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Abstract Polynomial chaos (PC) expansions are used to
propagate parametric uncertainties in ocean global cir-
culation model. The computations focus on short-time,
high-resolution simulations of the Gulf of Mexico, using
the hybrid coordinate ocean model, with wind stresses
corresponding to hurricane Ivan. A sparse quadrature
approach is used to determine the PC coefficients which
provides a detailed representation of the stochastic
model response. The quality of the PC representation
is first examined through a systematic refinement of the
number of resolution levels. The PC representation of
the stochastic model response is then utilized to com-
pute distributions of quantities of interest (QoIs) and to
analyze the local and global sensitivity of these QoIs to
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uncertain parameters. Conclusions are finally drawn re-
garding limitations of local perturbations and variance-
based assessment and concerning potential application
of the present methodology to inverse problems and to
uncertainty management.
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1 Introduction

Deterministic ocean models such as hybrid coordinate
ocean model (HYCOM) [3, 5, 50], regional oceanic
modeling system [13, 40], and MIT general circulation
model [27] have been instrumental in ocean weather
forecast. Substantial efforts have been made in the past
few decades to improve those models for the purpose
of achieving high resolution, better physical representa-
tion, and relatively fast and robust computations. In this
paper, we extend the traditional deterministic ocean
modeling, namely HYCOM, by considering uncertainty
in the model parameters. Our goal is to provide a
detailed statistical characterization of the model vari-
ables in space and time, namely one that enables us
to conduct a global sensitivity analysis of the impact of
uncertain parameters. The quantification of the uncer-
tainties in the boundary conditions is another important
aspect of this problem which is addressed in the recent
work [45].
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We have been motivated to adopt a polynomial
chaos (PC) formalism, which appears to be ideally
suited for the present purpose. PC methods [7, 12, 22–
25, 38, 48, 49] have become increasingly popular in the
past two decades and have been extensively used to
propagate and quantify uncertainties in various physi-
cal problems, including fluid [23, 25, 30] and solid [11,
12] mechanics, as well as chemical systems [24, 31, 38].
These methods provide an approximation of the model
variables in terms of a spectral expansion in an or-
thogonal polynomial basis of an underlying probability
space. Once available, the PC expansion can be used
to efficiently approximate the statistical properties of
the model variables such as their distribution, moments,
sensitivities, etc.

There are two major approaches for computing
the coefficients in a PC expansion: (1) the intrusive
method and (2) the non-intrusive methods. The intru-
sive method requires a reformulation of the original
random dynamical system (and hence the deterministic
solvers), through Galerkin projection onto the PC basis
[12, 22]. Subsequently, one has to solve a larger system
for the time/space evolution of the PC coefficients.
Non-intrusive methods, on the other hand, provide a
means to determine the requisite spectral representa-
tion through direct application of existing deterministic
solvers.

There are different types of non-intrusive methods,
including the non-intrusive spectral projection (NISP),
the collocation method (CM), and the regression-like
approaches. In the NISP method, PC coefficients are
computed through an L2-projection of variables onto a
PC basis [22]. On the other hand, in the CM method,
one computes the PC coefficients by using the PC basis
as a set of interpolants [1, 28, 35, 47]. Finally, the
regression-like approaches find the PC coefficients by
minimizing the distance between the PC expansion and
a set of observations [2].

In this paper, we will follow a NISP approach to com-
pute the coefficients in a PC expansion. Non-intrusive
PC methods in general, and NISP in particular, suffer
from the so-called curse of dimensionality. In the NISP
method, this phenomenon is seen through the rapid
increase of the number of deterministic realizations
needed for computations of the PC coefficients as the
order of expansion and the number of stochastic dimen-
sions increase. To tackle this issue, a sparse quadrature
techniques will be explored, and the quality of the
representation will be monitored as the sparse grid is
successively refined.

We restrict our attention on the impact of parametric
uncertainties in HYCOM, specifically those appearing
in parameterizations of subgrid mixing and wind drag.

Uncertainties are propagated through short-time high-
resolution simulations in the Gulf of Mexico, with wind
stresses corresponding to hurricane Ivan. We exploit
spectral representations to conduct a systematic as-
sessment of the effect of uncertainties on quantities
of interest, including global and local sensitivities with
respect to the uncertain input parameters. Both local
field variables as well as integral measures are consid-
ered in the analysis. In addition to quantifying global
and local sensitivities, we develop a simplified mea-
sure transform technique that enables us to efficiently
assess the impact of restricting the range of selected
input parameters and thus demonstrate the potential of
PC representations in managing uncertainties in ocean
models.

The structure of this paper is as follows: Section 2
provides a brief discussion of HYCOM initialization,
forcing, and wind drag parameterization. In Section 3,
we introduce essential notation and review relevant
PC concepts, formulate the stochastic problem, outline
the sparse grid NISP approach, and briefly examine
the effect of sparse grid refinement. In Section 4, we
utilize the PC representation to gain insight into the
the stochastic response of field variables to uncertain
model inputs. In Section 5, we provide global and lo-
cal analysis of sensitivities in field variables and also
illustrate the implementation of measure transform
computations. In Section 6, we investigate statistical
properties of integral QoIs, namely the regionally av-
eraged sea surface temperature and the average heat
flux in a circular area around the eye of the hurri-
cane. Finally, in Section 7, we provide concluding re-
marks and discuss the possible extension of the present
methodology.

2 HYCOM in the Gulf of Mexico

Our study focuses on quantifying ocean model uncer-
tainties associated with mixed layer and air–sea mo-
mentum exchange parameterizations, when the ocean
is forced by hurricane-strength winds. The wind stress
and the mixed layer parameterization modulate the
ocean sea surface temperature (SST) response to the
hurricane forcing, a key parameter in determining
the exchanges of energy and momentum between the
ocean and atmosphere and in impacting hurricane in-
tensity forecast.

The setting chosen for our experiments is the cir-
culation in the Gulf of Mexico during the passage
of hurricane Ivan from 9–16 Sep 2004. Ivan’s track
is shown in Fig. 1. Several “classical” ocean model
sensitivity studies have already been carried out (e.g.,
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Fig. 1 Hurricane Ivan entered the Caribbean on Sep 9 as a
category 5 with winds of 160 mph; its intensity decreased to a
category 4 upon crossing the Yucatan Strait on Sep 14; it made
landfall as a category 3, with sustained winds of near 120 mph, on
Sep 16 just west of Gulf Shores, Alabama

[15, 37, 50]); here we focus on using PC expansions to
systematically characterize the entire response surface
of the ocean model to parametric uncertainties in its
subgrid parameterizations. Below, we briefly describe
the “baseline” setup and specify the random inputs
used in the analysis.

