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ABSTRACT

Sea surface temperature (SST) and tropical cyclone heat potential (TCHP) are metrics used to incorporate

the ocean’s influence on hurricane intensification into the National Hurricane Center’s Statistical Hurricane

Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-

ocean heat content, they do not accurately represent ocean stratification effects. Here, it is shown that re-

placing SST within the SHIPS framework with a dynamic temperature Tdy, which accounts for the oceanic

negative feedback to the hurricane’s intensity arising from storm-induced vertical mixing and sea surface

cooling, improves the model performance. While the model with SST and TCHP explains about 41% of the

variance in 36-h intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%.

These results suggest that representation of the oceanic feedback, even through relatively simple formulations

such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS.

1. Introduction

Annually, hurricanes cause substantial damages to life

and property in the global tropics and subtropics, in-

cluding the United States (Emanuel 2003; Pielke et al.

2008). Thus, improving the accuracy of hurricane fore-

casts is extremely important from a societal standpoint.

While significant progress has been made over the past

few decades in hurricane track forecasting, improve-

ments to hurricane intensity forecasts have been rela-

tively modest (Rappaport et al. 2012), with intensity

forecast errors decreasing at a rate that is between a

third and a half of the rate at which track forecast errors

are being reduced (DeMaria et al. 2014).

Hurricanes intensify by extracting heat energy from the

ocean’s surface, with the thermal disequilibrium at the air–

sea interface playing a critical role (Emanuel 1986, 1999).

The intense winds of hurricanes cause tremendous vertical

mixing of the upper ocean and sea surface cooling, which

acts as a negative feedback on the storm’s intensity (Price

1981; Bender andGinis 2000; Lin et al. 2005;D’Asaro et al.

2007; Lloyd andVecchi 2011; Balaguru et al. 2012b). In the

Statistical Hurricane Intensity Prediction Scheme (SHIPS;

DeMaria and Kaplan 1994b, 1999; DeMaria et al. 2005),

the statistical–dynamical hurricane intensity prediction

model of NHC, the impact of the ocean on hurricane in-

tensification is included primarily through the sea surface

temperature (SST)-based potential intensity (PI) and the

tropical cyclone heat potential (TCHP), which is the in-

tegral of the temperature from the surface to the depth of

the 268C isotherm (Leipper and Volgenau 1972; Goni and

Trinanes 2003; Mainelli et al. 2008; Shay and Brewster

2010).Using SST assumes nomixing of the upper ocean by

the storm and no negative feedback from the ocean. On

the other hand, while TCHP includes ocean stratification
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effects to an extent, not every hurricane stirs the ocean to

the depth of the 268C isotherm. This is because the depth

to which a hurricane mixes the ocean varies dynamically,

depending on its current state and prevailing ocean con-

ditions (Price 2009; Balaguru et al. 2015).

Recently, representing the ocean feedback in PI

(Emanuel 1986, 1999) was shown to improve its ability

to predict hurricane intensification (Lin et al. 2013;

Balaguru et al. 2015). This was done by replacing SST in

PI with dynamic temperature Tdy, the true SST felt by

the storm (Balaguru et al. 2015). The value of using an

ocean-coupling PI for prediction of rapid intensification

of tropical cyclones in the western Pacific was demon-

strated using a decision tree model (Gao et al. 2016),

but a similar technique has not been attempted within

the SHIPS framework. In this study, we replace SST

with Tdy in the PI formulation and estimate the impact

on the predictive capability of the SHIPS framework.

The layout of the paper is as follows. In section 2, we

describe the data, model, and methods. The results are

presented in section 3, and their implications are dis-

cussed in section 4.

2. Data, model, and methods

a. Data

We use Simple Ocean Data Assimilation (SODA,

version 3.3.1) 5-day mean oceanic subsurface tempera-

ture profiles, available at 0.58 spatial resolution, to esti-

mate the oceanic parameters in the model (Carton and

Giese 2008). To validate our results based on SODA

reanalysis, we also used EN4 (v 4.2.0) monthly mean

subsurface temperature profiles from the Met Office

Hadley Centre (Good et al. 2013). These data, available

at 18 spatial resolution, were produced using an objec-

tive analysis of all available hydrographic measurements

including Argo. To compute the various atmospheric

parameters in the model, we obtained 6-hourly winds

and air temperature from the NCEP–DOE AMIP-II

reanalysis (R-2; Kanamitsu et al. 2002). Hurricane track

data are obtained from the National Hurricane Center’s

HURDAT2 database (Landsea et al. 2015). All data

are obtained for the 10-yr period of 2005–14 since

subsurface ocean measurements are more reliable

beginning in 2005 due to the Argo program (Roemmich

et al. 2009). Daily microwave SST is obtained for the

period 21–28 September 2016 and used to estimate the

prestorm conditions for Hurricane Matthew. The vari-

ous data are freely available for download from the

sources provided in Table 1.

