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ABSTRACT

The stability, periodicity, and horizontal structure of equatorial modes in a coupled ocean—atmosphere model,
simplified by the assumption that zonal wind stress anomalies are proportional to sea surface temperature anom-
alies lagged by a zonal phase difference, are examined analytically in an unbounded basin. The gravest coupled
Rossby and Kelvin modes coexist with additional westward and eastward slow modes whose phase speeds are
smaller than the former. Two of these four modes, one propagating westward and the other eastward, are
destabilized in each case depending upon the model parameters. For some particular parameter choices, coupled
Rossby and Kelvin modes merge with westward and eastward slow modes, respectively. For other parameters,
however, they separate and remain distinct from the slow modes. For all of these modes the primary modifications
by coupling relative to uncoupled oceanic equatorial waves are a decrease in phase speed and an increase in
meridional scale. ’

Among the model parameter effects, those of the zonal phase lag between the wind stress and SST anomalies
and the coefficients of thermal and mechanical damping are the most interesting. Positive and negative phase
lags represent the wind stress anomalies located to the west and east of the SST anomalies, respectively. The
frequency of all modes is symmetric about zero phase lag, whereas the growth rate is antisymmetric about zero
phase lag relative to the uncoupled damping rate. Wind stress anomalies to the west of SST anomalies favor
slow mode growth and coupled Rossby and Kelvin mode decay. Dissipation for the slow modes and the coupled
Rossby and Kelvin modes is controlled differently. For the slow modes the dissipation is mainly thermal, whereas
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for coupled Rossby and Kelvin modes the dissipation is mainly mechanical.

1. Introduction

Starting with Bjerknes’s (1969) identification of un-
stable interactions between the tropical Pacific Ocean
and the atmosphere as a possible cause of the El Nifio/
Southern Oscillation, oceanographers and meteorolo-
gists have focused increasingly on the coupled ocean—
atmosphere system in ENSO studies. There are two
ways to quantify Bjerknes’s ideas: one is by using sta-
bility analyses to establish the properties of unstable
modes; another is by using coupled ocean—atmosphere
models marching forward in time to simulate the de-
velopment of unstable modes. Many coupled ocean—
atmosphere models have been explored, beginning
with the conceptual model of McCreary (1983); the
development of the coupling physics by Philander et
al. (1984); and the subsequent applications of linear
perturbation models, models linearized about different
background states, and general circulation models.
Within these models, the delayed oscillator (e.g.,
Suarez and Schopf 1988; Battisti and Hirst 1989) and
the slow mode (e.g., Hirst 1988; Neelin 1991; Wang
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and Weisberg 1994a) have been developed as interpre-
tive mechanisms. The delayed oscillator depends upon
uncoupled mode reflections in a bounded basin, while
the slow mode may occur in an unbounded basin. Thus,
analysis of stability and horizontal structure for equa-
torial wave modes of an unbounded basin may lead to
an improved understanding of the nature of the coupled
ocean—atmosphere system.

Battisti and Hirst (1989) showed that a version of
the Suarez and Schopf (1988) analog delayed oscillator
model could account for the model oscillations of Ze-
biak and Cane (1987). The analog model is repre-
sented by an ordinary differential delay equation with
positive and negative feedbacks. The positive feedback
is the sum of all local coupling processes, whereas the
delayed negative feedback results from Kelvin modes
generated at the western boundary as reflected Rossby
modes. This paradigm, therefore, depends upon the rel-
ative strengths of the local positive feedback and the
delayed negative feedback, which may be affected by
the stability properties of the Rossby and Kelvin
modes. For example, damping of these modes reduces
the delayed feedback necessary to change the sign of
the instability in the eastern side of ocean basin.

Hirst (1986) used numerical methods to explore the
effects of four different ocean thermodynamics param-
eterizations on coupled modes. With sea surface tem-
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perature proportional to the thermocline thickness
anomaly, the oceanic Kelvin wave is destabilized (also
see Lau 1981). With the rate of change of SST pro-
portional to zonal advection and thermal damping, the
gravest oceanic Rossby wave is destabilized. By con-
sidering thermocline thickness and thermal damping,
with or without advection, a slowly propagating unsta-
ble mode occurs.

Relative to the delayed oscillator and slow mode
mechanisms, ENSO appears to be more complicated
than any one model might suggest. Both observations
and models show that the meridional scale of the cou-
pled ocean—atmosphere system is larger than an oce-
anic equatorial Rossby radius of deformation (e.g.,
Chao and Philander 1993; Latif and Barnett 1995), and
ENSO events have been characterized by eastward or
westward propagating or stationary disturbances. For
example, the relatively simple models of Philander et
al. (1984), Anderson and McCreary (1985), Hirst
(1988), and Wang and Weisberg (1994a) show east-
ward propagation in contrast to those of Rennick
(1983) and Gill (1985), which show westward prop-
agation, and those of Zebiak and Cane (1987) and Bat-
tisti (1988), which show in-phase growth over the east-
ern equatorial Pacific.

Jin and Neelin (1993a,b) and Neelin and Jin (1993)
attempt to consolidate such seemingly contradictory
works through studies of how relatively simple models
may be related in parameter space. Using an equatorial
narrow band coupling approximation in the SST equa-
tion, they argued that the unstable ocean dynamics
mode of Cane et al. (1990) and the unstable SST mode
of Neelin (1991) represent a fast-SST limit and a fast-
wave limit, respectively. In the fast-SST limit, SST ad-
justs more rapidly than the ocean dynamics, so SST
change is mainly controlled by subsurface processes.
In the fast-wave limit, the ocean dynamics adjust more
rapidly than SST, so SST change is mainly controlled
by surface processes. With this theory, eastward or
westward propagating and stationary SST modes can
mix with ocean dynamics modes to form mixed SST/
ocean dynamics modes.