2.1 HYCOM

The model used is HYCOM, a free-surface general
circulation ocean model that solves the hydrostatic
Navier–Stokes equations. These include equations for
horizontal momentum and mass conservation in addi-
tion to scalar transport equations for temperature and
salinity. HYCOM relies on a hybrid vertical coordi-
nate system to discretize the partial differential equa-
tions [3]. This system is designed to be quasi-optimal
throughout the various flow regimes encountered in the
ocean: isopycnic in the open stratified ocean to min-
imize spurious diapycnal mixing, terrain-following in
coastal regions to faithfully represent flow-topography
interactions, and z-coordinate near the surface to re-
solve mixed layer processes. A major advantage of this
system is the ability to use advanced subgrid scale para-
meterizations for the ocean mixed layer while retaining
the advantages of an isopycnal model in the ocean
interior. For additional detail concerning the model,
see, e.g., [3–5, 14].

Our Gulf of Mexico nested HYCOM configuration
is very similar to the one adopted in [15, 37, 50]. The
computational domain encompasses the Gulf of Mexico

and portions of the Caribbean Sea; its grid resolution
is 1

25
◦

(≈4 km) in the horizontal and 20 layers are
used to discretize the vertical. The initial and boundary
conditions are taken from a data assimilative 1/12◦
global HYCOM simulation so that major oceanic fea-
tures, such as the loop current and its associated warm
and cold core eddies, are positioned at their correct
locations during Ivan’s transit. Atmospheric forcing
fields are taken from the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS) [16] at
27-km/three-hourly resolution; we note that the spatial
coverage is too coarse to resolve all features of interest
but should be adequate for our purposes. All the simu-
lations performed herein covered the time window 9–16
Sep 2004, and model outputs were recorded at 3-h time
intervals.

2.2 Mixed layer uncertainties

The subgrid scale parameterization adopted in the cur-
rent experiments for the ocean mixed layer is K-profile
parameterization (KPP) [20], a widely used vertical
mixing scheme. KPP predicts an ocean boundary layer
depth within which turbulent mixing is parameterized
using a nonlocal bulk Richardson number, defined
relative to the surface, and the similarity theory of
turbulence. This boundary layer depth is determined
by the depth at which the bulk Richardson number
reaches a critical Value, Ric. Below the boundary layer,
the vertical mixing is parameterized through the local
gradient Richardson number and a background mixing.
Here we follow [26] in perturbing three KPP’s para-
meters: the critical Richardson number, and the back-
ground viscosity and diffusivity; a combination of 0.3,
10−4 m2/s, and 10−5 m2/s for these parameters proved
adequate in reproducing climatological observations of
the zonal amplitude of equatorial currents. The range
of background diffusion explored herein, 10−5–10−4,
spans the entire range of (low) observed background
diffusion to the (high) amount deemed necessary to
maintain the observed oceanic stratification [29].

2.3 Wind drag parametric uncertainties

Momentum exchange between the ocean and at-
mosphere is effected through the wind stresses at their
interface, and the latter play a key role in ocean mixed
layer dynamics and in determining the SST. The wind
stresses are commonly computed from a drag law of the
form τ = ρ Cd ‖V‖ V where Cd is the drag coefficient,
ρ the air density, and V is the difference between air
velocity at 10 m and ocean current velocity (the latter
is usually neglected since air speed is much larger than
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Fig. 2 Observations and parameterizations of wind drag
coefficient Cd. The green lines show our stochastic parameteri-
zation of Cd which is seen to fall within the envelope of various
observations/fits at high-wind speeds. The blue lines and circles
are the aircraft observation of [9], the three-red lines are fitted
curves to the laboratory experiments of [8], and the black lines are
the dropsondes observation of [36]. The dashed line refers to [21]
parameterization that does not take into account Cd’s saturation
at high V. The unperturbed HYCOM parameterization of Cd,
due to [19] for δT = 0, is shown in magenta

current speed). The drag coefficient, in turn, is inferred
from bulk parameterization formulas that depend on a
number of atmospheric variables. Here we have used
a fit due to Kara [19] to estimate the drag coefficient
given the air speed at 10 m height, V, and the air–sea
temperature difference, δT:

Va = max(2.5, min(32.5, V)) (1)

C0
d = a0 + a1Va + a2V2

a (2)

C1
d = b 0 + b 1Va + b 2V2

a (3)

Cd = C0
d + C1

dδT (4)

where ai, bi are coefficients determined from a least
square fit to COARE v2.5. C1

d is usually small and
decreases to zero with air speed V; hence air–sea tem-
perature differences are not important in hurricane
conditions. We represent the uncertainties in Cd with
a multiplicative factor in the interval [0.2, 1], a range
that fits within the uncertainties in observational and
experiment data as shown in Fig. 2.

3 The polynomial chaos framework

We begin this section by fixing the notation used
throughout the paper and collecting the background

results needed in what follows. We denote by (�, F , μ)

a probability space, where � is the sample space, F is
an appropriate σ -algebra on �, and μ is a probability
measure. For a random variable ξ on �, we write ξ ∼
U (a, b) to mean that ξ is uniformly distributed on the
interval [a, b ]. We use the term iid for a collection of
random variables to mean that they are independent
and identically distributed. The distribution function
[18, 46] of a random variable ξ on � is given by Fξ (x) =
μ(ξ ≤ x) for x ∈ R.

3.1 Polynomial chaos

In the present work, we consider models with finitely
many uncertain parameters. We parameterize these un-
certain parameters by a finite collection of real-valued
iid random variables ξ1, . . . , ξd on �. We refer to d the
number of random parameters, as the dimension of the
stochastic problem. Let Fξ denote the joint distribution
function of the random vector ξ = (ξ1, . . . , ξd)

T . Since
the ξ j are iid, Fξ (x) = ∏d

j=1 F(x j) for x ∈ R
d, where F

is the common distribution function for ξ1, . . . , ξd.
For computational purposes, it is convenient to work

in the image probability space (�∗, B(�∗), Fξ ), where
�∗ ⊆ R

d is the image of � under ξ , and B(�∗) is the
Borel σ -algebra on �∗. We denote the expectation of a
random variable X : �∗ → R by

〈X〉 =
∫

�∗
X(s) dFξ (s).