b. Model and methods

In this study, we use the framework of SHIPS, the

NHC’s statistical–dynamical hurricane intensity pre-

diction model. It combines climatology, persistence, and

synoptic-scale environmental parameters using a mul-

tivariate regression technique to predict future hurri-

cane intensities. We use 19 predictors, 18 fromDeMaria

and Kaplan (1994b) and DeMaria and Kaplan (1999),

plus TCHP (Mainelli et al. 2008). The climatological and

persistence predictors are longitude, Julian date, current

intensity, intensity change in the previous 12 h, and zonal

translation speed. The synoptic predictors are PI and its

square, shear and its time tendency, shear times the sine

of the latitude, relative and planetary eddy flux con-

vergence, land area under the storm, size, temperature

at 200 hPa, zonal wind at 200hPa, relative vorticity at

850 hPa, divergence at 200 hPa, and TCHP.

Following DeMaria and Kaplan (1994a) the maxi-

mum possible intensity (MPI) is calculated as

MPI5A1BeC(SST2SSTo) , (1)

where A is 66.5 kt (1 kt 5 0.51ms21), B is 108.5 kt, C is

0.18138C21, and SSTo is 308C. Using (1), the PI is then

computed as

PI5MPI2 current intensity. (2)

TCHP is calculated as

TCHP5 rC
p

ðZ26
0

[T(z)2 26]dz , (3)

where r is the density of seawater, Cp is the specific heat

capacity of seawater, T(z) is the temperature of seawa-

ter as a function of depth, and Z26 is the depth of the

268C isotherm (Shay and Brewster 2010). The Tdy is

calculated as

TABLE 1. Various datasets used in our study and their sources.

Dataset Source

SODA (version 3.3.1) subsurface oceanic temperature profiles https://www.atmos.umd.edu/;ocean/

EN4 (version 4.2.0) subsurface oceanic temperature profiles http://www.metoffice.gov.uk/hadobs/en4/

NCEP–DOE R-2 atmospheric winds and temperature https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html

HURDAT2 hurricane track data http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html

Remote Sensing Systems microwave SST http://www.remss.com
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T
dy
5

1

L

ðL
0

[T(z)] dz . (4)

Here, L is the vertical ocean mixing length of the

hurricane and is estimated as

L5 h1

�
2ru3

*t

kga

�1/3

, (5)

where h is the initial mixed layer depth, u* is the friction

velocity, t is the time of mixing, k is the von Kármán
constant, g is the acceleration due to gravity, and a is the

rate of change of density beneath the mixed layer. The

other predictors within the SHIPS framework are cal-

culated as in DeMaria and Kaplan (1994b, 1999). Both

PI and TCHP are averaged over a 48 3 48 box centered

over the hurricane to account for its size. To test the

model with Tdy, we simply replace SST with Tdy in PI. In

this study, we focus on improving SHIPS using data al-

ready available for the model. Hence, we use tempera-

ture profiles only to compute seawater density, TCHP,

and Tdy, setting the salinity to a constant 36 psu, which is

the mean value for the Atlantic. Note that we are per-

forming hindcasts of intensity using the observed

storm tracks.

We use the Monte Carlo approach of repeated ran-

dom sampling to estimate the uncertainty in model

performance and to evaluate the significance of replac-

ing SST with Tdy in the model. First, we randomly select

two-thirds of the input data and train the linear re-

gression model with those data. Next, using the trained

model, we make predictions for the remaining one-third

of the data and obtain the variance explained and the

root-mean-square error (RMSE) for the model. This

whole process is repeated 1000 times to generate 1000-

value sample sets of variance explained and RMSE for

the model. While the means across sample sets indicate

the average values of variance explained and RMSE for

each model, the standard deviations across sample sets

represent uncertainties in the respective parameters.

Finally, to evaluate the significance of improvement

attained by replacing SST with Tdy in the model, we

perform a Student’s t test for the difference of means

between the sample sets of variance explained and

RMSE for the model with SST and the model with Tdy.