Given the increasing complexity of precedent mod-
els and the finding that the meridional scale of coupled
oscillations exceeds what can be explained using an
oceanic equatorial Rossby radius of deformation, we
have been considering analytically tractable models in
an attempt to gain insights on coupled equatorial wave
mode properties. The starting point has been Hirst
(1986). By assuming zonal wind stress and SST anom-
alies to be proportional, Wang and Weisberg (1994a)
obtained an eastward propagating mode whose stability
depends upon the zonal phase lag between the wind
stress and SST anomalies. Omitting the phase lag and
assuming equal coefficient values for Rayleigh friction/
Newtonian cooling and thermal damping, Wang and
Weisberg (1994b) then obtained neutral modes over
the full range of equatorial waves. The effects of cou-
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pling were found to increase with decreasing fre-
quency, with the Rossby and Kelvin modes transform-
ing into westward and eastward slow modes, respec-
tively, and with the meridional scale of these modes
increasing beyond the oceanic equatorial Rossby radius
of deformation. Here we relax the equal coefficient
value and the zero phase lag assumptions, and examine
how the coupled Rossby and Kelvin modes may coexist
with westward and eastward slow modes, how the cou-
pled equatorial modes may merge, separate, and be de-
stabilized by varying model parameters, and how their

“meridional scales are affected. Section 2 presents the

coupled model by assuming that the zonal wind stress
and SST perturbations are proportional and separated
zonally. Section 3 develops analytical solutions for
both westward and eastward propagating modes, the
properties of which are explored in section 4. A dis-
cussion and summary are then given in section 5.

2. The model formulation

The ocean dynamic equations are those of a linear,
equatorial B-plane, reduced-gravity model with a long-
wave approximation, perturbed about a basic state of
rest by the zonal component of wind stress 7. The
upper layer has density p and mean depth H; the lower
layer has slightly higher density, and is infinitely deep
and motionless. Momentum and mass are thus gov-
erned by

Ou oh T
2 =g = - 2.1
o PV o (2D
oh
u=—g' = (2.2)
By g3
Oh ou v
= )= 23
ot * HO(Bx * 8y> vk, (2.3)

where 1 and v are the velocity components in the zonal
(x) and meridional (y) directions; 4 is the upper-layer
thickness perturbation; ¢ is time; g " is the reduced grav-
ity; [ is the gradient in planetary vorticity; and vy is a
coefficient representing Rayleigh friction and Newto-
nian cooling, providing dissipation in the momentum
and mass equations, respectively.

The long-wave approximation is valid if the zonal
scale is large compared with the meridional scale. Con-
sistent with this, 77 is neglected because ENSO-related
wind perturbations are primarily zonal and 7> has a
smaller effect at large zonal scales than does 7*. This
approximation removes inertial—gravity, Rossby-—
gravity, and short Rossby modes from the system
(shown to be unaffected by coupling in Wang and
Weisberg 1994b) while maintaining the important Kel-
vin and long Rossby modes (e.g., Hirst 1988; Wakata
and Sarachik 1991, 1994; Jin and Neelin 1993a). A
long-wave approximation using equal values for Ray-
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TaBLE 1. Values for the basic parameters.

Parameter Value
H, 200 m
c 2ms™!
B 229 X 107" m™!' s7!
i 0.85x 107" ms?K™!
o 50X 10°Km™'s™!
n -50X 107K m™
a 1yr!
v Lyr™!
[ 0

leigh friction and Newtonian cooling has been shown
to be valid by Yamagata (1985).

The thermodynamics controlling the variations in
SST anomaly (T') are a trade-off between ocean pro-

cesses and surface heat fluxes. The ocean processes are -

lumped into a term proportional to the upper-layer
thickness perturbation except for zonal advection,
which is treated separately. Thus, the thermodynamic
equation has the form of the Hirst (1986) Model III:

%Zj +nu =och — aT,
where ¢ is the warming parameter, 7 is the specified
zonal SST gradient, and « is a thermal damping coef-
ficient. The simplified SST equation (2.4) with con-
stant parameters, rather than a more complicated SST
equation, is chosen herein for analytical tractability.
The model limitations will be discussed later.

To form a coupled ocean—atmosphere system, 7*
must be specified in terms of ocean variables. Gill
(1980) noted that the response of a tropical atmosphere
to SST-induced heating has a significant east—west
asymmetry with the westerly winds to the west of the
SST-induced heating being more intense than the east-
erly winds to the east of it. Observations confirm that
westerly wind anomalies are located to the west of pos-
itive SST anomalies (e.g., Zebiak 1993; Latif and Bar-
nett 1995), suggesting that 7* may be parameterized as
a linear function of T lagged by a zonal phase angle 8;
that is,

(24)

(2.5)

where 1 is the ocean—atmosphere coupling coefficient
and i = V1.

A related assumption with differing modifications
has been used by Battisti and Hirst (1989), Schopf
and Suarez (1990), Cane et al. (1990), and Neelin
(1991). This assumption also forms the basis for
coupling an OGCM with a statistical atmosphere,
such as Barnett et al. (1993 ), wherein the wind stress
was taken proportional to a linear combination of
SST EOF modes. It must be recognized, however,
that the 7 specification of Eq. (2.5) is unrealistic in
several ways: 1) it omits 77, 2) it requires that 7*

