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ABSTRACT

Long-term and direct measurements of surface shortwave radiation (SWR) have been recorded by the

Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) since 1997. Previous studies

have shown that African dust, transported westward from the Sahara and Sahel regions, can accumulate on

mooring SWR sensors in the high-dust region of the North Atlantic (88–258N, 208–508W), potentially

leading to significant negative SWR biases. Here dust-accumulation biases are quantified for each PIRATA

mooring using direct measurements from the moorings, combined with satellite and reanalysis datasets and

statistical models. The SWR records from five locations in the high-dust region (88, 128, and 158N along

388W; 128 and 218N along 238W) are found to contain monthly-mean accumulation biases as large as

2200Wm22 and record-length mean biases on the order of 210Wm22. The other 12 moorings, located

mainly between 108S and 48N, are in regions of lower atmospheric dust concentration and do not show

statistically significant biases. Seasonal-to-interannual variability of the accumulation bias is found at all

locations in the high-dust region. The moorings along 388W also show decreasing trends in the bias mag-

nitude since 1998 that are possibly related to a corresponding negative trend in atmospheric dust con-

centration. The dust-accumulation biases described here will be useful for interpreting SWR data from

PIRATA moorings in the high-dust region. The biases are also potentially useful for quantifying dust

deposition rates in the tropical North Atlantic, which at present are poorly constrained by satellite data and

numerical models.

1. Introduction

The Prediction and Research Moored Array in the

Tropical Atlantic (PIRATA) consists of 17 long-term

Autonomous Temperature Line Acquisition System

(ATLAS) buoys equippedwith sensors tomeasure near-

surface meteorological and subsurface oceanic param-

eters (Bourl�es et al. 2008; Fig. 1). The moorings are
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a unique component of the tropical Atlantic observing

system, providing long time series (15 yr and growing) at

a high temporal resolution (1–10-min averages). In con-

trast to moving platforms such as drifting buoys and

floats, PIRATA moorings remain fixed, providing collo-

cated air–sea measurements that are valuable for study-

ing ocean–atmosphere interaction on diurnal to decadal

time scales (e.g., Bourl�es et al. 2008, and references

therein).

The near-surface atmospheric measurements from

PIRATA are in general of significantly higher quality

than those inferred from satellites and simulated by

models, making the PIRATA moorings a valuable tool

for identifying biases in satellite- and reanalysis-based

estimates of surface turbulent heat fluxes (Sun et al.

2003; Kumar et al. 2012), rainfall (Serra and McPhaden

2003), and shortwave radiation (SWR; Pinker et al.

2009; Kumar et al. 2012). Nevertheless, the meteoro-

logical sensors on the moorings are exposed to elements

such as sea spray, natural and anthropogenic aerosols, and

severe weather during each year-long deployment. The

sensors therefore occasionally develop time-dependent

drifts or biases. In most cases, systematic errors are

identified from the near-real-time data streams or from

the internally stored data after a mooring is recovered

(Freitag et al. 1994). The suspicious data are then either

flagged or a correction is applied based on the results of

postdeployment calibration. Similar quality-control pro-

cedures are used on data from ATLAS moorings in the

tropical Pacific and IndianOceans (McPhaden et al. 1998,

2009).

One unique aspect of the tropical Atlantic that com-

plicates quality-control procedures for PIRATA data is

the presence of large quantities of African dust in the

atmosphere of the tropical North Atlantic (Prospero

and Carlson 1972; Kaufman et al. 2005; Fig. 1). Most of

the dust originates from the Sahel and Sahara regions of

Africa and is blown westward over the ocean by the

surface and midlevel easterly winds (Prospero et al.

2002; Moulin and Chiapello 2004; Kaufman et al. 2005).

The highest dust aerosol optical depth (tdust) is found

between 88 and 208N (Fig. 1), north of the heaviest band

of precipitation associated with the intertropical con-

vergence zone (ITCZ).

About 60% of the ;240 Tg of dust that are trans-

ported westward from Africa falls to the tropical and

subtropical North Atlantic Ocean (Ginoux et al. 2001;

Gao et al. 2001; Kaufman et al. 2005). Most deposition

occurs during boreal summer and fall, when dust export

from Africa is highest. Northward of about 108N, tdust
shows a pronounced peak in boreal summer. The peak

shifts from summer to spring and decreases in magni-

tude southward from 108N to the equator (Kaufman

et al. 2005). It is therefore not surprising that the me-

teorological sensors on PIRATA moorings in the trop-

ical North Atlantic accumulate a substantial layer of

dust during year-long deployments (Medovaya et al.

2002; Foltz and McPhaden 2005). Of the instruments on

the PIRATA moorings, accumulated dust is most likely

to interfere with the SWR radiometer, an upward-facing

glass dome that is fully exposed to falling dust. Indeed,

dust buildup has been observed on several PIRATA

moorings in the tropical North Atlantic during servicing

cruises (H. P. Freitag and S. Brown 2012, unpublished

manuscript).

The potential for dust buildup to interfere with SWR

measurements on open-ocean moorings was first ac-

knowledged by Moyer and Weller (1997). They found

traces of red sand on the instrumentation of the South-

east Subduction Experiment buoy at 188N, 228W and

suggested that its presence on the radiometer might

have reduced the measured insolation. Waliser et al.

(1999) further showed that daytime clear-sky SWR

measurements from the Subduction buoy were biased

low by about 70Wm22 relative to those estimated from

a radiative transfermodel. They concluded that themost

likely cause of the bias was accumulation of African dust

on the radiometer. However, they noted that post-

deployment calibrations performed with and without

the dust coating on the sensor differed by only 1%, or

FIG. 1. Annual mean SWR from ISCCP-FD during 1984–2009

(colors) and dust aerosol optical depth (tdust) fromMODIS during

2003–10 (contoured every 0.1 units). Black squares and circles in-

dicate locations of PIRATA moorings and the length of the SWR

time series at each location in data years (i.e., total record length

minus gaps).
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about 5Wm22, leading them to suspect that some of the

dust may have fallen off the sensor either while in the

field or during transit to the postdeployment calibration

site. Medovaya et al. (2002) compared clear-sky mea-

surements of SWR from several open-ocean moorings

to estimates from a model. They found significant mean

differences at several locations, including the Southeast

Subduction buoy, which they attributed to a combination

of radiometer tilt (due to ocean currents or deployment

technique), clear-sky model biases, and aerosol buildup

on the radiometer. Foltz and McPhaden (2005) found

discontinuous upward jumps in SWRof;50Wm22 from

the 158N, 388W PIRATA buoy immediately following

servicing cruises that they attributed to dust buildup on

the radiometer.

Laboratory comparisons between dusty sensors re-

covered from PIRATA moorings in the tropical North

Atlantic and a newly calibrated sensor showed that the

output from the dusty sensors was biased low by up to

14% (H. P. Freitag and S. Brown 2012, unpublished

manuscript). The comparisons also showed that for

clear-sky conditions, the magnitude of the bias can de-

pend strongly on the solar zenith angle, whereas under

cloudy conditions the bias is more constant throughout

the day. The difference likely results from an uneven

distribution of dust on the radiometer dome.

