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ARGO Floats show similar watermass progressions across the basin aos |
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The South Atlantic is the
pulse for the SO. The
figure shows the Principal
Estimator Patterns of SSH
anomalies (top panel) and
wind curl (middle panel)
in the Southern
Hemisphere; the bottom
panel shows the time
series.

The analysis shows that
the variability in the SA is
related to the forcing in
the Pacific and Indian
Ocean. This is the
component of the
variability that is related

to AMOC.
Fetter and Matano, (2009)



Heat budget and the
role of inter-ocean
exchanges in northward
heat transport and air
sea heat flux.

Objective: To analyze the
AMOC variability in the South
Atlantic using both available
observations and a non data-
assimilative simulation of the
AMOC with the aim of defining
the importance of variations in
inter-ocean and inter-basin

exchange and the connectivity.

“The SA Box”
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Northward Heat Transport

Total HT = Geostrophic + Ekman '

Total =051 + 0.15 PW
Geos. = 0.40 + 0.16 PW
Ekman = 0.11 + 0.16 PW

» Geostrophic transport controls the
total northward heat transport.

» Geostrophic and Ekman transports
experience comparable variability
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1(a) Total 1(b) Geostrophic 1(c) Ekman
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Both geostrophic and Ekman transports experience
annual cycles, but they are out of phase.

Garzoli and Baringer (2007)
Baringer and Garzoli (2007)
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transport (color), which
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1300 m depth (black).
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represents the total northward transport in upper water column.

Dong et al 2009
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Both geostrophic and Ekman contributions to the AMOC
experience annual cycles, but they are out of phase.
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(a) Time series
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Heat
Transport
in the SA
Box
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South Atlantic MOC project (SAM)
Baringer and Garzoli (2007) demonstrated
the critical need for DWBC observations to
reduce uncertainties in meridional heat
transport estimates at 35°S.

Western boundary observations are a
collaboration between the USA, Argentina,
and Brazil.

A parallel project is going on at the eastern
boundary (Good Hope) as a collaboration
between France and South Africa (see
Speich et al presentation IT53D-06 on
Friday afternoon).

The initial deployment of three pressure-
equipped inverted echo sounders (PIES)
and one current and pressure equipped
inverted echo sounder (CPIES) took place
in March 2009 from the Brazilian Navy
research vessel Cruzeiro do Sul.

Hydrographic data was collected on both
cruises.

The first download of data from the PIES
and CPIES was done in August 2009 via the
Argentine research vessel Puerto Deseado
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@ August 2009 CTD
March 2009 cruise track
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This presentation represents the preliminary analysis of
the first five months



Parallel Ocean Circulation Model
- POCM

*Primitive equation, hydrostatic,
z-level model (Tokmakian and
Challenor, 1999)

*Mercator B-grid with an
average horizontal resolution of
1/4° and 20 vertical levels
*Forced with daily atmospheric
fluxes from ECMWEF reanalysis
from 1979 to 1994, and with
operational ECMWEF data sets
after 1994

*12 year average ('86-'97)

Ocean general circulation
model For the Earth Simulator —
OFES

*Modular Ocean Model
(MOM3) run by JAMSTEC

*0.1° grid with 54 vertical levels
*Forced with monthly mean
NCEP/NCAR reanalysis
atmospheric fluxes

*12 year average (‘86-'97)
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Figures courtesy Renellys Perez, UM/CIMAS, NOAA/AOML
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Transport integrated in the deep

layer (defined as below 800 dbar) = -
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Previous studies have been ambiguous AtoB / Vo
regarding how much of the Deep Western _ -° | i
Boundary Current (DWBC) exists along -40 - -
the coast at this latitude versus having 40 i

shifted offshore to the North.
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Results from the first 3-5 months of data
from the SAM array suggest that there is a
mean southward flow along the coast,
however the time variability is quite
strong and it is too early to say for certain
that a mean DWBC is observed
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Transport integrated in the
deep layer (defined as
below 800 dbar)

*mean absolute southward
flow across whole array just
over -2 Sy,

elarge variability with a
minimum value just over -40 Sv.

*baroclinic transport relative to
800 dbar has a factor of 3
smaller variability than the
absolute transport.

The disparity between variances
confirms the model-results
presented in Baringer and
Garzoli (2007) and Garzoli and
Baringer (2007) illustrating the
significant barotropic flows near
the western boundary at this
latitude
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1. The strength of the AMOC is significantly correlated with the northward
heat transport across AX18 (~355S).

2.Ekman transport contributes only 9% of the on average, however, it
accounts for 22% of the total northward heat transport.

3. The OFES model suggests an increase in the northward heat transport
across 35°S from 1980 to 2006.

4. The increasing trend in the northward heat transport is likely due to the
increase in Agulhas leakage into the South Atlantic.

5.0ne possible explanation for the increase in the transport of the
Antarctic Circumpolar Current is the increase in wind stress.

6. The larger variance of the absolute transports compared to the transports
relative to an assumed level of no motion confirms the importance of
barotropic variations on the western boundary when calculating meridional
heat fluxes basin-wide.

7.Preliminary analysis of the PIES/CPIES data from March-August 2009
suggests that there is a non-trivial mean southward flow of around 6 Sv at
34.5°S potentially associated with the Deep Western Boundary Current.
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Heat Transport across 35°S
AX18 XBT Positions
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One of the largest uncertainties in the
measured heat transport is the lack of direct
measurements of the barotropic component of
the flow, which is largest to the west of 47°W.
This is particularly important because at the
western boundary the Malvinas Current and
the Deep Western Boundary Current (DWBC)
both flow in the same direction, creating a
strong barotropic flow whose magnitude and

variability are poorly known.

Mean model velocities at 1500 m depth from POCM model (Tokmakian and Challenor, 1999).
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Model sections of the meridional velocity showing the DWBC at 30°S (left) and 34.5°S (right). Negative velocities indicate

southward flow.