Tx(x’ y’ t) = p/J’HOeiHT(-xV y7 t)’
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have the same meridional structure as T, and 3) it
assumes spatially uniform coupling. A numerical ex-
amination of a similar system of equations, but omit-
ting the long-wave approximation and using a Gill
(1980) atmosphere (Wang and Weisberg 1994a),
has shown that 7¥ is much smaller than 7% and that
the correlation between 7" and T is positive equator-
ward of 14°. The first finding is consistent with the
long-wave approximation used here and the corre-
lation is consistent with the structure found by Bar-
nett et al. (1993) when correlating their statistical
atmosphere 7* with observed 7. In reality, the cou-
pling coefficient y is not homogeneous, nonlinear ef-
fects are important, and the correlation between 7~
and T does diminish poleward from the equator.
Thus, spatially uniform coupling is erroneous, but
this limitation is tempered by that the gravest mode
ocean (atmosphere) equatorial waves are forced pri-
marily by winds (heating) near the equator. With
these limitations noted, the basic model parameters
are shown in-Table 1. These values were chosen to
give realistic wind stress and SST perturbations for
observed environmental conditions.
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FiG. 1. Frequency w, and growth rate w; of coupled equatorial
modes as a function of wavenumber &, with the model parameters of
Table 1. The negative (positive) values of k represent westward
(eastward) propagating modes. The dashed lines represent the grav-
est coupled Rossby or Kelvin (R or K) modes, and the solid lines
represent the gravest westward or eastward slow (WS or ES) modes.
The solid dots and open circles denote the points at which horizontal
eigenfunction structures are presented in the subsequent figures.
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3. Solutions of coupled equatorial modes 18 - -
a. Westward propagating modes 15 \\ ."K
R /
We assume wavelike solutions to Egs. (2.1)-(2.5) . 12 \ ‘/
of the form i g- \ §
; N \\\‘ /,’
u(x,y, 1) u(y) \ N/
v(x,y, t) u(y) e Es
y o T T ¥ |l 1 T
hix,y,t) |= h(y) e'kxmen - (31) A4 0 6 -2 2 6 10 14
T(x,y, 1) T(y) 1
(X, ¥, 1) puH,e*T(y)
6 7 ~
where k is a real zonal wavenumber and w is a complex ~ _ K
frequency with real (w,) and imaginary (w; ) parts rep-  "x 21 /‘-‘ 5\
resenting the frequency and the growth rate, respec- 2 e .
tively. With w, taken to be positive the direction of gz 27 N
zonal phase propagation is determined by the sign of ws
k. Substituting Eq. (3.1) into Egs. (2.1-4) yields 61 ES
— 7 — = —iko! i0 -10 T T T T T T
(y — iw)u — Byv ikg'h + peT (3.2) P A T T T " T
‘ FiG. 3. As in Fig. 1 but for § = —0.1x.

Pyu = —¢ dy

dv
(y — iw)h + ikHou + Hod— =0 (3.4)
Y Eliminating u, #, and T results in the single equation

(a ~ iw)T + nqu = oh. (3.5) foruv:
d™ v
— +Ay—+ B(1 - &y)Hv =0, 3.6
18 . : dy? y dy ( ) (3.6)
15 - ‘\\ / where
o121 \[‘{\ y’/K HyBuoce®
= \ ; A= 2 - o - ” (3?3)
A \ ; cl(y — iw)a — iw) + une”]
3 6 - \‘\ II’ ik 2 o
|/ p=— kePlazi) g,
3 KR c[(y — iw)(a — iw) + pne”]
__M\ / ES .
5 2 2 & 10 14 c=Po ) (3.7¢)
ikc

and ¢ = (g'H,)""? is the ocean equatorial Kelvin wave

10
6 speed. Using the substitution
s
~ N Dg?
'§ 2 - /WS X v(y) = (&) exp(——2—> , (3.82)
R e e e —
~ 2 - N S
3 \R /I 5 . i 1/2 D= 1 (3 8b)
% A ~"N2p) Y YT (a+aBcianyr
-10-14 10 6 2 2 6 10 14 Eq. (3.6) transforms to
k (10" m") d¥ 2DB
—+|(D-———-¢€*|=0. 39
g’ < At >” .

FIG. 2. As in Fig. 1 but for 8 = 0.17.
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FIG. 4. The horizontal eigenfunction structures for the gravest westward propagating modes with k = —3.8 X 1077 m~! denoted by the

solid dots in the dispersion plane of Fig. 1 and the model parameters of Table 1. The left-hand plates give the thermocline height and the
current vector anomalies for the coupled Rossby mode and the right-hand plates give the counterpart fields for westward slow mode. The
meridional/zonal dimensions are in latitude/longitude degrees and the zonal dimension spans one wavelength.

Subject to the dispersion relationship

2DB
D——A——=2n+ 1, n=12,---, (3.10)
Eq. (3.9) has analytical solutions
5(§) = Ciexp(—E€*/2)H,(§), (3.11)

where C, is a dimensional constant and H,(£) is the
nth-order Hermite polynomial. Substituting Eq. (3.11)
into Eq. (3.8a) and using the dispersion relationship
yields

nA + B
v(y) = C eXP[- Z(Tn-_f-l—)yzjl

X H,[—i(A/2D)"*y]. (3.12)

This solution is bounded [v(y) — 0 as y = *o] when
Re(nA + B) > 0. Using Egs. (3.7a—c) and (3.8b)
allows the dispersion relationship to be rewritten as

[Hoope? — i2kc?(a — iw)]/{{ (Hooue®)?

+4c (o — iw)(y — iw)[(a — iw)(y — iw) + pne”1}"?)

=21+ 1, (3.13)

and the ensuing meridional eigenfunctions, subject to
the constraint Re(rA + B) > 0, are

nA + B 2
v(y) = C, exp "my

X H,[—i(A/2D)"?y] (3.14)
u(y) = % {(a — w)(y — iw)Byv

A d
— [Hoope® — ike*(a — iw)] Eyf} (3.15)

M) = - {ik('a — iw)Byv

+ [(y — iw)(a — iw) + pne™] 5—;}, (3.16)

where

1
T(y) = - Vi {[iHook + n(y — iw)]Byv

P,
+ [Hyo(y — iw) + iken] ;1;"} (3.17)
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FIG. 5. The horizontal eigenfunction structures for eastward propagating modes with k = 3.0 X 10~7 m™' denoted by the solid dots in the
dispersion plane of Fig. 1 and the model parameters of Table 1. The left-hand plates give the thermocline height and the current vector
anomalies for the coupled Kelvin mode and the right-hand plates give the counterpart fields for eastward slow mode. The meridional/zonal
dimensions are in latitude/longitude degrees and the zonal dimension spans one wavelength.