The space of square integrable random variables on �∗,
L2(�∗), is endowed with the inner product:

(X, Y) =
∫

�∗
X(s)Y(s) dFξ (s) = 〈XY〉 ,

and the norm of X is given by ‖X‖L2(�∗) = (X, X)1/2 =
〈
X2

〉1/2.
In the present work, we will be dealing with uncer-

tain inputs ranging on finite intervals. Therefore, we
will parametrize these inputs with canonical random

variables ξi
iid∼ U (−1, 1). Consequently, we will rely on

the basis formed by the d-variate Legendre polynomials
{�k}∞0 . Each �k is obtained through a product of 1D
Legendre polynomials according to:

�k(ξ) =
d∏

i=1

ψαk
i
(ξi), ξ ∈ �∗, (5)

where αk = (αk
1 , αk

2 , . . . , αk
d) is a multi-index, with αk

i
being the order of the 1D Legendre polynomial, ψ ,
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in ξi. With this basis, any X ∈ L2(�∗) admits an expan-
sion of the form:

X =
∞∑

k=0

ck�k, (6)

known as a generalized polynomial chaos [48] expan-
sion of X. The multi-index construction appearing in
Eq. 5 will be also exploited in the computation of
the Sobol (global) sensitivity indices, as discussed in
Section 5.1 below.

In computations, we approximate X(ξ) with a trun-
cated series,

X(ξ)
.=

P∑

k=0

ck�k(ξ), (7)

where P is finite and depends on the truncation strategy
adopted. In the present work, we consider truncations
based on the total degree of the polynomials in the se-
ries. In this case, P depends of the stochastic dimension
d and expansion “order,” p, according to

P = (d + p)!
d!p! − 1, (8)

where p is the largest polynomial degree in the expan-
sion.

With X expanded as in Eq. 7, using the orthogonality
of the basis {�k}P

0 and the convention that �0 ≡ 1, we
have immediate access to the moments

〈X〉 = c0,

〈
X2

〉 =
P∑

k=0

c2
k

〈
�2

k

〉
.

Moreover, we have

Var (X) = 〈X2〉 − 〈X〉2 =
P∑

k=1

c2
k

〈
�2

k

〉
,

and the covariance of the two random variables, X =
∑P

k=0 xk�k and Y = ∑P
k=0 yk�k, is given by,

cov(X, Y) =
P∑

k=1

xk yk
〈
�2

k

〉
.

3.2 Non-intrusive spectral projection

Let X belong to L2(�∗). As mentioned in the intro-
duction, non-intrusive methods aim at computing the
PC coefficients in the finite expansion (Eq. 7) via a
set of deterministic evaluations of X(ξ) for specific

realizations of ξ . Observe that since {�k}P
0 form an

orthogonal system, we have:

(X, �k)=
(

P∑

l=0

cl�l, �k

)

=
P∑

l=0

cl (�l, �k)=ck (�k, �k) ,

(9)

so that the coefficient ck is given by

ck = 〈X�k〉
〈
�2

k

〉 . (10)

The moments
〈
�2

k

〉
of the multivariate Legendre poly-

nomials in Eq. 10 can be computed analytically [22],
and hence, the determination of coefficients ck amounts
to the evaluation of the moments 〈X�k〉. We note that

〈X�k〉 =
∫

�∗
X(s)�k(s) dFξ (s), k = 0, . . . , P,

leading to the evaluation of a set of P + 1 integrals
over �∗ ⊆ R

d. In the NISP approach, these integrals are
discretized as finite sums of the form

∫

�∗
X(s)�k(s) dFξ (s)

.=
Nq∑

j=1

w jX(ξ j)�k(ξ j), (11)

where ξ j ∈ �∗ and w j are the nodes and weights of an
appropriate quadrature formula. Note that the same
set of nodes is used to compute all the coefficients ck,
so the complexity of NISP scales with Nq, the number
of nodes where one has to compute X. Therefore, the
challenge is to design quadrature formulas yielding the
lowest integration error for the minimal number of
nodes. In general, this is a difficult problem, and one
often proceeds by tensorization of 1D quadrature rules.
Considering a 1D quadrature rule with n nodes, its full
tensorization gives a d-variate formula having Nq = nd

nodes, showing that this approach is limited to low d.
This exponential scaling with d is often referred to as
the curse of dimensionality. An effective way of miti-
gating the curse of dimensionality is through the use of
sparse tensorizations of sequences of 1D formulas using
Smolyak’s formula [41], leading to sparse quadrature
techniques [10, 32, 33]. This is the approach adopted
in this paper. Irrespective of the integration formula
considered, the set of integration nodes comprise what
we call the NISP sample; we denote it by

S = {ξ j}Nq

j=1 ⊂ �∗.

Thus, to evaluate Eq. 11, we need to compute X(ξq) for
all ξq ∈ S . Let � ∈ R

(P+1)×Nq be the matrix given by


k, j = w j�k(ξ j)
〈
�2

k

〉 , k = 0, . . . , P, j = 1, . . . , Nq.
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Table 1 The random input parameters for HYCOM

Parameter Description Distribution

p1 Critical Richardson number U (0.25, 0.7)

p2 Background viscosity (m2/s) U (10−4, 10−3)

p3 Background diffusivity (m2/s) U (10−5, 10−4)

p4 Stochastic wind drag coefficient U (0.2, 1.0)

We call � the NISP projection matrix. If we denote by ζ

the vector with coordinates ζ j = X(ξ j), then the vector
c = (c0, . . . , ck) of the spectral coefficients in Eq. 10 is
given by c = �ζ , or in components,

ck =
Nq∑

j=1


kjζ j =
Nq∑

j=1


kjX(ξ j), k = 0, . . . , P.

3.3 HYCOM uncertainties recast as stochastic
variables

Let us denote by p = (p1, p2, p3, p4)
T the vector of

random model inputs. Following the discussion in
Section 2, we model these using uniform random vari-
ables, as specified in Table 1.

Specifically, the inputs pi are parameterized by ξi ∼
U (−1, 1), i = 1, . . . 4, through

pi(ξ) = μi + σiξi, i = 1, . . . , 4,

where ξ = (ξ1, ξ2, ξ3, ξ4)
T ,

μi = 1

2
(ai + bi), and σi = 1

2
(bi − ai),

so that pi ∼ U (ai, bi) as in Table 1.
Let G denote the physical domain, which in our case

is the Gulf of Mexico (see Fig. 1). At a given time t
and a point x ∈ G and a given vector of random inputs
p(ξ), we denote the model output by the random vector
X(t, x, ξ), which is given by

X(t, x, ξ) = H(t, x; p(ξ)),

where H(t, x; p(ξ)) signifies the result of a determin-
istic HYCOM solve at time t and point x with input

Table 2 Number of quadrature nodes versus Smolyak quadra-
ture level

Quadrature level Number of nodes

1 9
2 33
3 81
4 193
5 385

The Gauss–Kronrod–Patterson quadrature is used as the under-
lying rule

parameters p(ξ). Presently, we are mostly interested in
SST, mixed layer depth (MLD), and to lesser extent sea
surface height (SSH); X may thus correspond to any of
these QoIs.