Previous strategies for dealing with dust buildup on

mooring sensors include discarding all SWR data that

are contaminated (Waliser et al. 1999), using the data

without any correction (Pinker et al. 2009; Kumar et al.

2012), and applying a linear time-dependent correction

backward in time from radiometer swap dates (Foltz and

McPhaden 2005). Each approach has distinct disadvan-

tages. Discarding all data contaminated by dust buildup

would eliminate several years’ worth of SWR records

from each PIRATA mooring in the tropical North At-

lantic (88–218N). On the other hand, there is evidence

of significant time-dependent negative biases in the

Southeast Subduction and PIRATA SWR time series

that should be accounted for prior to their use in scientific

analyses. The method used by Foltz and McPhaden

(2005) worked reasonably well for analyzing intra-

seasonal (30–70-day period) variability since the dust-

accumulation bias is expected to increase in magnitude

gradually over several months. The same method was

used to study an anomalous event during a single year,

though in this case SWR measurements from another

mooring without significant dust buildup were used for

validation of the corrected SWR time series (Foltz and

McPhaden 2006). The linear correctionmethod does not

take into account rinsing of the radiometer dome by

rainfall, and it is unknown how much uncertainty is in-

volved with calculating the dust-accumulation bias from

pre- and post-swap SWR values. Furthermore, it is un-

clear whether the SWR attenuation caused by dust

buildup increases linearly in time or is a more complex

function of tdust and possibly other parameters.

In this study a more rigorous technique is developed to

calculate dust-accumulation biases in PIRATA SWR

records. The corrected time series are found to be more

consistent with observed cloud cover in the tropical At-

lantic over the past 13 years and agree better with satellite-

derived SWR estimates over the same time period.

2. Data

The primary dataset consists of daily-averaged SWR

measurements from 17 PIRATAmoorings (Fig. 1). The

moorings have acquired a combined total of 120 yr of

SWRdata since 1997 (Fig. 2) and sampled a wide variety

of SWR regimes, including the stratus deck of the

southeastern tropical Atlantic, the ITCZ, and the region

of high tdust to the north of the ITCZ. Several other sat-

ellite and reanalysis datasets are used in conjunction with

PIRATA data to calculate dust-accumulation biases.

FIG. 2. Availability of daily SWR data from each PIRATA

mooring.
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a. PIRATA

Each PIRATA buoy is equipped with an Eppley

pyranometer that measures downwelling SWR in the

range of 0.285–2.8mm. The sensor is mounted at a height

of 3.5m, and values are recorded as 2-min means. Here

we use the daily-averaged data throughMarch 2011. The

sensors are deployed for about one year on average.

During each servicing cruise, the SWR sensor is re-

covered with the mooring and a new sensor is deployed.

The earliest time series begin in 1997, and the most re-

cent time series start in 2007. Because of gaps in most of

the records, the usable portion of each time series ranges

from 3 to 13 yr in length (Figs. 1, 2).

Uncertainties in SWR measurements from the moor-

ings are estimated to be 63% based on pre- and post-

deployment calibration (H. P. Freitag and S. Brown

2012, unpublished manuscript). In all cases, post-

deployment calibrations were performed with clean

sensors (i.e., rinsed of any sea salt or aerosol residue).

These instrumental errors are likely a lower bound on

the uncertainties of the SWR measurements in the

field, which also include errors due to buoy tilt and salt/

aerosol buildup on the sensor. Errors due to buoy tilt

are difficult to quantify (MacWhorter andWeller 1991),

but are likely to be significant only at locations with

strong mean currents (i.e., in the strong westward flow

along the equator and eastward flow between 48 and 88N
in the tropical Atlantic). Buoy tilt biases are therefore

expected to be largest at the 88N, 388W mooring loca-

tion, where themaximummonthly-mean current speed is

;40 cms21, based on Ocean Surface Current Analysis–

Real time (OSCAR) data averaged during 1992–2011

(Bonjean and Lagerloef 2002). Tilt biases are not ex-

pected to be significant in the 128–218N latitude band,

where monthly-mean current speeds are ,20 cms21.

None of the PIRATASWR time series that is used in this

study has been corrected for buoy tilt; nor for salt–aerosol

(including dust) buildup on the sensor.

In addition to SWR, we use daily-averaged rainfall

from each PIRATA mooring. Rainfall, measured at a

height of 3.5m by an R.M. Young capacitive rain gauge,

is used to identify when the SWR sensor would be rinsed

of dust.

b. Satellite and reanalysis products

Several satellite and reanalysis datasets aid in quan-

tifying the buoy dust-accumulation biases. Because di-

rect measurements of dust deposition are not available

at the PIRATA moorings, we rely on satellite-based

estimates of aerosol optical thickness (AOT). Daily-

averagedAOT at 550 nm is available from theModerate

Resolution Imaging Spectroradiometer (MODIS) on

board the Aqua and Terra satellites at a horizontal res-

olution of 18 (Remer et al. 2005). Data from Terra are

used for February 2000 through July 2002 and from

Aqua during July 2002 through March 2011. Daily

MODIS fine-mode fraction (FMF), proportional to the

size of scattering aerosol, is used with MODIS AOT and

surface wind speed (described later) to calculate dust

aerosol optical thickness (tdust).We also use dailyMODIS

primary cloud fraction and cloud optical thickness (tcloud)

to determine the impact of clouds on SWR measured by

the moorings.

Since many of the PIRATA records begin before the

launch ofMODIS in 2000,monthly-meanAOTat 670nm

from the Advanced Very High Resolution Radiometer

(AVHRR) Pathfinder Atmospheres Extended dataset

(PATMOS-x) is used to extend the MODIS record back

in time from February 2000 to the start of the PIRATA

SWR record. The PATMOS-x data are available during

1982–2011 on a 0.58 grid (Ignatov and Stowe 2002; Evan

et al. 2006). The MODIS cloud fraction is extended

backward using International Satellite Cloud Climatol-

ogy Project (ISCCP) data for the period 1998–2000 on

a 2.58 grid (Rossow and Schiffer 1991). Monthly-mean

climatological MODIS FMF and tcloud are used for the

1998–2000 period since reliable replacements are not

available.

Daily-averaged SWR is obtained from the ISCCP flux

dataset (ISCCP-FD) for the period 1998–2009 on a 2.58
grid (Zhang et al. 2004). This product uses ISCCP cloud

retrievals and atmospheric reanalysis products as input

to a radiative transfer model to calculate surface and top-

of-atmosphere shortwave and longwave radiation. Daily

surface clear-sky solar radiation is available from the

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis (Kalnay et al. 1996) during 1948–2011 on a

28 grid and from theModern-Era Retrospective Analysis

for Research and Applications (MERRA; Rienecker

et al. 2011) during 1979–2011 on a 2/38 longitude 3 ½8
latitude grid. Here we use the data for the period 1998–

2011. The NCEP–NCAR reanalysis clear-sky SWR

product does not include dust aerosols explicitly,

whereas the MERRA product includes the seasonal

cycle of dust aerosol radiative forcing. The NCEP–

NCAR and MERRA reanalyses also use different

input data and different radiative transfer models to

calculate clear-sky radiation. The differences in clear-

sky radiation between the datasets therefore reflect

differences between two independent methods, each

with its own strengths and weaknesses. Precipitation

rate from the Tropical Rainfall Measuring Mission

(TRMM) precipitation radar are available during 1998–

2011 on a 0.58 grid. Here we use the hourly gridded
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product [3G68 from the National Aeronautics and Space

Administration (NASA) Goddard Space Flight Center

(GSFC)] averaged to a daily resolution. These data are

used to fill gaps in the PIRATA precipitation records.