where

II=(y = iw)[(y — w)a - iw)

+ pne”l + k*c*(a — iw) + ikHooue®. (3.18)
To obtain the velocity, thermocline thickness, and SST
anomalies, Egs. (3.14-17) are multiplied by exp{i(kx
— wt)].

b. Eastward propagating modes

Like conventional equatorial waves, eastward
propagating modes exist with v identically zero. Set-
ting v = 0 and substituting Eq. (3.1) into Egs. (2.1-
4) yields

(y — iw)u + ikg'h — pe®T =0 (3.19)
dh

Byu = —g’ s (3.20)
y

ikHou + (y — iw)h = 0 (3.21)

nu — oh + (a — iw)T = 0. (3.22)

The algebraic Egs. (3.19), (3.21), and (3.22) have so-

lutions for u, k, and T only when
H k i6
(y — iw)? + k2c? + T2
o — iw
. i0
+ (y 1w)fﬂl€ _
a — iw

0, (3.23)

which is the dispersion relationship for the eastward
propagating modes and their associated meridional ei-
genfunctions are

) = G, exp[— &‘i;—” y2:| (3.24)
C2 3
u(y) = )

x exp[— ﬂ—(“izi—zﬂ yz] (3.25)



3138

20N

Latitude
o
o

|
JOURNAL OF CLIMATE

VOLUME 9

20N . , ,

20N ; : T

10N

EQ

108

N T R - e e e = o~

203“".;"‘.1'....‘

0 © 95 180

Loﬁgitude
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kHy(a — iw)
Blw + iy) ,
X exp| - —————— , (3.26
p[ ez Y (3.26)

where C, is a dimensional constant.

4. Analysis of the solutions
a. The basic features

The horizontal structure of the modes can be de-
scribed by taking the real part of Egs. (3.1). The me-
ridional velocity component, for example, may be ex-
pressed as

v(x, y, 1) = Re[v(y)e'n]

= v + v} cos(kx — wt + @), (4.1)

where v, and v; are the real and imaginary parts of v(y)

and ¢ = tan 'v;/v,. Unlike uncoupled equatorial
waves, both the wave amplitude and phase are func-
tions of y.

The frequency w, and growth rate w; of the coupled
equatorial modes as a function of wavenumber & using

.

the model parameters of Table 1 are shown in Fig. 1.
The negative (positive) values of k represent westward
(eastward) propagating modes; the dashed lines rep-
resent the gravest coupled Rossby or Kelvin (R or K)
modes and the solid lines represent the gravest west-
ward or eastward slow (WS or ES) modes. For the
westward propagating modes, only the gravest (n = 1)
modes will be discussed since higher meridional modes
behave similarly. In the dispersion plane the coupled
Rossby and Kelvin modes are distinguished from the
westward and eastward slow modes in that the wave-
number magnitude increases with increasing frequency
for the former and decreases with increasing frequency
for the latter. At the transition points where these modes
merge there is a branch within which the frequencies
of the coupled Rossby (Kelvin) and the westward
(eastward) slow modes are the same, as shown by the
dashed line overlapping the solid line. The merge point
for the westward propagating modes occurs at rela-
tively lower frequency and larger k than for the east-
ward propagating modes. The decay rates of all equa-
torial modes are the uncoupled oceanic damping rate
of —1 yr™! for |k| exceeding the merge point values.
However, for smaller | k|, the coupled Rossby (Kelvin)
mode is unstable (stable), whereas the westward ( east-
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FIG. 7. As in Fig. 5 but for the eigenfunctions of the SST and the current vector anomalies, with k = 1.9 X 107" m™!
denoted by the open circles in the dispersion plane of Fig. 1.

ward) slow mode is stable (unstable). Upon merging,
the coupled Rossby (Kelvin) and westward (eastward )
slow modes split into two branches: one growing and
one decaying. It is noted that the dispersion relationship
does not extend to the origin for the westward propa-
gating modes owing to the constraint on (3.12) that
Re(nA + B) > 0.

There is no zonal phase difference in Fig. 1: 8 = 0.
The effects of positive and negative zonal phase dif-
ferences 6 between the 7%, and SST anomalies are
shown in Figs. 2 and 3, respectively, using the model
parameters of Table 1, but with § = 0.17 or § = —0.17.
Positive or negative 6 indicates that the 7* anomaly is
located to the west or east of the SST anomaly, re-
spectively. In comparison with Fig. 1, the coupled
Rossby and Kelvin modes no longer merge with the
westward and eastward slow modes. The frequency of
the modes is independent of the sign of #, whereas the
stability properties reverse sign with 8. Positive 6 tends
to destabilize the westward and eastward slow modes,
while tending to damp the coupled Rossby and Kelvin
modes. Negative 0 reverses these tendencies; that is,
the coupled Rossby and Kelvin modes are destabilized,
whereas the westward and eastward slow modes are

damped. This means that, if westerly winds are to the
west (east) of the SST anomaly, westward and east-
ward slow modes (coupled Rossby and Kelvin modes)
are destabilized. In nature, warm waters induce atmo-
spheric convergence, resulting in westerly (easterly)
winds to the west (east) of a warm anomaly (e.g., Gill
1980). Therefore, westerlies to the west of a positive
SST anomaly are more realistic than westerlies to the
east, implying that destabilization tends to favor the
slow modes.