3.4 Smolyak quadrature on random parameter space

As noted in Section 3.2, the NISP method proceeds
by computing the PC coefficients via numerical inte-
gration as in Eq. 11. To mitigate the computational
cost of numerical integration, we rely on a Smolyak
quadrature [10, 32–34, 41], which is based on nested
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Fig. 3 Evolution of SST (top) and MLD (bottom) at the buoy
location. The curves depict the 385 realizations corresponding to
a level 5 Smolyak quadrature. The f irst vertical line shows the
time when the hurricane enters the Gulf of Mexico, whereas the
second vertical line corresponds to a time when the center of
the hurricane is close to the buoy
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sparse grids. Increasing the resolution level leads to
finer grids resulting in higher degrees of precision for
the quadrature; for details, see [10, 32–34, 41]. In par-
ticular, a detailed account is provided in [10] on how
to determine the Smolyak sparse grid (the set of inte-
gration nodes) and the corresponding weights. In our
computations, we relied on SMOLPACK [32–34], with
Gauss–Kronrod–Patterson as the basic 1D quadrature
rule. For the present 4D case, we report in Table 2
the number of quadratures nodes associated with levels
1, 2, . . . , 5.

With the current truncation strategy used and the
current sparse quadrature, one observes that the expan-
sion coefficients of any function U ∈ span{�k}P

0 can be
recovered exactly if the order, p, of the expansion is
less or equal to the level of the quadrature. Thus, to
integrate exactly a polynomial of order 5, 385 quadra-

ture nodes would be required (Table 2). In contrast,
using a fully tensorized Gauss–Legendre quadrature
would require six nodes in each of the four stochastic
dimensions and hence a total of 64 = 1,296 nodes for
the same degree of precision. This illustrates the savings
afforded by the sparse quadrature.

3.5 PC representation of the model variables

In the computations, we used NISP with a level 5
Smolyak quadrature to compute the spectral expansion
of the model output in the PC basis. In Fig. 3, we plot
the time evolution of SST and MLD at 85.1 W/26.1 N.
This corresponds to the location of buoy 42003 in the
Gulf of Mexico, where observational data are avail-
able. To ascertain that a reasonable representation is
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Fig. 4 Distribution of SST at the buoy location at selected times,
as indicated. Different scales are used in each panel to facilitate
comparison of the different curves. p denotes the highest poly-

nomial degree in the truncated expansion. In each case, the PC
expansion was sampled 106 times to generate the distribution
curve
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achieved with a level 5 quadrature, we have exam-
ined the convergence of the PC representation as the
number of levels was increased. This was facilitated by
the nested nature of the sparse grids, which naturally
minimized the number of realizations required. A brief
highlight of this analysis is provided below.

Figure 4 shows instantaneous distributions of SST at
the buoy location. These are obtained by sampling the
PC expansion at selected times. The distributions are
generated using first-, second-, third-, fourth-, and fifth-
order PC expansions computed using NISP with a level
five sparse grid. Note that for the p = 1 case, we have
a linear combination of iid uniform random variables
plus the mean. As seen in the plots, the distributions
seem to level off as the PC order is increased to p = 5
suggesting that a fifth-order expansion is sufficient.

To get further confidence in the spectral representa-
tions, approximate relative L2 errors were computed.
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Fig. 5 Evolution of E for SST (top) and MLD (bottom)

With X in L2(�∗), the relative L2 error between X and
its (truncated) PC representation is given by,
∥
∥
∥X − ∑P

k=0 Xk�k

∥
∥
∥

L2(�∗)

‖X‖L2(�∗)

=

(∫

�∗

∣
∣X −

P∑

k=0

Xk�k
∣
∣2 dFξ

)1/2

(∫

�∗

∣
∣X

∣
∣2 dFξ

)1/2 ,

which can be approximated through Monte Carlo (MC)
integration. Such sampling, however, is prohibitively
demanding. Instead, we approximate this relative
error by:

E =

⎛

⎝
∑

ξ∈S

∣
∣X(ξ) −

P∑

k=0

Xk�k(ξ)
∣
∣2

⎞

⎠

1/2

⎛

⎝
∑

ξ∈S

∣
∣X(ξ)

∣
∣2

⎞

⎠

1/2 ,

where S ⊆ �∗ is the NISP sample set. Note that E is
the relative �2 error on the NISP sample set.

Figure 5 shows the evolution of E, computed for
SST and MLD at the buoy location. The NISP sample
corresponding to a level 5 quadrature |S | = 385 was
used for this purpose. The results indicate that E is
the largest in the case of MLD, which still falls below
about 5% throughout the computation. Thus, the PC
expansion coincides reasonably well the underlying re-
alization data.

4 Basic illustrations

The realizations illustrated in the previous section in-
dicate that the stochastic model response to uncertain
data can generally be quite complex, even on relatively
short time scales. This can be appreciated from the
evolution of SST and MLD at the buoy location, which
reveal the occurrence of distinct bands. In this section,
we briefly illustrate how the PC representations can
be used to quantify the uncertainty in the response of
QoIs. We first focus on the local behavior of SST and
MLD at the buoy location and provide basic illustration
of the computation of low-order moments of the solu-
tion. We then provide examples, illustrating the use of
the PC representations in estimating the probability of
a QoI being in a given interval.

Figure 6 shows the evolution of the mean SST and
MLD at the buoy location. To quantify the impact
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Fig. 6 Mean and variances of the model quantities at the buoy
location for SST (top) and MLD (bottom). The f irst vertical line
indicates the time the hurricane enters the Gulf whereas the
second line indicates a time at which the hurricane is close to the
buoy

of uncertainty in the model inputs, curves indicating
two standard deviation bounds are also depicted. The
results indicate that the standard deviation generally in-
creases as time evolves, though its evolution is evidently
non-monotonic. Its behavior, however, is consistent
with the spread of the individual realizations reported
in Fig. 3.