3. Results

To illustrate the potential value of Tdy for statistical

intensity forecasts, we begin with the case study of

Matthew, the most powerful Atlantic hurricane during

the 2016 season, which attained category 5 intensity at

its peak and caused substantial damages in Haiti,

Cuba, the Bahamas, and along the U.S. East Coast

(Stewart 2017). After forming on 28 September, Mat-

thew went through a period of rapid intensification be-

tween 30 September and 1 October, when its intensity

increased from 70 to 146 kt. Figure 1a shows that Mat-

thew experienced favorable oceanic conditions during

this phase, with SSTs well above 288C along its track.

Beginning at location 1, the rate at which Matthew in-

tensified increased over a period of 36 h up to location 6.

Beyond this point, although Matthew continued to in-

tensify, the rate at which it intensified rapidly decreased

over a period of 30 h. Further on, intensity changes for

Matthew became negative, and the storm decreased in

intensity.

FIG. 1. (a) The track of Hurricane Matthew is indicated by cir-

cles, with prestorm SST averaged over theweek before the storm in

the background. (b) The 36-h intensity changes along the track of

Hurricane Matthew. (c) The along-track SST, TCHP, and Tdy for

Hurricane Matthew. In (b) and (c), the values are shown for the

section of the track indicated in black in (a).
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Interestingly, when considering the along-track SST

and TCHP, we find that they do not vary significantly.

While SST changes by about 0.58C, variations in TCHP

are below 30kJ cm22. These variations in SST and

TCHP are less than or comparable to their respective

standard deviations (1.08C for SST and 28.4 kJ cm22 for

TCHP) and hence are not significant. This makes it

difficult to explain the variations in Matthew’s intensity

using either parameter. On the other hand, the along-

track Tdy varies considerably. During the first 2 days

when Matthew intensified, Tdy remains well above

28.58C. Subsequently, consistent with the reduction in

Matthew’s intensity, Tdy decreases sharply over the next

36 h to 268C. This drop in Tdy of;38C is more than twice

its standard deviation (1.28C). During this period, the

translation speed of Matthew was reduced considerably,

enhancing the vertical mixing and SST cooling induced

by the storm. Hence, it is possible that the better

agreement of Tdy with the storm’s intensification results

from its ability to account for these processes.

To understand this more generally, consider Fig. 2,

which shows the climatological August–October mean

thermocline depth (Z26), hurricane mixing length, and

the difference between them. Figure 2a shows that Z26 is

deepest in the Caribbean Sea, where it exceeds 120m,

and gradually decreases eastward. Inmuch of the western

tropical Atlantic and the Gulf of Mexico, where histori-

cally many intense hurricanes have formed, Z26 exceeds

50m in most locations. Next, we consider the mixing

length for a typical category 3 hurricane, with a wind

speed of 54ms21 and a translation speed of 5ms21

(Fig. 2b). The mixing length exceeds 80m in a broad area

stretching from the Caribbean Sea in the west all the way

into the easternAtlantic and is punctuated by two regions

where the mixing length is relatively large. The first of

these two is the Caribbean Sea, where the mixing length

reaches its maximum value of close to 120m. The second

region of large mixing lengths occurs approximately be-

tween 508 and 408Wand between 148 and 218N.Here, the

vertical density gradients are weak as a result of excessive

evaporation and the consequent subduction (Balaguru

et al. 2012a). Also, there is a region to the east of 408W
and south of 158N where the mixing length is relatively

small. Here, the thermocline is relatively shallow under

the intertropical convergence zone, which enhances the

upper-ocean density stratification and reduces hurricane-

induced mixing. In summary, except in the Caribbean

Sea, where Z26 is very large, the mixing length is usually

deeper than Z26 (Fig. 2c).