The horizontal eigenfunction’s structures for the
gravest westward (with k = —3.8 X 107" m™") and
eastward (with k = 3.0 X 1077 m™') propagating
modes using the model parameters of Table 1 are
shown in Figs. 4 and 5, respectively. This choice of
wavenumbers, with magnitudes larger than the merge
point wavenumbers, allows us to compare the relative
structures between the westward Rossby and westward
slow modes and between the eastward Kelvin and east-
ward slow modes. The associated points in the disper-
sion plane are denoted by solid dots in Fig. 1, the fre-
quency of the slow modes being 2.5 yr~' and all modes
being neutral if the uncoupled damping rate is factored
out. The left-hand plates give the thermocline height
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F1G. 8. The horizontal eigenfunction structures for the gravest unstable westward propagating modes with k = —3.0 X 107" m~' denoted

by the solid dots in Figs. 2 and 3. The left-hand plates give the SST and the current vector anomalies for unstable Rossby mode and the
right-hand plates give the counterpart fields for unstable westward slow mode. The meridional/zonal .dimensions are in latitude/longitude

degrees and the zonal dimension spans one wavelength.

and the current vector anomalies for the coupled
Rossby (or Kelvin) mode and the right-hand plates
give the counterpart fields for westward (or eastward)
slow mode. The meridional/zonal dimensions are in
latitude/longitude degrees and the zonal dimension
spans one wavelength. The structures are the same as
those of the coupled modes at 2.5 yr~' frequency
shown in Wang and Weisberg (1994b). Note that the
meridional scales for the slow modes are much larger
than the oceanic equatorial Rossby radius of deforma-
tion. For example, the maximum height anomalies for
the westward slow mode are centered at +10° from the
equator. Similarly, the zonal jets for these slow modes
expand to become tropical, rather than equatorial, fea-
tures. The meridional scales of the coupled Rossby and
Kelvin modes, while smaller than their slow mode
counterparts, are larger than those for uncoupled equa-
torial waves (Matsuno 1966).

Other interesting points for eigenfunction compari-
sons are those for which the coupled Rossby or Kelvin
modes have merged with their slow mode counterparts,
for example, at k = —3.0 X 107" m ™" and k = 1.9
X 1077 m™" denoted by open circles in the dispersion

plane of Fig. 1. The horizontal structures for the gravest
westward and eastward propagating modes using the
model parameters of Table 1 are shown in Figs. 6 and
7, respectively. The left-hand plates give the SST and
the current vector anomalies for the coupled unstable
Rossby (or stable Kelvin) mode and the right-hand
plates give the counterpart fields for stable westward
(or unstable eastward) slow mode. Again, all these
modes have a much broader meridional scale than for
uncoupled equatorial waves. For the westward propa-
gating modes, the maximum SST anomalies are cen-
tered at 29° from the equator; additionally, with a me-
ridional phase gradient, flows now reverse with lati-
tude. Note that the current vectors for the unstable
Rossby mode have opposite sign to those for the stable
westward slow mode. Also, owing to this meridional
phase gradient (which is imparted by the imaginary
part of w), the SST contours for the unstable Rossby
mode and the stable westward slow mode tilt in op-
posite directions with latitude. For the eastward prop-
agating modes, the current vector and SST anomalies
have similar structures except for a zonal phase shift
and an oppositely directed tilt. By comparing the rel-
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ative positions of the current and SST anomalies for
the unstable eastward slow mode (and the stable Kelvin
mode), it is seen that the eastward (westward) SST
anomaly shift along the westward (eastward) current
anomaly shift results in a positive (negative) correla-
tion between the wind stress (proportional to SST) and
the current. With westerlies (easterlies ) overlying oce-
anic eastward (westward) current for the coupled
Rossby and eastward slow modes, the necessary con-
dition for instability ( Yamagata 1985) of positive cor-
relation between the wind stress and current is satisfied,
enabling these modes to grow. In contrast, the corre-
lation between the wind stress and current is negative
for the coupled Kelvin and the westward slow modes,
so these modes decay.

The effects of 8 on the horizontal structures of the
eigenfunctions for the gravest unstable westward (with
k= —3.0 X 1077 m! denoted by solid dots in Figs. 2
and 3) and unstable eastward (withk =2.0 X 10 " m™'
denoted by open circles in Figs. 2 and 3) propagating
modes with @ either 0.17 or —0.17 and using the other
parameters of Table 1 are shown in Figs. 8 and 9, re-
spectively. The left-hand plates give the SST and the
current vector anomalies for the unstable Rossby (or
Kelvin) mode and the right-hand plates give the coun-
terpart fields for unstable westward (or eastward) slow
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mode. The meridional scale increase for coupled modes
is again noted. Furthermore, the meridional scales for
the slow modes (that occur at lower frequency) are
larger than for the coupled unstable Rossby or Kelvin
modes, reflecting the frequency dependence of the me-
ridional scale for coupled modes in this model (Wang
and Weisberg 1994b). As shown in the next section,
the frequencies of the slow modes (coupled Rossby and
Kelvin modes) decrease (increase) with increasing
|8|. Therefore, the meridional scales of the slow modes
(coupled Rossby and Kelvin modes) will increase (de-
crease) with increasing |6].

The eigenfunctions presented herein share some sim-
ilarities with observations. For example, the SST ei-
genfunctions for unstable eastward Kelvin or slow
modes are consistent with the SST pattern of the lead-
ing canonical correlation analysis mode of Latif and
Barnett (1995, Fig. 4a) in that the SST contours tilt in
the same direction (northeastward) and with broad me-
ridional scale.

The fast-wave and fast-SST limits of Neelin (1991)
and Jin and Neelin (1993a) also can be performed by
introducing an additional parameter ¢ in the time de-
rivatives of Egs. (2.1) and (2.3), which measures the
ratio of ocean dynamics to SST adjustment times. Two
limits are represented by small and large 6, respec-
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FIG. 9. As in Fig. 8 but for unstable eastward propagating modes with k = 2.0 X 10”7 m™' denoted by the open circles in Figs. 2 and 3.