3. Methodology

In this section we first describe the methods used to

calculate tdust and an index representing the magnitude

of the dust-accumulation bias at a given mooring loca-

tion. We then describe the methodology used to calcu-

late the time series of the dust-accumulation bias.

a. The tdust and dust-accumulation index

We calculate tdust following the methodology of

Kaufman et al. (2005):

tdust 5
AOT(0:92FMF)2 0:6tmarine

0:4
and (1)

tmarine5 0:007W1 0:02. (2)

Here tmarine is the optical depth of particles such as sea

salt and sulfates, which are produced from the oxidation

of ocean-produced organicmaterial, andW is themonthly

climatological NCEP–NCAR reanalysis surface wind

speed for the period 1998–2010, interpolated to a daily

resolution.

To determine which PIRATA locations exhibit sig-

nificant dust-accumulation biases, we define a dust-

accumulation bias index as the maximum bias during

each sensor deployment, averaged over all sensor de-

ployments at a given location. The result is a single value

at each location representing the importance of the dust-

accumulation bias. Two different methods of calculating

the index are described: the rain free and swap methods.

For the rain-free method, we start by defining a rain-

free segment of a full SWR time series as one that falls

completely between sensor swap dates and in which

rainfall on every day of the segment is less than 5mm.

This ensures that, in principle, dust is continually accu-

mulating on the sensor since it is not being rinsed by

rain. The bias for each rain-free segment with a length.
75 days is then calculated as the difference between the

buoy SWR anomaly (with respect to ISCCP-FD daily

mean seasonal cycle) averaged over the first 30 days of

the segment and the buoy SWR anomaly averaged over

the last 30 days of the segment. The monthly-mean

seasonal cycle of ISCCP-FD SWR is subtracted from the

buoy SWR before computing the bias to account for

the strong seasonal cycle of SWR at most locations. The

individual biases calculated from each rain-free segment

at a given PIRATA location are then averaged, giving

a single-valued dust accumulation bias index. Statistical

significance of each index is assessed using a Student’s t

test with p 5 0.05. Indices are not computed for loca-

tions with less than three rain-free segments of at least

75 days in length. All locations satisfy this criterion ex-

cept 48N, 388W and 48N, 238W, where the annual mean

rainfall is highest.

To calculate the dust-accumulation index using the

swapmethod, themean of the buoy SWR anomaly (with

respect to the daily mean ISCCP-FD SWR seasonal

cycle) during the 30-day period immediately before

a sensor swap is subtracted from the mean buoy SWR

anomaly during the 30 days immediately after a sensor

swap. Because of gaps in the buoy SWR time series at

the end of some deployments, there are fewer swap bias

estimates than rain-free estimates. The swap bias esti-

mates are also more sensitive to anomalies in SWR re-

lated to changes in cloudiness, since there is sometimes

significant rainfall immediately before or after a sensor

swap. For this reason, we use only the highest 15 daily

SWRvalues from each 30-day pre- and post-swap period

for calculating each mean. This decreases the likelihood

of including cloudy days in the means, which would bias

the calculation. Note that the rain-free and swap bias

indices are defined as positive when there is an attenu-

ation of SWR because of accumulated dust (i.e., a neg-

ative bias in the SWR time series).

For validation of the swap biases we have also calcu-

lated the SWR bias directly from five dusty sensors that

were recovered from the 158N, 128N, and 88N PIRATA

moorings along 388W during April 2002 and July 2003

(H. P. Freitag and S. Brown 2012, unpublished manu-

script). The output from each recovered sensor was

compared to a clean, calibrated sensor during a period

of 28 days. The sensors were placed in direct sunlight

outside the Pacific Marine Environmental Laboratory

(PMEL) in Seattle, Washington, and experienced both

sunny and overcast conditions. The radiometers were

then cleaned and calibrated either by the manufac-

turer (The Eppley Laboratory, Inc.) or by the National

Renewable Energy Laboratory in order to quantify

sensor drift unrelated to dust accumulation. The dust-

accumulation bias for each sensor was calculated as

Blab 5Sclim(Ptot2Pdrift) , (3)

where Sclim is the 1998–2011 climatological mean

ISCCP-FD SWR on the calendar day of the sensor re-

covery, Ptot is the mean bias from the laboratory com-

parison with the dusty sensor, and Pdrift is the mean bias

of the clean sensor after removal of all dust. ThePtot and

Pdrift biases are expressed as a percentage of the total

incoming solar radiation and represent averages over
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the full 28 days of the experiment (day and night). For

consistency, the values of Blab are not included in the

calculation of the dust-accumulation index or in the time-

dependent bias-correctionmethodologies describednext,

but they are shown and described in section 4.

The methods described above give a single-valued,

time-independent, dust-accumulation bias at a given

mooring location. To quantify the time dependence of

the bias, three independentmethods were developed: rain

free, swap, and clear sky. These methods are described

in the remainder of this section.

b. Rain free

To calculate dust-accumulation biases using the rain-

free method, first the monthly-mean seasonal cycle of

ISCCP-FD SWR at a given PIRATA location is inter-

polated to a daily resolution and subtracted from the

daily PIRATA SWR time series. This gives a daily time

series of PIRATA SWR anomalies for the length of the

PIRATA record. As in the rain-free index calculation,

the time-dependent bias calculation is only performed

on segments of the time series that are between sensor

swaps and that have no significant rainfall.

A rainfall criterion of 5mmday21 was used to define

rain-free segments for the index calculation. This crite-

rion was chosen because we were interested in finding

the maximum bias before any rinsing of the sensor had

occurred. For the time-dependent bias calculation in this

section, we use a criterion of 50mm accumulated over

a period of 30 days. This choice allows for partial rinsing

and is based on examination of the rainfall and SWR

records from the moorings along 388W. The results are

similar for other reasonable choices of the rainfall cri-

terion, since at most locations there is a well-defined

start to the rainy season.

The buoy SWR anomalies in each rain-free segment

are the result of forcing from several sources: 1) anoma-

lies of clouds, water vapor, and aerosols suspended in the

atmosphere; 2) dust buildup on the buoy SWR sensor;

and 3) biases in the ISCCP-FD SWR climatology caused,

for example, by changes in satellite coverage and limited

measurements of the vertical profiles of suspended

aerosols. Since the goal is to quantify the SWR signal

associated with source 2, ideally sources 1 and 3 should

be completely removed from the buoy SWR anomaly

time series, giving the dust accumulation bias as a residual.