Of course, direct comparison of the local predictions
obtained by ocean global circulation model (OGCMs)
to local field observations is generally not appropriate.
This is the case because, even in the absence of any
model and numerical errors, OGCM predictions are
inherently filtered, whereas field observations would

reflect spatial and temporal fluctuations that cannot be
captured by the model. Notwithstanding these limita-
tions, in Fig. 7, we compare the field observations of
SST at the location of buoy 42003, to the corresponding
stochastic model predictions. Plotted in Fig. 7 are the
evolution of the mean SST, as well as curves depicting
two standard deviation bounds. Superficial comparison
of the results would appear to indicate that the field
observation generally fall within the predicted uncer-
tainty band, though local excursions can be observed,
especially at small times. However, one should caution
against making such an assessment, namely because the
stochastic model response is evidently complex and the
distribution functions are highly non-Gaussian (this is
illustrated in Fig. 8, which shows the distribution of SST
at selected time instants). Clearly, in these situations, it
is generally not appropriate to characterize the uncer-
tainty in QoIs in terms of means and variances only.
This is clearly the case in the present setting, as none
of the individual model realizations depicted in Fig. 3
appears to provide a very good match with the observa-
tional data. Specifically, the model simulations do not
reproduce the quick cooling and heating recorded in
the observation around hour 160. This could be due to
the local nature of the buoy measurements whereas the
ocean model cannot resolve features below 3 km (this
motivates us to look for global QoIs for model-data
inter-comparisons). Furthermore, the COAMPS winds
used as forcing are coarse spatially (27 km) whereas
Ivan’s radius of maximum winds is only about 45 km.
It is thus likely that COAMPS smears the real winds by
decreasing their amplitude and broadening their spatial
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Fig. 7 Comparing stochastic mean μ with two standard deviation
bounds with observed SST data. The f irst vertical line indicates
the time Ivan enters the Gulf, and the second one indicates the
time the hurricane is closest to the buoy
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Fig. 8 Distribution of SST at the buoy location at different
times, as indicated. Note that as the hurricane traverses the Gulf
a cooling trend can be observed, reflected by the shift of the
distribution function to the left. Also, note the emergence of long
tails for the distributions stretching toward cooler temperatures

extent. This explanation is consistent with the early
cooling trend seen in the HYCOM realizations and
with the absence of quick heating following the storm’s
passage.

One of the advantages of PC representations is that
they can be sampled efficiently. This was exploited ear-
lier in the generation of probability density functions,
obtained through extensive sampling of the polyno-
mial basis. We conclude this section by providing an
additional example, namely concerning evaluation of
expressions of the form:

Prob {X > β} .

Fig. 9 Probability contours at t = 150. Top Prob
{
MLD >

22 (m)
}
; bottom: Prob {SST < 28◦C}. The contours are generated

at t = 150 h. In both cases, 104 samples are drawn from the
corresponding PC representations. The bottom plot highlights the
cool fronts approaching the coast as the hurricane nears landfall
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Such estimates are typically obtained through MC
sampling. Specifically, one chooses a sample S ⊂ �∗
and uses

Prob {X > β} ≈ #
({ξ ∈ S | X(ξ) > β})

#(S)
, (12)

where #(S) denotes the number of elements of the set S.
The approximation improves as the sample size #(S) →
∞. Of course, the sampling becomes prohibitively
costly if the realization appearing in Eq. 12 was to rely
on independent model evaluations, especially when
individual model evaluations are quite involved as
is the case in ocean computations. Alternatively, by
sampling the PC representation of X, such estimates
can be obtained at a minute fraction of direct MC
sampling. A sample of such computations is shown
in Fig. 9, which depicts instantaneous contours of the
probability that MLD exceeds 22 m and the proba-
bility that SST is cooler than 28 C. In both cases,
104 samples are drawn from the PC representation of
these QoIs.

5 Stochastic sensitivity analysis

PC representations enable the analysis of model out-
put sensitivities with modest computational cost. This
includes both global sensitivity analysis, particularly
using Sobol indices [6, 17, 22, 42–44], and local sen-
sitivity analysis by differentiating the PC expansion
[39]. Global sensitivity analysis aims to quantify the
contribution of different random input parameters to
the model variability, whereas local sensitivity analysis
aims at quantifying the response of the model to local
changes around a particular realization. In this section,
we briefly outline the mathematical setup of the global
and local sensitivity analyses we use in the remainder of
the present study.

5.1 Global sensitivity analysis via Sobol indices

The variance-based, global sensitivity analysis con-
ducted in this section is inspired by the ANOVA (or
Sobol) decomposition of square integrable functions of
several variables [17, 42, 43]. As described in [6, 22, 44],
PC representations of random variables enable efficient
approximation of the corresponding variance-based,
global sensitivity indices. Below, we briefly describe the
computation of the so-called total sensitivity indices of
random variables from their PC representations.

Suppose U is a square integrable random variable
with PC representation given by

U(ξ) =
P∑

k=0

Uk�k(ξ), ξ ∈ [−1, 1]d,

where d denotes the stochastic dimension. We denote
by αk the multi-index associated with k − th term in the
PC expansion [22]. For each index set u ⊆ {1, . . . , d},
we define

Ku =
{

k ∈ {1, . . . , P} :
{

αk
i > 0, if i ∈ u,

αk
i = 0, if i /∈ u

}

.

Note that Ku picks multi-indices that have non-zero
entries at the indices specified by u = (i1, . . . , is) and
zero entries everywhere else. Then, the Sobol sensitiv-
ity indices [6, 22, 44] for u are given by,

Su =

∑

k∈Ku

U2
k

〈
�2

k

〉

P∑

k=1

U2
k

〈
�2

k

〉
, u ⊆ {1, . . . , d}.

To get the total sensitivity corresponding to the i − th
input ξi, we compute the total index [6, 22, 44]:

Ti =
∑

u�i

Su =

∑

u�i

∑

k∈Ku

U2
k

〈
�2

k

〉

P∑

k=1

U2
k

〈
�2

k

〉
. (13)

The above formula can be simplified as follows: Let Ii

be the index set given by

Ii = {k ∈ {1, . . . , P} : αk
i > 0},

which picks all modes with an input from ξi. Note that
Ii =

⋃

u�i

Ku for i = 1, . . . , n. Therefore,

Ti =

∑

k∈Ii

U2
k

〈
�2

k

〉

P∑

k=1

U2
k

〈
�2

k

〉
. (14)

Using Eq. 14, the computation of Ti is straightforward.
Note that the total sensitivity index Ti measures the
contribution of the i − th random input to total model
variability by computing the fraction of the total vari-
ance due to all the terms in the PC expansion which
involve ξi.