3142 JOURNAL

w, (year™)
0
1

w, (year")
)
i

F1G. 10. Frequency w, and growth rate w; of coupled equatorial
modes as a function of coupling coefficient 1 (10~"m s > K™') with
k= +3.5 X 1077 m™' (positive and negative values of k represent
eastward and westward propagating modes, respectively) and other
model parameters of Table 1. The solid and dashed lines represent
westward slow (WS) mode and coupled Rossby (R) mode, respec-
tively. The dotted—dashed and dotted lines represent eastward slow
(ES) mode and coupled Kelvin (K) mode, respectively.

tively. In this model, the fast-wave limit filters the cou-
pled Rossby and Kelvin modes out of the system, leav-
ing only the westward and eastward slow modes which
are unstable at small wavenumber. The variations of
these coupled slow modes depend upon the time deriv-
ative of the SST equation instead of that in the dynam-
ical equations, demonstrating that instability can exist
in this coupled system without Rossby or Kelvin
modes. Unlike the fast-wave limit, the coupled Rossby
and Kelvin modes coexist with the slow modes in the
fast-SST limit. However, the frequency and growth rate
magnitudes for both the coupled Rossby and Kelvin
modes are largely reduced. As ¢ increases from fast-
wave limit toward fast-SST limit values (0 to large),
the frequencies of both the coupled Rossby and Kelvin
modes approach those of the slow modes. This may
explain why the ocean dynamics modes and the slow
SST modes merge into complicated mixed modes in
Jin and Neelin (1993a).

b. Dependence on model parameters

Given the dispersion relationship and eigenfunction
dependencies upon ill-defined model parameters, the
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following sensitivity studies are presented over physi-
cally reasonable parameter ranges (e.g., the range of
follows from the maximum large-scale zonal SST gra-
dient).

1) THE PARAMETERS p, 0, AND 7

The effects of the coupling coefficient u, the warm-
ing coefficient o, and the zonal mean SST gradient 7
on the frequency and stability of the coupled equatorial
modes using the model parameters of Table 1 are
shown in Figs. 10, 11, and 12, respectively. The trivial
result of zero frequency for the slow modes when u
= 0 and o = 0 is consistent with the slow modes owing
their existence to air—sea coupling and warming pro-
cesses. Unlike y and o the existence of the slow modes
is not dependent upon 7, as shown by Wang and Weis-
berg (1994b).

The frequency of the slow modes increases with in-
creasing p until merging with the coupled Rossby and
Kelvin modes. The coupled Rossby and Kelvin modes,
which begin as the conventional Rossby and Kelvin
modes for y = 0, are strongly modified by coupling.
The frequencies of the coupled Rossby and Kelvin
modes decrease with increasing y until merging with
the slow modes. After merging, the frequency of these
modes is independent of y except for the coupled
Rossby and the westward slow modes upon reaching
the eigenfunction constraint Re(nA + B) > 0. Before
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Fic. 11. As in Fig. 10 but as a function of warming coefficient o
(10 Km™!'s™!) with &k = 3.0 X 107" m™".
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merging, the decay rate for all modes is the uncoupled
damping rate of —1 yr~!. After merging, the coupled
Rossby and Kelvin modes can be destabilized, whereas
the slow modes decay more rapidly. Thus, upon merg-
ing, coupled Rossby (Kelvin) and westward (east-
ward ) slow modes develop two branches: one growing
and the other decaying. Destabilization of the coupled
Rossby or Kelvin modes and stabilization of the slow
modes by increasing y results from the induced positive
and negative correlations between the winds and cur-
rents of these modes, respectively, for this parameter
choice.

The effects of o on the coupled mode’s frequency
and stability are similar to those of x. With increasing
o the coupled Rossby and Kelvin modes merge with
the westward and eastward slow modes. For the cou-
pled Rossby mode and the slow modes frequency in-
creases with increasing o. Before merging with the
eastward slow mode the coupled Kelvin mode fre-
quency decreases with increasing o, whereas after
merging it increases slowly with o. All modes decay at
the uncoupled damping rate of —1 yr—* before merg-
ing. After merging, the coupled Rossby and Kelvin
modes become destabilized, whereas the slow modes
decay more rapidly with increasing o.

With increasing magnitude for n; the coupted Rossby
and westward slow modes merge. For |7| smaller than
this merging value, the frequency of the coupled
Rossby (westward slow) mode decreases (increases)
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with increasing |n|. After merging, the frequency of
the coupled Rossby mode is identical with that of the
westward slow mode and decreases with increasing |7 |
until reaching the bounded eigenfunction constraint. In
contrast, the coupled Kelvin mode does not merge with
the eastward slow mode throughout the range shown.
The frequency of the coupled Kelvin mode (eastward
slow mode) decreases (increases ) with increasing |7n|.
As |n| increases, the coupled Rossby mode becomes
unstable, whereas all other modes are damped. Neither
the frequency nor growth rate of the eastward slow
mode is sensitive to 7.

The effects of u, o, and n on the coupled mode’s
frequency and stability are largely dependent upon the
zonal phase lag 6 between the wind stress and SST
anomalies. With § = 0.1n (not shown), the coupled
Rossby and Kelvin modes do not merge with the slow
modes, and it is the slow modes that become unstable
with increasing these parameters while the coupled
Rossby and Kelvin modes decay. Growth or decay of
the coupled modes, which is determined by the corre-
lation between the lagged SST (wind) and the ocean
currents, is very sensitive to 6.

2) KELVIN WAVE SPEED ¢

The effects of ¢ on the frequency and stability of the
coupled modes using the model parameters of Table 1
are shown in Fig. 13. The frequency of the coupled
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FiG. 13. As in Fig. 10 but as a function of oceanic Kelvin wave

speed c (ms™!) withk = £3.0 X 107" m™'.
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Rossby and Kelvin modes decreases with decreasing c,
and conversely for the westward and eastward slow
modes prior to their merging. After merging, the west-
ward and eastward slow modes share the same fre-
quency with the coupled Rossby and Kelvin modes,
respectively. Before merging all modes decay at the
uncoupled damping rate of —1 yr~'. After merging, the
coupled Rossby and the eastward slow modes become
unstable, while the coupled Kelvin and westward slow
modes become increasingly more damped with de-
creasing c.
. The results for the eastward slow mode are consis-
tent with the numerical findings of Wang and Weisberg
(1994a). The explanation follows from the change in
the background state buoyancy as specified by c. De-
creasing c, by decreasing buoyancy, increases the di-
vergence for a given value of surface current since the
ratio of thermocline-thickness perturbation to current
perturbation is #/u = H,/c Increasing the oceanic di-
vergence increases the eastward slow mode growth
rate. It is noted that the physics of varying ¢ is quite
different from that of varying the time derivatives of
the oceanic dynamical equations as suggested by Nee-
lin (1991). Varying the time derivatives of the oceanic
dynamical equations distorts the effects of wave speed
independent of buoyancy, whereas the importance of ¢
herein is its effect on buoyancy.
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3) ZONAL PHASE DIFFERENCE §