However, it is difficult to remove the SWR variability due

to clouds, water vapor, and aerosols, and it is also chal-

lenging to quantify biases in ISCCP-FD SWR, since the

only in situ measurements are from PIRATA, and they

are biased by dust buildup. An alternative technique is to

model the dust accumulation bias as a function of one

or more time-dependent variables. Developing a model

that describes time-dependent SWR biases from dust

buildup would require knowledge of the rate of dust ac-

cumulation on the sensor as a function of meteorological

conditions and tdust. These relationships cannot be de-

termined confidently with the available data. We there-

fore use a hybrid technique, which is described below.

First, anomalies of SWR due to clouds and suspended

dust are removed from the daily PIRATASWRanomaly

time series. Based on time series of clear-sky SWR from

NCEP and MERRA reanalyses, we have found that

nonseasonal variability of water-vapor-induced SWR is

much weaker compared to the SWR signals from clouds

and suspended dust and therefore do not remove the

water vapor signal. Since the removal of the cloud- and

dust-induced signals is not perfect and the remaining

cloud- and dust-free signalmay be contaminated by biases

in ISCCP-FD SWR, we fit a curve to each rain-free seg-

ment of the cloud- and dust-free SWR anomaly time se-

ries. The curve is based on the observed dependence of

buoy SWR anomalies on the time integral of tdust. In the

rest of this subsection, the details of this method are

described, beginning with the removal of the cloud and

tdust signals, followed by the curve-fitting procedure.

Attenuation of SWR by clouds (SWRcloud) is assumed

to be proportional to one minus the direct transmittance

of light through the cloud layer, times the total cloud

fraction:

SWRcloud } f (12 e2t
cloud ) . (4)

Here f is total cloud fraction and tcloud is cloud optical

thickness, both from daily mean MODIS data and with

the corresponding mean seasonal cycle removed. For

the period before February 2000 when MODIS data are

not available, we use ISCCP f and the monthly-mean

climatology of MODIS tcloud, since we have found that

the nonseasonal variability of tcloud is small compared to

that of f. To avoid contamination by dust-accumulation

biases in the buoy SWR data, the SWR anomaly time

series is filtered using a high-pass Lanczos filter with a

cutoff period of 120 days and 100 coefficients. A third-

order polynomial is then fit to the daily high-pass-filtered

SWR anomalies, from a given PIRATA mooring, as

a function of the right-hand side of (4). The results from

three locations along 388W are shown in Fig. 3. The

model works reasonably well northward of 88N, but it

has difficulty predicting cloud forcing anomalies for

large positive anomalies of f [12exp(12tcloud)] at 88N,

388W. Nonlinearity of the fits in Fig. 3 is caused by the

diffuse transmittance of light, which is difficult to

quantify and is not included in (4).

Attenuation of SWR by suspended dust (SWRdust) is

calculated as a function of calendar month, latitude, and
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tdust, at each mooring location, following Evan and

Mukhopadhyay (2010). On average, SWRdust is about

70Wm22 per unit of tdust in the tropical North Atlantic,

consistent with other studies (e.g., Zhu et al. 2007).

Anomalies of SWRdust from the seasonal cycle are gen-

erally weaker than anomalies of SWRcloud, which is ex-

pected since clouds are optically much thicker than dust

plumes. At the high-dust PIRATA locations the daily,

record-length, standard deviation of SWRcloud anomalies

ranges from 22 to 31Wm22, whereas for anomalies of

SWRdust the range is 14–15Wm22. For 180-day low-

passed time series, the anomaly standard deviation of

SWRcloud ranges from 6 to 7Wm22 and SWRdust ranges

from3 to 4Wm22. The low-passed values are significantly

lower than the accumulation bias indices (described in

the next section), indicating that a large portion of the

anomalous SWR variability at the high-dust locations

results from dust buildup on the sensors.

After removing SWR anomalies due to clouds and

suspended dust from the PIRATA SWR anomaly time

series, the remaining signal (SWRresid) contains vari-

ability associated with dust buildup on the sensor and,

ideally, only a much smaller signal from anomalies in

water vapor and trace gases, which have not been re-

moved. In reality, the combination of clouds and sus-

pended dust explains only about 30%of the nonseasonal

SWR variability at the high-dust locations. It is also

possible that there are significant biases in the ISCCP-

FD SWR climatology. We therefore estimate the mea-

sured dust-accumulation SWR bias by fitting a curve to

each rain-free segment of the PIRATA SWRresid time

series of the form

SWRaccum(t)5 [c12 c2e
2c

3
tintdust(t)] (5)

tintdust(t)5

ðt
end

t
0

tdust dt . (6)

Here tintdust(t) is the time integral of tdust between t0, the

first day of a given rain-free segment, and tend, the last

day of the rain-free segment. In (5), we set c1 5
200Wm22. Results are not sensitive to the choice of

c1 as long as it is greater than the maximum observed

dust-accumulation bias. The constants c2 and c3 are de-

termined through an iterative procedure that fits the right-

hand side of (5) to each rain-free SWRresid time series at

a given PIRATA location. The parameterization in (5)

assumes that the dust-accumulation bias is proportional

to the time integral of tdust under rain-free conditions

and not tdust itself. This assumption is based on the ob-

servation that most dust-accumulation biases increase

inmagnitude with time, until rainfall commences or there

is a sensor swap. Further justification of (5) is shown in

Fig. 4. There is a clear negative bias in buoy SWR that

increases in magnitude as tintdust increases (Fig. 4a). In

contrast, there is not a strong relationship between buoy

SWR anomalies and tdust (Fig. 4b). On average, the re-

lationship between SWRresid and tintdust is nearly linear,

possibly because the amount of dust that sticks to the

sensor, for a given deposition rate, decreases as the amount

of dust on the sensor increases. Note that in (5), positive

values of SWRaccum indicate a reduction in SWR recorded

by the buoy sensor, for consistencywith the sign of the dust-

accumulation bias indices described earlier in this section.

The purpose of fitting the right-hand side of (5) to

each SWRresid segment is to reduce the chance that

FIG. 3. Daily anomalies (with respect to the ISCCP-FD seasonal

cycle) of PIRATA SWR as a function of anomalous cloud forcing,

expressed as the fraction of incoming solar radiation that is at-

tenuated by clouds, at (a) 158N, 388W; (b) 128N, 388W; and (c) 88N,

388W. The SWRand cloud forcing time series at each location have

been filtered to remove variability with periods . 120 days. Red

lines are third-order polynomial fits to the data.
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seasonally varying ISCCP-FD SWR biases or unresolved

natural SWR variability (i.e., due to cloudiness or tdust
anomalies) are interpreted as a dust-accumulation bias.

