1 nm−1. (bottom-left panel)
Boundary of a coherent Lagrangian cold-core Gulf Stream
ring detected from altimetry (black) overlaid on the Sargas-
sum distribution. (bottom-right panel) Altimetry-based at-
tracting light iLCS (black) overlaid on the Sargassum distri-
bution.
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V. SUMMARY AND DISCUSSION

In this paper we have provided an explanation for the
observed tendency of drifting buoys and floating matter
on the surface of the ocean to produce dissipative-looking
patterns. This resolves an apparent paradox with the
conservative-looking distributions that tracers passively
advected by a rotating two-dimensional incompressible
flow display. Our explanation takes into account iner-
tial effects, i.e., those produced by the buoyancy and size
finiteness of an object immersed in such a flow. These are
described by a simplified Maxey–Riley equation consis-
tent with a flow produced by a quasigeostrophic velocity
where the pressure field is entirely due to differences in
sea surface height. Because the latter are readily avail-
able from satellite altimetry measurements, our approach
enables feature matching and analysis of specific obser-
vations. Furthermore, our approach is self-consistent
within the realm of two-dimensional incompressible flows.

We have found that anticyclonic coherent Lagrangian
eddies attract (repel) heavy (light) particles, while cy-
clonic ones behave the opposite way. We verified these re-
sults numerically using mesoscale SSH fields constructed
from satellite altimetry measurements in various places
of the ocean. Our findings also explained dissipative-
type behavior shown by four sets of observations: diver-
gent motion of subsurface floats initially inside a Califor-
nia Undercurrent eddy or “cuddy;” dispersion of surface
drifters away from a Loop Current ring; ejection of sur-
face drifters out of a well-studied Agulhas ring; and accu-
mulation of sargassum inside of a cold-core Gulf Stream
ring.

Beyond the reach of the Maxey–Riley description is
motion of arbitrarily shaped objects; no known theory
accounts for their effects. At the Maxey–Riley level there
are terms and aspects that we have ignored which may
contribute to narrow the gap between theory and ob-
served motion. One such term is the memory term, but
this only tends to slow down the inertial particle mo-
tion without changing its qualitative dynamics funda-
mentally (Daitche and Tél, 2011). Another neglected
aspect is the dependence of fluid density on spatial po-
sition and time. Time varying density effects were in-
vestigated previously in idealized settings and found to
be of importance (Tanga and Provenzale, 1994). The
observational possibility to account for these effects is
provided by satellite sensing of sea surface temperature
and salinity. An additional aspect is the effect of subme-
sosocale perturbations on the mesoscale motions of inter-
est to us here. These may be of fully ageostrophic and
possibly three-dimensional nature (McWilliams, 2008)
or still be balanced to leading order, and thus essen-
tially two-dimensional and incompressible (Klein and
Lapeyre, 2009). The latter is particularly interesting
as it opens the way to a potentially more accurate
observationally-based velocity representation when high-
resolution wide-swath altimetry becomes operational (Fu
and Ferrari, 2009). The only observational improvement

over altimetry-derived velocities may then be expected
from the addition of an Ekman drift component esti-
mated from satellite scattometer wind measurements.
This typically small correction is regularly included, but
in such a way as to match observed drifting buoy veloci-
ties (Lagerloef et al., 1999), which is not consistent with
our inertial particle approach.

We finally note that a larger sample of drifting buoys
and floating matter than that considered here is required
to further validate our predictions, possibly improved by
the consideration of fluid density variations and Ekman
drift effects.
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Appendix A: Reduced Maxey–Riley equation

The second-order ODE (6) is equivalent to the follow-
ing first-order ODE set:

ẋ = vp, v̇p = f(δv − vp)⊥ + τ−1(v − vp). (A1)

Taking L and L/V as length and time scales, respectively,
and making τ |f | = 1 so that ε = τV/L = Ro � 1, the
nondimensional form of (A1) reads:

ẋ = vp, ε2v̇p = signfε(δv − vp)⊥ + v − vp. (A2)

Inspection of (A2) reveals that x is a slow variable that
changes at O(1) speed, while vp is a fast variable varying
at O(ε−2) speed. Consequently, (A2) represents a singu-
lar perturbation problem. To regularize it, we displace
and rescale time as ε−2(t−t0). Denoting with a circle dif-
ferentiation with respect to this fast time variable, (A2)
transforms into

x̊ = ε2vp, v̊p = signfε(δv − vp)⊥ + v − vp, t̊ = ε2.
(A3)