The effects of # on the frequency and stability of the
coupled modes using the model parameters of Table 1°
are shown in Fig. 14. The frequency of all modes is
symmetric about § = 0. For the slow modes, frequency
decreases with increasing |6, and bounded solutions
do not exist when |#| exceeds a parameter-dependent
value. Large zonal phase differences, therefore, do not
favor slow modes. On the other hand, the coupled
Rossby and Kelvin mode frequencies increase slowly
with increasing |#|. The growth rate of all modes is
antisymmetric about # = 0 relative to the uncoupled
damping rate of —1 yr™'. The growth rate of the slow
modes increases with increasing 4, and # must be pos-
itive for instability. Conversely, the coupled Rossby
and Kelvin modes require negative ¢ for instability.
The magnitude and sign of 6, therefore, play important
roles in the instability properties of these coupled equa-
torial modes. Both models (e.g., Gill 1980) and obser-
vations (e.g., Rasmusson et al. 1983) suggest that ¢
between 0.17 and 0.27 provides the best representative

values.

4) THE PARAMETERS Yy AND «

The Rayleigh friction/Newtonian cooling coefficient
v and the thermal damping coefficient a set the me-
chanical and thermal dissipation rate for the wave

.
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modes, respectively. While not shown, these sensitiv-
ities were also examined. The frequency of the coupled
Rossby and Kelvin (westward and eastward slow)
modes increases (decreases) slowly with increasing v,
whereas the frequency of the coupled Rossby (west-
ward slow) mode decreases (increases ) with increasing
a, while the frequency of coupled Kelvin and eastward
slow modes is not sensitive to «. Interestingly, the
growth rate of the eastward slow mode slowly increases
with vy and, as can be seen by performing the fast-wave
limit, this is due to zonal SST advection.

In order to further illustrate the roles of y and « in
the coupled modes, the frequency and growth rate are
shown as a function of k in Figs. 15 and 16 for y = 0
and o = 0, respectively, using § = 0.17 and the model
parameters of Table 1. Compared with Fig. 2, Fig. 15
shows that the growth rates of the slow modes are rel-
atively unaffected at all wavenumbers, whereas the de-
cay rates of the coupled Rossby and Kelvin modes are
smaller. On the other hand, Fig. 16 shows that the
growth rates of the coupled Rossby and Kelvin modes
are relatively unaffected at all wavenumbers, whereas
the slow modes no longer decay. Thus, the effect of
Rayleigh friction/Newtonian cooling (thermal damp-
ing) is mainly to damp the coupled Rossby and Kelvin
modes (the slow modes) since the coupled Rossby and
Kelvin modes (the slow modes) originate from the dy-
namical (thermodynamical) equation in which y (a)
enters the coupled system. It follows that damping for
the coupled Rossby and Kelvin modes (the slow
modes) is mainly mechanical (thermal).

5. Discussion and summary

A coupled ocean—atmosphere model, simplified for
analytical tractability, is studied for insights on the sta-
bility properties of coupled equatorial modes. The pa-
per extends the work of Wang and Weisberg (1994b)
by relaxing the assumption of equal coefficients for
Rayleigh friction/Newtonian cooling and thermal
damping and by including a zonal phase difference be-
tween the anomalies of 7* and SST. The two primary
restrictive assumptions remaining are 1) the propor-
tionality between the anomalies of 7% and SST and 2)
the spatial homogeneity in the thermodynamic param-
eters. The first of these is more restrictive than the Gill
(1980) atmosphere used by Hirst (1986) and it may
account for the differences obtained here with similar
ocean thermodynamics.

Allowing a zonal phase difference between the 7*
and SST anomalies makes the first assumption more
realistic. However, spatially uniform coupling remains
erroneous. In nature, coupling varies both in space and
time. For example, Wakata and Sarachik (1994) ar-
gued that coupling occurs differently during the warm
and cold phases of ENSO, and numerous authors have
argued that coupling is strongest over the eastern Pa-
cific owing to the largest SST anomalies there. The
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FiG. 16. As in Fig. 2 except thermal damping coefficient & = 0.

second assumption of spatial homogeneity in thermo-
dynamic parameters renders the SST equation overly
simplistic since it does not allow spatial variations of
background state processes, for example, the reason
why the SST anomalies are largest over the eastern
Pacific. Nevertheless, these simplifications provide an
analytical basis for diagnosing instabilities that may
have applicability to more realistic systems.

A property of the solutions is that the meridional
scales for all coupled equatorial wave modes at low
frequency are larger than those associated with an oce-
anic Rossby radius of deformation. A similar finding
was discussed for neutral modes under a much more
restrictive set of assumptions by Wang and Weisberg
(1994b). This meridional scale increase appears in
western Pacific observations (e.g., White et al. 1987,
1989; Kessler 1990), in GCM simulations of the cou-
pled ocean—atmosphere system (e.g., Barnett et al.
1991; Chao and Philander 1993), and in simple nu-
merical experiments using a Gill (1980) atmosphere
(e.g., Hirst 1988; Wang and Weisberg 1994a). Using
the high-resolution SST product of Reynolds and Smith
(1995), this is also a property of eastern Pacific SST
anomalies as shown in Fig. 17. So, while the assumed
spatially uniform coupling may lead to an overestimate
of the meridional length scale as frequency tends to-
ward zero, this analytically obtained meridional scale
increase does appear to be physically relevant. Addi-
tionally, the northeastward isoline tilt for unstable east-
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ward modes is consistent with observed SST patterns
(e.g., Latif and Barnett 1995).