It is also worth noting that for random variables
expanded in a PC basis, all the index sets above are
dictated by the basis alone. Thus, we need to find
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the index sets Ku for computation of Su and Ii for
computation of Ti only once. Hence, the computation
of Su or Ti for a random variable is immediate once its
PC coefficients are determined.

5.1.1 Global sensitivity analysis

Using the total sensitivity indices introduced in
Section 5.1, we can assess the contribution of each of
the random inputs, parameterized by ξ1, . . . , ξ4, to the
model variability. For clarity, we recall the significance
of the sensitivity indices T1, . . . , T4 in Table 3.

Figure 10 depicts the global sensitivity indices Ti,
i = 1, . . . 4 for SSH, SST, and MLD. The results were
computed using the PC expansions of model variables
at the location of the buoy 42003. A basic observation
from these results is that as time evolves, T4 becomes
clearly dominant. This appears to coincide with the
emergence of distinct bands in the model realizations,
seen in Fig. 3. For the SST and MLD, the impact
of background diffusivity is dominant in the initial
stages, but uncertainty in wind drag coefficient clearly
prevails as the hurricane enters the Gulf of Mexico
(GOM) and approaches the buoy location. In the case
of sensitivities for SSH, we note that T4 begin to
dominate the other sensitivity indices much earlier in
time. Specifically, for times larger than 50 h, ξ1, ξ2, and
ξ3 contribute very little to the total variance in SSH.
Below, we explore how measure transforms can be
used to quantify the range of wind drag uncertainty in
which these trends remain valid. These transforms are
also useful to re-assess the output uncertainty when the
input uncertainty range is restricted without incurring
additional model realizations. For example, one can
explore a range for the drag coefficient that is wider
than physically possible and then restrict its range a
posteriori for more realistic assessments of output un-
certainties and variance analyses.

5.1.2 Restriction of the wind drag coef f icient

We saw in the previous subsection that the stochastic
wind drag coefficient, p4, parameterized by ξ4, ulti-
mately dominates the variance of the selected QoIs.
Here we address the question of how much would one

Table 3 Physical meaning of ocean model sensitivity indices

Index Significance

T1 Sensitivity due to critical Richardson number
T2 Sensitivity due to background viscosity
T3 Sensitivity due to background diffusivity
T4 Sensitivity due to wind drag coefficient
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Fig. 10 Evolution of the global sensitivity indices T1, . . . , T4 for
SSH (top), SST (middle), and MLD (bottom). The f irst vertical
line indicates the time the hurricane enters the GOM whereas
the second indicates a time at which the hurricane is close to
the buoy
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need to restrict the range of p4 so that its sensitivity is
no longer dominant. We focus our attention to reducing
the range of p4 around its mean value, namely accord-
ing to

pα
4 (ξ) = 1

2
(a4 + b 4) + 1

2α
(b 4 − a4)ξ4,

where α > 1 is a restriction factor. Table 4 shows how
increasingly narrower intervals p4 are generated by
increasing α.

To determine sensitivities corresponding to re-
stricted range, we exploit the existing PC representa-
tion as a surrogate for the actual random fields and
thus avoid the need to generate new realizations. A
simple means of achieving this is by relating a generic
output associated with the scaled parameter range, Yt,
to the corresponding value associated with the original
interval, Xt, using the transform:

Yt(ξ1, ξ2, ξ3, ξ4) = Xt(ξ1, ξ2, ξ3, ξ4/α)

=
P∑

k=0

Xk
t �k(ξ1, ξ2, ξ3, ξ4/α).

Yt can then be projected into the PC basis to obtain a
new set of PC coefficients.

Figure 11 shows the dependence of T1, . . . , T4 for
increasing values of α. Plotted are curves depicting the
global sensitivities of SSH, SST, and MLD at t = 135 h,
a time at which ξ4 has become dominant. The results
readily yield quantitative predictions, for each of these
QoIs, of how much ξ4 must be restricted for its global
sensitivity index to cease dominating the others. In
particular, it is interesting to note that a restriction
factor α � 4 is needed to achieve this effect for SSH,
whereas significantly smaller values would be needed
for SST and MLD. Also note that, as α increases, the
uncertainty in SSH becomes dominated by ξ2, whereas
for SST and MLD, the dominant parameter is ξ3. This
may only hold, however, at this particular time in-
stant. To illustrate the time-dependent behavior of the
sensitivity indices, we plot in Fig. 12 the evolution of
T1, . . . , T4 for a single restriction factor, α = 3. In this

Table 4 Successively smaller intervals for the wind drag
coefficient

α Wind drag coefficient range

1.00 [0.20, 1.00]
1.50 [0.33, 0.87]
2.00 [0.40, 0.80]
2.50 [0.44, 0.76]
3.00 [0.47, 0.73]
3.50 [0.49, 0.71]
4.00 [0.50, 0.70]
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Fig. 11 The decline of model sensitivity to ξ4 as the interval
of wind drag coefficients shrinks (i.e., ξ4 approaches zero). The
indices Ti are as in Table 3
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Fig. 12 Model sensitivities over time. Interval for the stochastic
wind drag coefficient (parameterize by ξ4) is shrunk with a factor
of 1/3 (i.e., α = 3). The indices Ti are as in Table 3

case, one observes that all random inputs eventually
become significant contributors to the total variance of
SSH, whereas the variability of SST and MLD becomes
dominated by the background diffusivity.

The present exercise further illustrates the utility of
the PC representations of the model outputs. In gen-
eral, input uncertainties may not be known exactly, so it
may be prudent to consider wide parameter ranges and
then restrict these ranges as data and observations be-
come available. Based on the corresponding PC repre-
sentations, one can efficiently determine whether slight
changes in parameter ranges, e.g., removing certain ex-
treme parameter values, would have a material impact
on the balance of model sensitivities. Alternatively, as
illustrated above, one can assess under what ranges
of uncertainty a specific parameter ceases to play a
dominant role in the model variability. The present
experiences also highlight the advantages of the global
sensitivity analysis over the local sensitivity approach.
Specifically, whereas large sensitivities may prevail in
a given parameter range or in the neighborhood of a
given selected parameter vector, these sensitivities may
also drop rapidly as the parameter range is refined
or as one moves away from the selected parameter
vector. The ability to detect and quantify these situ-
ations without the need to generate additional model
runs is one of the advantages of applying change of
measure techniques to PC representations of model
outputs.