For example, (5) ensures that a large negative SWR

anomaly in SWRresid that is actually due to increased

cloud cover will be significantly reduced in magnitude if

there is not a corresponding increase in tintdust. The appli-

cation of (5) to each rain-free segment also acts as a low-

pass filter, eliminating most of the high-frequency SWR

variability that is unrelated to more slowly evolving dust

buildup. To eliminate mean biases that may be present in

the ISCCP-FD SWR climatology, the value of SWRaccum

at the beginning of a given rain-free segment is subtracted

from the SWR(t)accum time series.

c. Swap

The rain-free method for computing time-dependent

dust-accumulation biases relies on the ISCCP-FD SWR

climatology, which may contain significant seasonally

dependent biases. We therefore consider an alternative

method that is based on the difference between the buoy

SWR anomaly before and after a sensor swap. The

procedure is as follows. First, the swap bias (DSWR) at

the end of each deployment is calculated as described

earlier in this section. EachDSWR is then extended back

in time, either until the significant rain threshold is sat-

isfied or until the previous sensor swap. In either case, it

is assumed that the dust-accumulation bias is zero at the

beginning of the time segment. The magnitude of the

time-dependent swap bias (SWRswap) is assumed to in-

crease from zero at the beginning of the time segment to

DSWR at the end. The rate of decrease of SWRswap

depends on the time integral of tdust [Eqs. (5), (6)].

The advantage of this method is that the dust-

accumulation bias at the end of a given deployment is

calculated by comparing SWR values from a dusty

sensor to those from a sensor that is known to be clean.

The sensor swap takes only one day to complete, and

DSWR is calculated as the difference between the SWR

anomaly averaged over the 30-day period after a sensor

swap and the SWR anomaly averaged over the 30-day

period prior to the sensor swap. We have found that the

results of the swap method are not strongly sensitive to

the choice of the time periods before and after the

sensor swap that are used to calculate DSWR.

d. Clear sky

Neither the rain-free method nor the swap method

calculates the dust-accumulation bias during periods of

significant rainfall. Instead, it is assumed that the bias

goes to zero after a certain rainfall threshold is reached.

This is a disadvantage of these techniques, since a com-

plete rinsing of the sensor can occur over a period of

several months at some locations. In addition, for the

rain-free method, calculation of the SWR forcing

due to clouds is complicated by a mismatch in spatial

scales between the mooring and the satellite footprint,

and uncertainties in the statistical and radiative trans-

fer models. In this section a third method is described

that gives a continuous daily time series of the dust-

accumulation bias and does not rely on satellite data for

cloud removal.

On a given cloud-free day, the difference between the

buoy SWR and the modeled clear-sky SWR is, in prin-

ciple, the dust-accumulation bias. The challenge in

implementing the clear-sky method is therefore the

identification of cloud-free days in the buoy record and

the use of an appropriate clear-sky model. To identify

cloud-free days in the PIRATA SWR time series,

a centered 30-day running-maximum filter is applied.

This gives a daily time series of the maximum daily-

averaged SWR value in a window of615 days under the

assumption that there is at least one cloud-free day

during that interval. Examination of dailyMODIS cloud

fraction at each high-dust location revealed that during

a given 30-day period there are, on average, 2–3 days

with cloud coverage of ,5%. Cloud coverage is most

FIG. 4. Daily anomalies (with respect to the ISCCP-FD seasonal

cycle) of SWR from the high-dust PIRATA moorings, excluding

218N, 238W,as a function of (a) the time integral of tdust and (b) tdust.

Starting time for the integral is the most recent day with significant

rainfall or the most recent sensor swap date, whichever occurred

most recently. Red line in (a) is a nonlinear fit based on (5).
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persistent at 88N, 388W, where there are 913 segments of

30-day duration between July 2002 and April 2011

without a day in which cloud cover is ,5%. The mag-

nitude of the dust-accumulation biases may therefore be

overestimated when calculated using the clear-sky

method, especially at 88N, 388W.

The clear-sky SWR estimates based on the buoy time

series (SWRcs2biased) contain the dust-accumulation bias

as well as variability in clear-sky SWR due to changes in

the solar zenith angle and changes in water vapor and

aerosols in the atmosphere. The dust bias signal is

therefore estimated as the residual between SWRcs2biased

and an estimate of the true clear-sky SWR (SWRcs).

Three independent estimates of SWRcs are considered:

one based on the buoy SWR time series and two from

atmospheric reanalyses (NCEP and MERRA).

To calculate the true clear-sky SWR (SWRcs) from

the buoy time series, first the biased clear-sky time series

(SWRcs2biased) is calculated using the method described

above. This time series includes biases due to dust

buildup. From all years, the maximum SWRcs2biased

value is chosen for each calendar day in an attempt to

create a daily clear-sky SWR climatology that is not

contaminated by dust-accumulation biases. This method

is expected to work well when the SWR sensors are

rinsed or swapped at different times of the year, since

there is likely to be a different period during each year

with very little dust buildup. The method will also per-

form better at locations with long records, since there

are potentially more data available that are not strongly

contaminated by dust buildup. This is verified by an

experiment in which a certain number of years of data

(less than the number of years in the time series) were

chosen at random from the full buoy time series before

calculating SWRcs (Fig. 5). In general, about seven years

of data are needed to reduce errors in buoy-derived

SWRcs below 5Wm22 at the high-dust locations. We

therefore expect a high degree of uncertainty associated

with this method at the locations along 238W, where

record lengths are less than four years.

The SWRcs estimates from the NCEP and MERRA

reanalyses have similar seasonal cycles at each PIRATA

location, but significant mean offsets (Fig. 5a). As ex-

pected, the annual mean NCEP SWRcs is significantly

larger than the annual mean of MERRA SWRcs, since

NCEP SWRcs does not include radiative forcing from

dust aerosols. The offsets are corrected by subtracting the

record-length mean difference between the reanalysis

and buoy SWRcs averaged at all low-dust PIRATA lo-

cations. Similarly, in order to account for possible con-

tamination from cloudiness in SWRcs2biased, the mean

difference between SWRcs2biased and buoy SWRcs, av-

eraged at all low-dust locations, is subtracted from

SWRcs2biased. It is assumed that the resultant esti-

mates of SWRcs from MERRA and the buoy include

the mean seasonal cycle of SWR forcing from tdust, but

do not account for SWR forcing from anomalies of

tdust, which are present in SWRcs2biased. Before calcu-

lating the clear-sky bias using the MERRA and buoy

SWRcs, we therefore subtract from each SWRcs2biased

time series the SWR forcing from anomalies of tdust,

following the methodology of Evan and Mukhopadhyay

(2010). Since theNCEPSWRcs does not include radiative

forcing from dust, no correction is applied before cal-

culating the clear-sky bias based on NCEP. The differ-

ence between each of the three true clear-sky estimates

FIG. 5. (a) Mean seasonal cycle of clear-sky SWR at the 128N,

388W PIRATA mooring location calculated from the mooring

SWR time series (black), and from the NCEP–NCAR (red) and

MERRA reanalyses. (b) Sensitivity of the mooring clear-sky SWR

to the length of the SWR time series, based on a 20-sample per-

mutation test. Record lengths range from 3 (black) to 11 yr (purple).