A simple physical basis exists for the meridional
scale increase. For a system having separate atmo-
sphere and ocean physics, there should exist two in-
trinsically different meridional scales with the atmo-
sphere scale being larger than the ocean scale. Since
the atmosphere and ocean are coupled, it follows that
the scale of the coupled modes should take on an in-
termediate value. Under the present set of assumptions
there is only one intrinsic scale—that of the ocean;
however, a meridional scale broadening still occurs. An
explanation follows from the coupling-induced wind
stress curl in the vorticity equation. Without wind stress
curl, conservation of absolute vorticity requires that the
meridional component of velocity tends to zero at low
frequency. This leaves the intrinsic S-plane radius of
deformation determined by the oceanic buoyancy and
the earth’s rotation as the meridional scale. By includ-
ing wind stress curl as an external torque, absolute vor-
ticity is not conserved and the meridional component
of velocity then tends toward a slowly varying Sver-
drup balance. The meridional scale is then determined
by the oceanic buoyancy and the earth’s rotation as well
as air—sea coupling. Physically, it is the wind stress
curl that broadens the meridional scale by altering the
slope of the thermocline. This may be shown mathe-
matically by substituting the solutions into the vorticity
equation demonstrating how the dispersion relationship
is modified. As the simplest case, the eigenfunctions of
Eqs. (3.24-26) for eastward propagating modes show
that the meridional scale for these coupled modes is L,
= (kc?/Bw,)"* = L(clc,)'?, where L = (c¢/B)"? is
the oceanic equatorial Rossby radius of deformation, ¢
is the conventional Kelvin wave speed, and c, is the
modified phase speed of coupled equatorial modes.
Since ¢, is smaller than ¢, the meridional scale of the
coupled modes L. is larger than the oceanic equatorial
radius of deformation L.

The growth, decay, and meridional phase gradient
properties of the modes obtained herein, relative the
neutral modes of Wang and Weisberg (1994b), are a
consequence of using different values for the dissipa-
tion constants and employing a zonal phase lag be-
tween the 7* and SST anomalies. These solutions (al-
beit with an overly simplified atmosphere model) allow
for the coexistence of westward and eastward slow
modes along with the coupled Rossby and Kelvin
modes. Of the four gravest modes, two can be desta-
bilized by varying the model parameters, one propa-
gating westward and another propagating eastward. If
6 = 0 and y = a, the coupled Rossby and Kelvin modes
merge with the westward and eastward slow modes,
respectively. When they merge, the coupled Rossby
(Kelvin) and westward (eastward) slow modes split
into two branches: one growing and the other decaying.
However, for other parameter choices, the coupled
Rossby and Kelvin modes remain distinct from the
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slow modes. Thus, the coupled Rossby and Kelvin
modes generally have different structure and phase
speed than their slow mode counterparts. All unstable
(stable) modes display a positive (negative) correla-
tion between 7* and the current, satisfying the neces-
sary condition for instability.

Coupled mode stability is sensitive to the model pa-
rameters. For the zonal phase lag § between the 7* and
SST anomalies the frequency for all modes is sym-
metric about § = 0, whereas the stability is antisym-
metric about § = 0 relative to the uncoupled damping
rate. Positive (negative) § represents 7* anomalies lo-
cated to the west (east) of the SST anomalies. There-
fore, coupled mode instability is determined by the rel-
ative position between 7* and SST (e.g., Battisti et al.
1989). The slow modes and coupled Rossby or Kelvin
modes can be destabilized if the 7* anomaly is located
to the west and east of the SST anomaly, respectively.
The simplest atmospheric models [e.g., Gill (1980)]
show the former, suggesting that unstable slow modes
are favored by this coupled system. However, the re-
lationship between SST, atmospheric heating, and re-
sultant winds remains in question throughout the basin,
and in the western Pacific the negative 6 unstable Kel-
vin wave frequencies correspond to the frequencies of
observed intraseasonal Kelvin waves (e.g., McPhaden
and Taft 1988). The stability effects of the mechanical
v and thermal o damping parameters are also interest-
ing. The coupled Rossby and Kelvin (slow) modes are
mainly damped by +y (&) since the coupled Rossby and
Kelvin (slow) modes originate from the time deriva-
tives of the oceanic dynamical (thermodynamical)
equation in which y (a) enters the coupled system.
Subtle effects, such as a growth rate increase for the
eastward slow mode with increasing -y through the ef-
fect of zonal temperature advection, are also found.
Given that w = w(k, yu, 0, 1, ¢, 8, v, @) even in this
relatively simple model, the stability properties of cou-
pled modes are very complicated. Generally, for this
system, an increase in. the coupling, warming, and zonal
mean SST gradient coefficients and a decrease in the
Kelvin wave speed will increase the growth rate of a
particular unstable mode.

While substantial progress has been made over the
past two decades in describing and understanding
ENSO variability, neither observations nor numerical
simulations of the coupled tropical ocean—atmosphere
system have brought closure on the details of ENSO
evolution. Here we have described the stability of equa-
torial modes within a model employing simplifying as-
sumptions to achieve analytical tractability. Coupled
Rossby and Kelvin modes were found to coexist with
eastward and westward slow modes. These modes may
merge in parameter space with instability favoring the
slow modes, especially when 7* anomalies are posi-
tioned west of SST anomalies. Coupling in this model
profoundly affects the structure, propagation, and sta-
bility properties of equatorial modes at low frequency.
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If this is true of nature, it follows that determining
where within the equatorial waveguide and with what
efficiency this coupling occurs (the two most limiting
assumptions of this model) would be critical to more
fully understand the coupled ocean—atmosphere inter-
actions that constitute ENSO.
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