The ε = 0 limit of system (A3) has a manifold of fixed
points. This manifold is normally attracting, and hence
survives for small ε > 0 in the form

vp = v + εv1 +O(ε2). (A4)

Plugging this asymptotic series expansion into the right-
hand-side equation of system (A3) and equating O(ε)
terms, it follows that

v1 = signf(δ − 1)v⊥. (A5)

Inserting this expression in the left-hand-side equation
of system (A3), the inertial equation (10) follows once
dimensional variables are recovered.
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Particle dynamics governed by the inertial equation
(10) evolve, over the finite-time interval of interest, on a
two-dimensional manifold, Mε, in the phase space with
coordinates (x, vp, t). This manifold is often referred to
as slow because (10) restricted to it is a slowly varying
system of the form x̊ = ε2vp|Mε

= ε2v + ε3v1 + O(ε4).
As shown in Haller and Sapsis (2008), this slow manifold
attracts all inertial particle motions exponentially.

Appendix B: Data

The altimetric SSH data employed in this paper con-
sist of background and perturbation components. The
background SSH component is steady, given by a mean
dynamic topography constructed from satellite altimetry
data, in-situ measurements, and a geoid model (Rio and
Hernandez, 2004). The perturbation SSH component
is transient, given by altimetric SSH anomaly measure-
ments provided weekly on a 0.25◦-resolution longitude–
latitude grid. This perturbation component is referenced
to a 20-year (1993–2012) mean, obtained from the com-
bined processing of data collected by altimeters on the
constellation of available satellites (Le Traon, Nadal, and
Ducet, 1998). Mean dynamic topography and altimetry
data are distributed by AVISO at http:// www.aviso.
oceanobs.com.

The RAFOS float trajectory data belong to the ex-
tensive dataset constructed from float deployments in
the California Undercurrent over the period 1992–2010
(Collins et al., 2013). Acoustically tracked, RAFOS floats
are quasi-isobaric, with their density varying with ambi-
ent temperature changes as a result of differing thermal
expansions of the glass hull and aluminum end cap of the
floats (Rossby, Dorson, and Fontaine, 1986). As opposed
to seawater parcels, the floats sink when they warm and
rise when they cool (Swift and Riser, 1994). The specific
floats considered in this paper are shallow (300 db) floats
number 105 and 106, obtained from http:// www.oc.nps.
edu/npsRAFOS.

The surface drifters in the Loop Current ring were de-
ployed from air by the 53rd Hurricane Hunter Squadron
ahead of hurricane Rita. Equipped to monitor surface
conditions, these drifters were of Minimet (drogue at
15 m) and ADOS (with a 100-m-long thermistor chain
hanging below) types. The trajectories of these drifters
are available from the NOAA Global Drifter Program at
http:// www.aoml.noaa.gov/phod/dac.

Three surface drifters were deployed in ring Astrid dur-
ing the MARE-1 cruise. These were standard spherical
WOCE/TOGA drifters, fitted with an 8-m-long holey
sock drogue at 15 m, with their positions tracked using
the Argos satellite system (Sybrandy and Niiler, 1991).
The trajectories of these drifters are not available from
any database. The trajectory of the drifter considered in
this paper was digitalized from Fig. 4 of van Aken et al.
(2003) and spline fitted. We have not been able to reli-
ably digitalize from this figure the other two trajectories,

which exhibit a qualitatively similar behavior.
Finally, the MERIS image shown in Fig. 11 is of L1b

Maximum Chlorophyll Index (MCI), a spectrometer pa-
rameter traditionally used to detect and track Sargassum
(Gower and King, 2008). MERIS imagery is available
from ESA Earth Online at https://earth.esa.int/web/
guest/data-access.

Appendix C: Computational details

The flow maps associated with (2) and (10) were ob-
tained from integration for initial positions on a regular
0.5-km-width grid covering the domain of interest. This
was done using a stepsize-adapting fourth-order Runge–
Kutta method with interpolations obtained using a cubic
scheme. The derivative of the flow maps were computed
using finite differences on an auxiliary 0.1-km-width grid
of four points neighboring each point in the above grid.
Integrations of (5) and (12) were carried out using the
same method while enforcing a unique orientation for the
corresponding vector fields at each integration step (re-
call that these are constructed from eigenvector fields,
which are not globally orientated). Detailed algorithmic
steps for the extraction of coherent Lagrangian eddies are
outlined in Haller and Beron-Vera (2013). The numer-
ical computation of attracting iLCS involves the same
algorithmic steps as those for attracting LCS; these are
outlined in Haller and Beron-Vera (2012) and Farazmand
and Haller (2013).
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