We now consider the implications for predicting

hurricane intensity changes. Figure 3 shows SST, TCHP,

and Tdy, computed at each hurricane track location

during 2005–14 and plotted against the corresponding

36-h intensity change. For all ;2100 storm locations

(Figs. 3a–c), the correlations between SST, TCHP, and

Tdy and intensity change are 0.1, 0.16, and 0.19, re-

spectively. Hence, Tdy outperforms SST and TCHP. To

understand this further, we separate track locations ac-

cording to where the ocean feedback is weak (Tdy2 SST

below 0.58C) and strong (Tdy2 SST above 0.58C). There
are nearly 850 track locations where hurricane-induced

SST cooling is weak. In this scenario, SST and Tdy are

both correlated at 0.08 with intensity changes, and

TCHP has a higher correlation of 0.11 (Figs. 3d–f). To

understand this, we consider differences in the formu-

lations of TCHP and Tdy. If DT is the SST cooling, or

cold wake, induced by the hurricane, then Tdy can be

written as

T
dy
5 SST1DT . (6)

When the ocean feedback is weak, DT is negligible

and SST is approximately equal to Tdy, causing the

correlations of SST and Tdy with intensity changes to be

FIG. 2. Maps of climatological August–October mean (a) Z26,

(b) mixing length, and (c) difference between Z26 and mixing

length.
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equivalent. To explain why the correlation between

TCHP and the intensity changes is higher in this case, we

now consider a special situation where themixing length

equals Z26. With this simplification and using (6), the

TCHP can be written as

TCHP5 rC
p
(SST2 26)Z261 rC

p
(DT)Z26: (7)

Typically, the SST is well above 268C in regions where

TCHP exists. Thus, when the hurricane-induced cooling

is weak, the second term on the right in (7) is negligible,

and TCHP is dominated by the first term in which SST is

scaled by Z26. Thus, for the same SST, a deeper ther-

mocline will yield a considerably larger TCHP compared

to a shallow thermocline. In other words, changes in SST

are amplified by variations in ocean stratification, a

property that tends to enhance the TCHP’s correlation

with intensity changes. Thus, TCHP tends to perform

reasonably in regions with warm SSTs and a deep ther-

mocline, where the ocean feedback tends to be weak

(Mainelli et al. 2008; Price 2009).

Next, let us examine the situation when there is ap-

preciable ocean feedback (Figs. 3g–i). In this case,

there is a sample size of about 1250, and the correlation

between the intensity changes and Tdy is higher (0.22)

than the correlation between the intensity changes and

TCHP (0.17) or SST (0.1). The correlation with SST is

lowest because it does not account for any ocean feed-

back, while the TCHP performs considerably better.

However, the TCHP cannot match Tdy for two reasons.

First, the cooling of SST under a hurricane is primarily

caused by vertical mixing of the upper ocean (Price

1981, 2009). Hence, a metric based on a vertical integral,

such as TCHP, cannot accurately represent this effect

(Price 2009). Second, the TCHP does not account for

the extra cooling due to mixing below Z26. This be-

comes clearer when we consider the scenario in which

hurricane-induced SST cooling is strong. When we

subsample further using the condition that the magni-

tude of the cold wake is larger than 18C, the correlation

between the intensity change and TCHP is 0.1 and for

Tdy it is 0.17. This suggests that the stronger the negative

feedback from the ocean, the larger the improvement is

for Tdy over TCHP. All correlations mentioned above

are statistically significant at the 95% level based on a

Student’s t test.

Having seen how Tdy improves over SST and TCHP

when used as a single predictor, we ask how the skill of

FIG. 3. Scatter between 36-h intensity changes and SST (red), TCHP (blue), and Tdy (magenta) for the 10-yr period 2005–14. (a)–(c) All

storm locations, (d)–(f) cases where the magnitude of the hurricane-induced SST cooling is below 0.58C, and (g)–(i) cases where the cold

wake magnitude is greater than 0.58C. Correlation coefficients are also indicated in each panel.
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the SHIPS framework changes when Tdy is used within

it. To address this, we hindcast hurricane intensity

changes for the 10-yr period 2005–14 using the model

and evaluate its performance with and without Tdy. We

first use the model with all predictors and with PI com-

puted using the default formula based on SST. We call

this SHIPS-sst. Next, we use all the predictors similarly

except we replace SST with Tdy in MPI. We call this

SHIPS-tdy.We retain TCHP in themodel even whenwe

replace SST with Tdy, since TCHP performs better than

Tdy when the ocean feedback is weak.