5.1.3 Sensitivity regions

In Section 5.1.1, we provided a global sensitivity analy-
sis at the buoy location. Here, we illustrate the spatial
distribution of these global indices for the whole com-
putational domain to provide additional insight into
their impact on the predictions.

We have previously noted the interplay between ξ3

and ξ4 on the global sensitivity of SST. For brevity, we
focus our attention on the spatial distribution of the
corresponding indices.

Figures 13 and 14, respectively, depict spatial con-
tours of T3 and T4; in both cases, plots are generated for
t = 90 h and t = 147 h. One observes from Fig. 13 that
at t = 90 h, ξ3 is dominant in most of the gulf region but
that its impact greatly diminishes with the passage of
the hurricane, particularly around the path of the latter.
As can be seen from Fig. 14, ξ4 becomes dominant
in precisely the same regions. Thus, concerning the
sensitivity of SST and for the present range of parame-
ters, the interplay between ξ3 and ξ4 that was observed
locally at the buoy location also occurs in most of the
gulf. It is also interesting to note that the sensitivity
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contours exhibit structures that are reminiscent of the
evolution of ocean eddies. Similar observations have in
fact been made in internal vortex dominated flows [23].

5.2 Local sensitivity

As noted earlier, one can readily estimate local sensitiv-
ities by differentiation of the PC expansion with respect
to random variables. Letting U(ξ) = ∑P

k=0 Uk�k(ξ),
one can compute the partial derivatives of U with
respect to ξi, i = 1, . . . , d, which results in:

∂U
∂ξ j

∣
∣
∣
ξ

=
P∑

k=0

Uk
∂�k

∂ξ j

∣
∣
∣
ξ
.

For each of the basis functions �k, which are d-variate
polynomials defined in Eq. 5, we have

∂�k

∂ξ j
= ∂

∂ξ j

d∏

i=1

ψαk
i
(ξi) =

dψαk
j

dξ j

∏

i �= j

ψαk
i
.

Thus, with the multi-index construction, the computa-
tion is reduced to the differentiation of 1D polynomials.
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Fig. 13 T3 sensitivity contours for SST. Plots are generated for
t = 90 h (top) and t = 147 h (bottom)
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Fig. 14 T4 sensitivity contours for SST. Plots are generated for
t = 90 h (top) and t = 147 h (bottom)

As an illustration, we examine the local sensitivities
of SST at the buoy location, specifically by computing
the local indices,

D j(ξ) =
∣
∣
∣
∂SST(t, ξ)

∂ξ j

∣
∣
∣, j = 1, . . . , 4.

Figure 15 shows the evolution of Di for ξ = (0, 0, 0, 0)

and ξ = (0, 0, 0, 0.8). The first point, ξ = 0, corresponds
to the expected value of the random parameter vector,
whereas the second point corresponds to a large value
of the ξ4. Thus, the results contrast two realizations,
one corresponding to the mean value of the parameters
and a second corresponding to a high drag coefficient.
In the first case, the local sensitivity of the solution
is initially dominated by the background diffusivity
(ξ3) though both D3 and D4 (wind drag coefficient)
become comparable as the hurricane approaches the
buoy location. In contrast, ξ = (0, 0, 0, 0.8), the wind
drag coefficient rapidly becomes dominant, with its sen-
sitivity factor achieving amplitudes several folds large
than the remaining ones. The present results thus high-
light the large variability that occurs with the selected
parameter ranges and the utility of conducting a global
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Fig. 15 Evolution of the local sensitivity indices, Di, i = 1 . . . , 4,
at ξ = (0, 0, 0, 0) (top) and ξ = (0, 0, 0, 0.8) (bottom). The f irst
vertical line indicates the time at which the hurricane enters
the Gulf, whereas the second one indicates a time at which the
hurricane is close to the buoy

assessment of the sensitivity of the solution to uncertain
parameters.

6 Integral quantities

We now turn our attention to analyzing the global
sensitivity of the predicted circulation to the uncertain
model inputs by examining spatially averaged (integral)
quantities. Our motivation is two-fold; on one hand, the
behavior of integral quantities provides a meaningful
and well-founded means of comparing predictions to

observations, as well as comparing the predictions of
different models. On the other hand, the averaging that
is inherent in the definition of integral quantities is
often expected to lead to observables that exhibit a
smoother dependence on uncertain inputs than local,
time-varying signals. Accordingly, one can anticipate
that integral QoIs would exhibit simpler distributions
and thus admit simpler representations than instanta-
neous field variables. In this section, we briefly address
this question in the context of the present ocean circu-
lation database.

Following [15], we focus specifically on the average
sea surface temperature in a region enclosing the hurri-
cane track, as well as the average heat flux in a circular
region around the center of the hurricane. Such QoIs
are frequently used both to characterize the predicted
circulation, as well as analyze the predictive skill of
various models.

As in [15], a rectangular control box is selected for
the purpose of defining a “regionally-averaged” SST.
As depicted in Fig. 16, the hurricane track cuts through
the control box. To obtain the mean sea surface temper-
ature within this region, we start from corresponding
PC representation,

SST(x, t, ξ)
.=

P∑

k=0

SSTk(x, t)�k(ξ),

and estimate the box-averaged temperature, SST,
through:

SST(t, ξ) = 1

N

N∑

i=1

SST(xi, t, ξ),

where xi, i = 1, . . . , N are the grid points lying within
the control box. We derive a spectral representation for
SST by inserting the PC representation of SST into the
above definition:

SST(t, ξ) = 1

N

N∑

i=1

SST(xi, t, ξ)

.= 1

N

N∑

i=1

P∑

k=0

SSTk(xi, t)�k(ξ)

=
P∑

k=0

( 1

N

N∑

i=1

SSTk(xi, t)
)
�k(ξ).

Thus, the spectral coefficients of SST(t) are the av-
erages of the corresponding coefficients of SST(x, t)
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Fig. 16 Contours of expected SST at selected time instants. The
track of the hurricane and its instantaneous location (red dot) are
also indicated. Also depicted is the boundary of the control box

over the control box. The mean of SST is computed,
respectively, through:

〈
SST

〉
(t) = SST0(t) = 1

N

N∑

i=1

SST0(xi, t),

or alternatively,

〈
SST

〉
(t) = SST0(t) = 1

N

N∑

i=1

〈SST(xi, t)〉 .

Similarly, the variance of the box-averaged tempera-
ture is readily estimated using:

Var(SST) =
P∑

k=1

SST
2
k(t)

〈
�2

k

〉
.