(c) Standard deviation corresponding to each curve in (b). All time

series have been smoothed with a 31-day running mean filter.
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and SWRcs2biased, which includes dust-accumulation

biases, then gives three estimates of the time-dependent

dust-accumulation bias at each location (Bcs2NCEP,

Bcs2MERRA, and Bcs2buoy). Note that positive values of

Bcs2NCEP, Bcs2MERRA, and Bcs2buoy represent an at-

tenuation of buoy SWRdue to dust accumulation. Note

also that Bcs2NCEP likely represents an upper bound on

the magnitude of the clear-sky dust-accumulation bias

at a given location because the NCEP SWRcs time se-

ries do not include forcing from dust aerosols.

The advantages of the clear-sky method over the rain-

free and swap methods are that the clear-sky method

does not rely on the ISCCP-FDSWRclimatology, which

contains time-dependent biases, and it provides a con-

tinuous record of the dust accumulation bias. The

downside of the clear-sky method is that it relies on

FIG. 6. Daily mean time series at the 128N, 388W PIRATA mooring location during 2003

and 2005–06. (a) SWR attenuation due to suspended dust, expressed as a percentage of

the incoming SWR. (b) SWR measured by the mooring (black); climatological SWR from

monthly ISCCP-FD, averaged during 1998–2010 (blue); days with rainfall . 5mm (red stars,

plotted according to the buoy SWR value on that day), and SWR sensor swap dates (vertical

green lines). (c) Rainfall measured by the mooring. A gap in the mooring time series during

October–December 2003 was filled with TMI satellite rainfall data. Red line represents

5mmday21. In (a), SWR attenuation is shown instead of tdust in order to deemphasize very

large values of tdust.
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accurate time series of buoy clear-sky SWR and the true

clear-sky SWR. In an effort to quantify the uncertainties

associated with the clear-sky method, we have consid-

ered three independent estimates of SWRcs.

4. Results

In this section, we first present a qualitative analysis

of dust-accumulation biases using data from the moor-

ing at 128N, 388W, which experiences a high annual mean

tdust and strong seasonal variability (Fig. 6a). The dust-

accumulation bias index and time-dependent biases at each

PIRATA mooring location are then quantified using the

methods described in the previous section.

a. Time series at 128N, 388W

Examples of dust-accumulation biases at the 128N,

388W location are shown in Fig. 6b. The year 2003 was

chosen because it exhibits large biases prior to a sensor

swap in July. The 2005–06 period is shown because it

illustrates partial rinsing of the radiometer dome by

rainfall prior to sensor swaps in mid-2005 and late 2006.

During the middle of 2003, a large bias (defined as the

daily ISCCP-FD SWR climatology minus the daily

maximum buoy SWR) is evident in the PIRATA SWR

record. The bias increased from 10–20Wm22 in Feb-

ruary–March 2003 to 50–75Wm22 in June–July. The

bias increased most rapidly during the period in boreal

spring and summer with the highest tdust and no signif-

icant rainfall, defined here as .5mmday21. After the

mooring was serviced in July 2003 and the old radiom-

eter was replaced with a new one, the bias decreased by

about 100, from 50Wm22 before the sensor re-

placement to 250Wm22 immediately after the re-

placement (Fig. 6b). Note that a negative bias does not

imply that accumulated dust enhances the buoy SWR

because of the way the bias is defined.

Similar biases developed at 128N, 388W during 2005

and 2006, though they were noticeably smaller in

magnitude compared to the bias in 2003 (Fig. 6b).

FIG. 7. Annual mean tdust (colors) and TRMM rainfall (contours, cm month21). Open white

circles show the dust accumulation bias index, based on the rain-free method, at the PIRATA

locations where it could be calculated. Filled white circles indicate where the rain-free index is

significantly different than 0 at the 5% level. Black dots indicate where the index, calculated

using the swap method, is significant at the 5% level. White 3’s mark the locations where the

bias could not be calculated.
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During July 2005 there was a jump up in buoy SWR of

;50Wm22 when a new sensor was installed. The bias

reached a maximum more than a month before the

sensor swap and then decreased slightly as rainfall be-

gan, suggesting that rainfall may have partially rinsed

the radiometer. Further evidence of rinsing can be found

during boreal summer and fall of 2006 at the same loca-

tion. The maximum bias of 2006 was ;50Wm22 and oc-

curred in June. Between July and September, the bias

gradually decreased as precipitation becamemore frequent

and more intense. Between September and December,

there was no obvious bias in buoy SWR, suggesting that

rainfall completely rinsed the radiometer. September–

December is also the time of year when tdust is low, and

dust is therefore less likely to accumulate on the sensor.

As a result, when the sensor was swapped in December

2006, there was not a noticeable jump up in SWR, in

contrast to the pronounced jumps during 2003 and 2005.

In summary, there is compelling evidence of signifi-

cant (.50Wm22) dust-accumulation biases in the SWR

record at 128N, 388W, one of the locations with highest

annual mean tdust. There is also evidence of strong in-

terannual variability in the dust bias that is likely due to

a combination of variability in tdust, timing of sensor

swaps, and rinsing of the sensor by rainfall.

b. Dust-accumulation bias index

In agreement with the qualitative analysis at 128N,

388W, the dust-accumulation indices from the rain-free

and swap methods tend to be largest between 88 and
208N (Fig. 7). This is the region where the annual mean

tdust is highest and where the seasonal cycle of tdust is

generally out of phase with that of rainfall (i.e., rainfall is

low in boreal spring and summer, when tdust is high).

The rain-free index reaches 50Wm22 at 128N, 238W,

where the annual mean tdust is .0.4 and rainfall is low

(;5 cmmonth21) and confined to the boreal fall. There

are statistically significant biases of 21–27 W m22 at 88,
128, and 158N along 388W. The significant bias at 88N,

388W is surprising, given the high annual mean rainfall.

At this location, tdust is highest in boreal winter and

spring, when the dust layer is lowest in the atmosphere

(e.g., Yu et al. 2010), possibly explaining the large dust

buildup. Despite large rain-free dust-accumulation indices

at 128 and 218N along 238W, these values are not sta-

tistically significant because of the small sample size

(record lengths of 2–5 yr; Fig. 2). Along 388W, the dust-

accumulation indices calculated using the swap method

are similar to the indices calculated using the rain-free

method. Only the statistical significance of each swap

bias index is therefore shown in Fig. 7. Swap bias indices

could not be calculated at the 128 and 218N moorings

along 238W because of shorter records.