The variance in 36-h intensity changes explained by

SHIPS-sst is 40.5% 6 2.3%, and the RMSE for the

model is 18 6 0.52 kt. These findings are comparable to

results from the official SHIPS for which the variance

explained is about 45%, and the RMSE is around 15kt

(DeMaria and Kaplan 1994b, 1999). The signs of the

regression coefficients for the model predictors, shown

in Table 2, are generally consistent with previous studies

(DeMaria and Kaplan 1994b, 1999), indicating that the

various predictors are acting in the right direction. If we

now replace SST with Tdy in PI, the variance explained

by the model (SHIPS-tdy) increases to 43.9% 6 2.3%,

and the RMSE is reduced to 17.56 0.46 kt. Thus, the use

of Tdy improves the performance of the model by in-

creasing the variance explained by approximately

3.5% and by reducing the RMSE by 0.5 kt. These

improvements in the model are statistically significant at

the 95% level. While the above results are based on

5-day mean SODA ocean reanalysis data, a similar

analysis performed using EN4 monthly mean data gives

consistent results, illustrating the robustness of the im-

provement. Although the results presented so far are

based on 36-h intensity forecasts, we also carried out

similar analyses for the 12-h forecast interval to pro-

vide hints on the applicability of Tdy for other forecast

periods. For 12-h intensity forecasts, replacing SST

with Tdy improves the performance of the model by

increasing the variance explained by approximately

1.8% and reducing the RMSE by 0.15 kt. The reduction

in the magnitude of the improvement for the 12-h

forecast period when compared to the 36-h forecast

period is in line with the understanding that the ocean’s

memory causes it to play an increasingly important role

as the length of the forecast period increases (DeMaria

and Kaplan 1994b, 1999). These changes, significant at

the 95% level, show that the use of Tdy can also improve

the model at other forecast intervals.

4. Discussion

We have shown that the use of Tdy can enhance the

performance of the SHIPS framework significantly. The

improvement mainly stems from the ability of Tdy to

account for upper-ocean stratification and its impact on

hurricanes more accurately. The results from our study

call for a better representation of hurricane–ocean in-

teractions in SHIPS through the inclusion ofTdy with the

potential to improve hurricane intensity forecasts. The

data needed to compute Tdy include the current state of

the storm and the subsurface ocean stratification, in-

formation that is already available in SHIPS. Since

the subsurface temperature structure can be readily es-

timated using satellite sea surface temperature and

altimetry (Shay and Brewster 2010; Pun et al. 2016), the

Tdy was computed with only temperature to show that

improvements can be made to the model using the ex-

isting framework. However, there are a few regions

where the salinity stratification could be important in

the Atlantic, such as the Amazon outflow region

(Balaguru et al. 2012a). Effects of upper-ocean salinity

could potentially be included in near–real time through

data fromArgo floats (Roemmich et al. 2009) or satellite

sea surface salinity (Grodsky et al. 2012). The impact of

salinity on hurricane intensification is an area of active

research (Balaguru et al. 2012a; Grodsky et al. 2012;

Foltz and Balaguru 2016; Balaguru et al. 2016) and

further efforts are needed in this regard. Finally, a few

studies have shown that the use of nonlinear approaches

in statistical modeling of hurricane intensity changes

TABLE 2. Regression coefficients for various predictors in

SHIPS-sst and SHIPS-tdy. Coefficients significant at the 90% level

are indicated in boldface.

Predictor SHIPS-sst SHIPS-tdy

PI 5.81 3 1021 1.44 3 1021

Shear 24.35 3 100 22.75 3 100

Change in intensity

in the previous 12 h

3.25 3 1021 3.03 3 1021

Relative eddy flux

convergence

7.39 3 103 2.25 3 103

Planetary eddy flux

convergence

5.61 3 103 1.84 3 104

Julian day 2.85 3 1022 26.43 3 1022

Longitude 7.11 3 1022 27.33 3 1022

Land 26.97 3 1021 27.58 3 1021

Size 4.41 3 100 3.47 3 100

Change in shear 4.86 3 1021 3.00 3 1021

Square of PI 23.12 3 1023 23.94 3 1023

Air temperature (200 hPa) 28.70 3 1021 24.91 3 1021

Zonal wind (200 hPa) 23.75 3 1021 25.37 3 1021

Relative vorticity (850 hPa) 21.30 3 105 28.25 3 104

Shear times sine of latitude 5.61 3 100 1.99 3 100

Divergence (200 hPa) 1.43 3 105 2.78 3 105

Zonal translational velocity 2.43 3 1024 5.08 3 1022

Current intensity 23.78 3 1021 28.82 3 1021

TCHP 1.98 3 1028 3.54 3 1028

Variance explained (%) 40.5 43.9
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may improve the predictive skill (Baik and Hwang 1998;

Lin et al. 2017). Future work to improve the SHIPS

framework should take the application of such methods

into consideration.
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