In addition to the mean temperature in the control
box, we examine the heat flux in a circular region
around the center of the hurricane, a quantity which is
frequently used as a measure of potential strengthening
or weakening of the hurricane [15]. Since our primary
interest is the global sensitivity of the stochastic solu-
tion to the uncertain inputs, a simplified approach is
adopted by integrating the heat flux over a circle of
fixed radius, Rt = 150 km, around the center of the
hurricane. The resulting stochastic average heat flux,
Q, is function of time and of the germ ξ . An analogous
methodology to that used for SST is used in order
to estimate its PC representation and consequently its
statistical properties.

As previously discussed, we are primarily interested
in characterizing the mean, variance, and parametric
sensitivities for the averaged SST and heat flux. Before
proceeding to this analysis, we illustrate in Figs. 16
and 17 the evolution of the mean temperature and of
the mean heat flux. The figures show instantaneous
contours of the mean temperature field and of the mean
heat flux, respectively, and depict regions over which
the spatial averages are obtained.

Figures 18 and 19 show the evolution of the
〈
SST

〉

and
〈
Q

〉
. Also plotted in both cases are curves that lie

1 standard deviation away from the mean prediction.
Consistent with [15], the passage of the hurricane leads
to a monotonic decrease in the average temperature
in the control box, and this behavior is consistent
with evolution of the mean temperature field shown in
Fig. 16. This is accompanied by a monotonic increase in
the standard deviation. The mean and standard devia-
tion of Q generally increase over the time interval de-
picted, though their behavior is clearly not monotonic.
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Fig. 17 Contours of the mean heat flux at selected times as
indicated. The concentric circular lines denote the distance (in
kilometers) from the center of the hurricane. The thicker line de-
notes the boundary of the circle of 150-km radius, centered over
the eye of the hurricane, over which the heat flux is averaged.
The average value is shown in the label
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Fig. 18 Average expected SST in the control box,
〈
SST

〉
, over

time with 1 standard deviation bounds. Here we can see the
average cooling in the control box over time

To further examine the behavior of the solution, we
plot in Fig. 20 instantaneous PDFs of the box-averaged
temperature, SST. The PDFs are seen to gradually
shift toward the left, consistent with the monotonic
decrease of the mean shown in Fig. 18. Note that long
tails extending toward lower temperature develop in
these distributions and that these tails become more
pronounced as time evolves. We have also examined
the PDFs of the average heat flux Q, which were found
to exhibit similar trends to the PDFs of SST. However,
in this case, the PDFs shift to the right as time evolves,
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Fig. 19 Average expected heat flux in Rt,
〈
Q

〉
, over time, with 1

standard deviation bounds
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Fig. 20 Distributions of SST, at selected times
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Fig. 21 Global sensitivity indices for SST over time. The sensi-
tivity indices Ti are as in Table 3

and long tails extend toward higher heat flux values.
For brevity, these results are omitted.

The observed skewed PDFs with long tails in inte-
gral quantities are somewhat unexpected because the
smoothing associated with spatial averaging is typically
expected to lead to simpler distribution functions. Ev-
idently, the present experiences indicate that this may
not always hold true. Specifically, in the present case,
the PDFs of the box-averaged temperature (Fig. 20) ex-
hibit essentially the same features as those determined
locally (Fig. 8). This highlights a rather complex re-
sponse of the solution to the uncertain parameters and
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Fig. 22 Global sensitivity indices for Q over time. The sensitivity
indices Ti are as in Table 3. Note that here the stochastic wind
drag coefficient dominates the variability in Q because Q is
always computed around the center of the hurricane
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suggests that in realistic scenarios, simplified stochastic
representations may not be readily applicable.

Figures 21 and 22 show the evolution of the global
sensitivity indices for SST and Q, respectively. Con-
sistent with previous observations, the results indicate
that the wind drag coefficient dominates the variability
in the average heat flux, Q. Meanwhile, consistent with
previous observations, the variance in SST is dominated
by the background diffusivity in the early stages of
the computation. However, the effect of the wind drag
coefficient becomes clearly dominant when the hurri-
cane enters the control region.

7 Conclusions

A sparse spectral projection approach was imple-
mented to propagate and quantify parametric uncer-
tainties in an OGCM. The simulations focused on the
impact of the subgrid mixing parameters and wind
drag coefficient on the circulation in the GOM. High-
resolution HYCOM simulations, forced by hurricane
Ivan winds, were used for this purpose.

A non-intrusive spectral projection scheme, based
on a Smolyak sparse quadrature grid, was used to de-
rive the PC representation of the stochastic response
of selected QoIs. A brief numerical study was ini-
tially conducted to analyze the impact of the sparse
grid refinement. For the presently considered condi-
tions and uncertain parameter ranges, a level 5 sparse
quadrature was found to be sufficient for adequate
representation of the model response. This amounted
to the construction of a sparse database consisting of
385 independent HYCOM realizations.

Computations were then used to demonstrate the
application of the resulting PC representation to esti-
mate various statistical quantities. These included the
analysis of the behavior of means and variances of
both field and integral quantities, as well as the use of
spectral representation to efficiently estimate probabil-
ities of model variables being in a given interval. Also
illustrated was the use of the PC representation as a
surrogate model, namely through the implementation
of simplified change of measure technique which ana-
lyzed the effect of restricting the range of one of the
uncertain parameters.

Attention was focused on assessing the global sen-
sitivity of the solution to the uncertain inputs, namely
through the evaluation of Sobol indices. In particular,
the analysis considered the average temperature in a
region enclosing the track of the hurricane, as well as
the heat flux in a circular region around its center.

Computations showed that for the conditions of the
experiments, the variability in the mean temperature
becomes dominated by the uncertainty in wind drag
coefficient as the hurricane enters the control region.
The uncertainty in wind drag coefficient was also found
to be a dominant factor in the variability in the integral
heat flux.

The analysis also indicated a complex model re-
sponse, which featured the generation of skewed dis-
tribution functions with extended tails. These were
observed for both local quantities, including the SST, as
well as integral QoIs, including the regionally averaged
SST and the integral heat flux around the center of the
hurricane. This points to the need for generally con-
ducting a systematic sampling of the random parameter
space with sufficient resolution to capture key statistical
features of the solution.

In follow-up work, we will focus on extending the
present methodology by incorporating adaptive sam-
pling schemes, which hold the promise of minimizing
the computational cost required for an adequate repre-
sentation of uncertainty in selected QoIs. In addition,
we will also focus on exploiting PC representations as
model surrogates, particularly in a Bayesian framework
for data assimilation and parameter inference.
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