In contrast to the bias indices at locations in the

tropical NorthAtlantic, the PIRATAmoorings at 08 and
108W along the equator have much lower values despite

annual mean values of tdust that are comparable to those

along 388W (Fig. 7). The weaker biases at the equatorial

locations result from an in-phase relationship between

tdust and rainfall: the highest tdust occurs in boreal winter

FIG. 8. Daily mean seasonal cycles at 158N, 388W. (a) Dust ac-

cumulation bias based on the rain-free (black curve), swap (red

curve), and clear-sky (blue, green, and purple curves for the buoy,

NCEP, and MERRA clear-sky values, respectively) methods. Gray

and blue shading indicate one standard error of the rain-free and

buoy clear-sky estimates, respectively. Red circles are the individual

swap biases. Filled red squares are biases based on laboratory

comparisons between the retrieved dusty sensor and a clean sensor,

and filled red circles are the corresponding swap biases. (b) The tdust
(black line) with one standard error (gray shading). (c) As in (b), but

for rainfall at the mooring. Each time series has been smoothed with

consecutive passes of 21- and 29-day running mean filters.
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and spring (e.g., Husar et al. 1997), when there is abundant

rainfall to rinse the SWR sensors. Biases are weak and

insignificant at the other equatorial locations and at

most of the locations in the tropical South Atlantic. The

exception is at 198S, 348W, where there are rain-free and

swap indices of 15 and 18Wm22, respectively, despite

very low tdust (,0.05 in the annual mean). It is therefore

unlikely that the biases at this location are caused by

dust buildup. Instead, there may be a seasonally de-

pendent bias in the ISCCP-FD SWR climatology that

explains the bias. With the exception of the 08 location,
everywhere a rain-free index was computed it is positive

(i.e., buoy SWR decreases in time relative to ISCCP-FD

SWR climatology), consistent with the sensor drift biases

described in section 3.

We tested the sensitivity of the rain-free and swap

indices to the choice of rainfall criterion, using values

from 2 to 20mmday21, and the choice of the averaging

period (10–45 days) and found that the results are not

significantly changed. In the rest of this section, we focus

on the locations where the rain-free index is statistically

significant (88–158N along 388W).

c. Time-dependent biases

Here the mean seasonal cycles and longer time-scale

variability of dust-accumulation biases are shown for

the high-dust locations in the central tropical North

Atlantic (88–158N along 388W). At each location, the

mean seasonal cycle of the dust bias and its relation-

ship with the seasonal cycles of tdust and rainfall are

FIG. 9. Daily time series at 158N, 388W during 1998–2011. (a) Dust-accumulation bias cal-

culated using the swapmethod when available and the rain-free method otherwise (black), and

using the buoy (blue), NCEP (green), and MERRA (pink) clear-sky methods. (b) Anomalies

(with respect to ISCCP-FDmean seasonal cycle) of the mooring SWR (red) and accumulation

biases shown in (a). (c) Cloud forcing anomaly (red) and SWR anomaly from themooring after

subtraction of the buoy clear-sky bias (black). Time series in (a) have been smoothed with a

31-day running mean filter. Each time series in (b) and (c) has been smoothed with consecutive

passes of 181- and 259-day running mean filters to emphasize interannual variability.
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discussed first, followed by a discussion of longer time-

scale variability.

The mean seasonal cycles and interannual–decadal

variability of the dust-accumulation biases at 158, 128,
and 88N along 388W are shown in Figs. 8–13. At 158N, the

rain-free and swap biases (Brain and Bswap, respectively)

and the buoy and NCEP clear-sky biases (Bcs2buoy and

Bcs2NCEP, respectively) all show a pronounced maximum

of 30–35Wm22 in July. The maximum of the MERRA

clear-sky bias (Bcs2MERRA) also occurs in July, but it is

15–20Wm22 smaller in comparison. The individual

swap biases (red circles and squares in Fig. 8a) give

a mean of 40Wm22 in July, which is consistent with

Brain, Bswap, Bcs2buoy, and Bcs2NCEP. We therefore hy-

pothesize that the lower values ofBcs2MERRA relative to

the other dust-accumulation bias estimates may be due

to biases in the MERRA clear-sky climatology.

July is the month with the largest mean tdust and is the

transition period between the dry season (January–

June) and the rainy season (August–October) (Figs. 8b,c).

Dust accumulates most rapidly on the sensor during

May–July, when tdust. 0.3 and rainfall is very light. The

arrival of heavy rain in August quickly rinses the SWR

sensor, evident in the rapid decrease in dust-accumulation

bias during that month (Fig. 8a). During February–March

there is a weaker maximum in the dust-accumulation bias

that is most pronounced in Bswap and Bcs2buoy. However,

there is less consistency in themagnitude of this secondary

maximum between the different bias estimates.

In Fig. 8a, the mean of the individual swap biases (Bi,

red circles and squares) generally does not equal the

mean of the continuous time-dependent swap biases (Bc;

Bswap is the mean seasonal cycle ofBc and is given by the

red line in Fig. 8a). This inequality occurs because each

Bc is calculated by extending aBi value backward in time

(see section 3). There are therefore generally a larger

number of Bc values for a given calendar month than Bi

values. The difference between the mean of Bc and the

mean of Bi is especially apparent during March–April,

when each Bi is larger than the mean of the Bc values.

The difference between the means may be due to biases

in the ISCCP-FD SWR climatology. It is also possible

that the dust-accumulation biases during March–April

happened to be larger in the years when Bi values were

available compared to the years whenBi values were not

available.

During April 2002 the swap bias calculated from the

recovered sensor (Blab, filled red square in Fig. 8a)

agrees reasonably well with the corresponding Bi (filled

red circle in Fig. 5a);Blab is about 10Wm22 smaller than

Bi, possibly because some of the dust fell off the sensor

during its transit from the field to the laboratory or was

washed off by sea spray during the recovery of the sensor

from the mooring. In contrast, in July 2003 Blab is about

35Wm22 smaller than the corresponding Bi (filled red

square and circle, respectively, in Fig. 8a). The discrep-

ancy is in large part due to a time-dependent drift in the

sensor output that ranged from zero at the beginning of

the deployment to 27.4% at the end of the deployment

(H. P. Freitag and S. Brown 2012, unpublished manu-

script). This sensor drift was erroneously interpreted as

a dust-accumulation bias in Bi. Caution must therefore

be used when interpreting a bias during a single de-

ployment. However, a more extensive analysis of the

drift bias, based on 316 calibration pairs, found a mean

drift of 1.5% of the incident radiation and a standard

FIG. 10. As in Fig. 8, but for the 128N, 388W PIRATA location.

The gap in the rain-free time series (under the legend inset) in

(a) duringAugust–November is the result of persistent rainfall during

that period.
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deviation of 2.4% (H. P. Freitag and S. Brown 2012, un-

published manuscript). Assuming a mean SWR value of

240Wm22, the dust-accumulation biases in the high-

dust region (88–208N) are on average 4–10 times as large

as the corresponding drift biases.

In addition to a strong seasonal cycle of the dust-

accumulation bias, there is noticeable interannual var-

iability (Fig. 9a). Comparison of the buoy SWR anomalies

(without any bias correction) to the dust-accumulation

bias estimates shows that most of the mean bias with

respect to ISCCP-FD SWR and low-frequency (i.e.,

period . 1 yr) variability of the buoy SWR can be at-

tributed to the dust-accumulation bias (Fig. 9b). There is

a pronounced upward trend in buoy SWR between 1998

and 2005 that is likely spurious, caused by a decreasing

trend in the dust-accumulation bias (Fig. 9b, Table 1).

Anomalous decreases in buoy SWR during 2002–03 and

2007 are also likely due to large dust buildup during those

years. The decreasing trend in the dust-accumulation

bias during 1998–2005 is consistent with a decreasing

trend in tdust during the same period (e.g., Evan et al.

2008, Foltz and McPhaden 2008). After removal of the

dust accumulation bias from the buoy SWR, the upward

trend is significantly reduced and the buoy SWR anoma-

lies show better agreement with anomalies of cloud forc-

ing (Fig. 9c and Table 1). The mean buoy SWR increases

by 8–16Wm22, and the interannual standard deviation

decreases by about 50% (Table 1). An upward trend

in buoy SWR of 8–14Wm22 decade21 remains after

removal of the dust-accumulation bias (Table 1). The

trend may be caused by a concurrent decrease in tdust
(and associated attenuation of SWR) or a decrease in

cloudiness, though such an analysis is beyond the scope

of this paper.

At 128N, 388W, most of the bias estimates show a

maximum of 20–40Wm22 during June–July, consistent

with the seasonal cycle of dust-accumulation bias at

158N, 388W (Fig. 10). In contrast, there is a pronounced

maximum inBcs2buoy of 35Wm22 in earlyApril, followed

by smaller values (10–20Wm22) during June–July.

FIG. 11. As in Fig. 9, but for the 128N, 388W PIRATA location.
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The smaller values of Bcs2buoy during late May through

early July compared to the other bias estimates may be

due to persistent dust buildup on the sensor and a lack

of sensor swaps at this time of year, the combination of

which would generate a high bias in the buoy SWRcs es-

timates. This reasoning may also explain why during

May–JuneBcs2buoy at 158N, 388W is smaller than most of

the other bias estimates at this location (Fig. 8a). Year-

to-year variations of the different dust-accumulation bias

estimates are generally consistent and are in agreement

with the results at 158N (Fig. 11, Table 1).

At 88N, 388W the seasonal cycle of tdust peaks in

March–April, 3–4 months earlier than at 128 and 158N,

and the dry season at 88N lasts only from February to

April (Fig. 12). As a result, there is less time for dust to

accumulate on the sensor at 88N, and the maximum

seasonal bias is slightly weaker at 88N compared to the

other locations. There are significant differences be-

tween the interannual variability at 88, and at 128 and
158N (Fig. 13a). Most notably, the bias at 88N is weak

during 2007 but at 158N it is the strongest on record using

most methodologies. The discrepancies are likely due to

differences in the seasonality of dust deposition and

rainfall. Consistent with the results at 128 and 158N,most

of the interannual–decadal variability and long-term

trend of the buoy SWR at 88N can be explained by the

dust accumulation bias (Fig. 13b, Table 1). Removal

of the bias from the buoy SWR record improves the

SWR–cloud anomaly correlation dramatically, from

20.2 to 20.6 (Fig. 13c, Table 1).

5. Summary and discussion

We have shown that the SWR measurements from

several PIRATA moorings in the tropical North At-

lantic (88–218N) are biased low due to dust buildup on

the SWR sensors. At a given location in the tropical

North Atlantic, the magnitude of the bias tends to in-

crease in time until either the dusty sensor is swapped

for a clean one or significant rainfall rinses the sensor.

The timing of the sensor swaps, generally about once per

year in either March–April or July–August, and the com-

mencement of the rainy season in June–July results in pe-

riods of 2–4 months during boreal winter–spring and

spring–summer when dust can accumulate on the SWR

sensor.

To determine which PIRATA SWR records are likely

to be affected by dust-accumulation biases, a simple dust

bias index was created that represents themaximumbias

at each location, averaged over all deployments. Statis-

tically significant values of this index of 21–27Wm22

(indicating an attenuation of SWR due to accumulated

dust) were found at 88, 128, and 158N along 388W. These

are the PIRATA locations with long time series of SWR

(.11 yr) and where the annual mean tdust is high (;0.3).

Large values were also found at 218N, 238W and 128N,

238W (20 and 50Wm22, respectively), though these

values are not statistically significant because of much

shorter time series. The largest value at 128N, 238W is

consistent with the highest annual mean tdust of 0.5 at

this location.

Daily time series of the dust-accumulation bias at

three locations along 388W were computed using three

methods. Significant annual mean biases and strong sea-

sonal and interannual variability of the dust-accumulation

bias were found at all locations. Annual mean biases range

from 10 to 20Wm22. Peak-to-peak seasonal amplitudes

of the bias at these locations are typically 30Wm22, and

interannual standard deviations are 3–4Wm22. There

are also noticeable negative linear trends in themagnitude

FIG. 12. As in Fig. 8, but for the 88N, 388W PIRATA location.
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of the accumulation bias at 88N, 388W and 158N, 388W.

Removal of the dust-accumulation bias from SWR re-

cords of the 388W moorings significantly improves the

correlation between anomalies of buoy SWR and sat-

ellite cloud cover.

Three different methods for quantifying the time-

dependent dust-accumulation biases were developed,

each with certain strengths and weaknesses. Overall, the

methods give similar results, though differences can be

large between some methods at a given location. It is

concluded that the MERRA clear-sky method is likely

to give the most accurate bias at most locations, and we

therefore recommend using this method to correct the

PIRATA SWR time series for dust-accumulation biases

if a single method is desired. We note, however, that the

MERRA clear-sky method likely underestimates the

true dust-accumulation bias at 158N, 388W. Time series

of SWR from the high-dust locations (88, 128, and 158N
along 388W; and 128 and 218N along 238W), corrected

using theMERRA clear-sky method, are accessible from

PMEL’s PIRATA website.

These results have important implications for the use

of SWR data from PIRATA moorings in the high-dust

region of the tropical North Atlantic. Overall, the SWR

data during September–January do not appear to be

affected significantly by dust-accumulation biases, since

this is the time of year when there is significant rainfall to

rinse the SWR sensors. For most applications, the data

during these months can likely be used without a bias

correction. During February–October the biases are much

larger and exhibit strong interannual variability. These

data should therefore be corrected for dust-accumulation

biases and then used with caution in scientific analyses.

It is possible that the SWR biases documented in this

study may be useful for quantifying dust deposition in

the tropical North Atlantic. Deposition rates have been

estimated from satellite tdust and dust transport models,

but there are no long observational records of dust de-

position over the tropical Atlantic Ocean. As a result,

there are large uncertainties in the dust deposition rate

and its seasonal, interannual, and longer time-scale vari-

ability. One way to validate the deposition rates inferred

FIG. 13. As in Fig. 9, but for the 88N, 388W PIRATA location.

1430 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



from the PIRATA dust-accumulation biases would be

to quantify the mass of dust on each sensor when it is

swapped each year and then to compare the deposition

inferred from the accumulation bias. Even with such

a validation, deposition rates inferred from the results

presented here would likely be a lower bound on the

true deposition rate, since an unknown amount of

dust falls off each sensor during its ;1-yr deployment.

Quantification of dust deposition from aerosol samplers

(e.g., Sholkovitz and Sedwick 2006) moored at the same

locations as the PIRATA buoys would provide more

accurate time series of deposition in the future and could

be used to reconstruct dust deposition from the accu-

mulation biases going back to 1998.
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