
Hurricane Surface Wind Measurements from an Operational
Stepped Frequency Microwave Radiometer

Eric W. Uhlhorn
�

NOAA/AOML/Hurricane Research Division, Miami, FL

Peter G. Black
NOAA/AOML/Hurricane Research Division, Miami, FL

James L. Franklin
NOAA/NWS/TPC/National Hurricane Center, Miami, FL

Mark Goodberlet
ProSensing, Inc., Amherst, MA

James Carswell
Remote Sensing Solutions, Inc., Barnstable, MA

Alan S. Goldstein
NOAA/OMAO/Aircraft Operations Center, Tampa, FL

Submitted to:
Monthly Weather Review

November 30, 2006

�

4301 Rickenbacker Cswy.; Miami, FL 33149; email: Eric.Uhlhorn@noaa.gov



Abstract

For the first time, the NOAA/Aircraft Operations Center (AOC) flew Stepped Frequency

Microwave Radiometers (SFMR) on both WP-3D research aircraft for operational hurricane

surface wind speed measurement in 2005. An unprecedented number of major hurricanes pro-

vided ample data to evaluate both instrument performance and surface wind speed retrieval

quality up to 70 �����
�
(Saffir-Simpson category 5). To this end, a new microwave emis-

sivity/wind speed model function based on estimates of near-surface winds in hurricanes by

GPS dropwindsondes is proposed. For practical purposes, utilizing this function removes a

previously-documented high bias in moderate SFMR-measured wind speeds (10–50 �����
�
),

and additionally corrects an extreme wind speed ( � 60 ���	�
�
) systematic underestimate.

The AOC operational SFMRs yield retrievals precise to within 
 2% at 30 ��� �
�

, which

is a factor of two improvement over the NOAA Hurricane Research Division’s SFMR, and

comparable to the precision found here for GPS dropwindsonde near-surface wind speeds.

A small (1.6 �����
�
), but statistically significant, overall hight bias was found for indepen-

dent SFMR measurements utilizing emissivity data not used for model function development.

Across the range of measured wind speeds (10–70 ���	�
�
), SFMR 10-s averaged wind speeds

are within 4 �����
�
(rms) of the dropwindsonde near-surface estimate, or 5–25

�
depending on

speed. However, an analysis of eyewall peak wind speeds indicates an overall 2.6 ��� �
�
GPS

low bias relative to the peak SFMR estimate on the same flight leg, suggesting a real increase

in the maximum wind speed estimate due to SFMR’s high-density sampling. Through a series

of statistical tests, the SFMR is shown to reduce overall bias in the peak surface wind speed

estimate by 
 50% over the current flight-level wind reduction method, and is comparable at

extreme wind speeds.
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The updated model function is demonstrated to behave differently below and above the

hurricane wind speed threshold ( 
 32 ��� �
�

), which may have implications for air-sea mo-

mentum and kinetic energy exchange. The change in behavior is at least qualitatively consis-

tent with recent laboratory and field results concerning the drag coefficient ( ��� ) in high wind

speed conditions, which show a fairly clear “leveling-off” of ��� with increased wind speed

above 
 30 ��� �
�

. Finally, a composite analysis of historical data indicates the earth-relative

SFMR peak wind speed is typically located in the hurricane’s right-front quadrant, consistent

with previous observational and theoretical studies of surface wind structure.
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1. Introduction

Estimating hurricane surface wind distributions and maxima is an operational requirement of the Trop-

ical Prediction Center/National Hurricane Center (TPC/NHC), and emergency management decisions rely

on coastal watches and warnings issued by NHC based partly on observed winds. Surface wind speed

estimates by NHC are determined largely from extrapolated aircraft flight-level wind data. In 1997, GPS

dropwindsondes (Hock and Franklin 1999) first demonstrated the ability to provide in situ measurements

of hurricane surface wind velocities, most importantly in the inner core, and recent work utilizing these

measurements has improved the accuracy of extrapolations (Franklin et al. 2003).

Since 1984, the NOAA/Hurricane Research Division’s (HRD) Stepped Frequency Microwave Ra-

diometer (HSFMR) has flown on one of two NOAA WP-3D research aircraft to estimate hurricane surface

wind speeds (Uhlhorn and Black 2003). Beginning in 2004, a re-designed SFMR was flown on one WP-

3D aircraft for operational surface wind speed measurements. After procedural testing during 2004, both

WP-3Ds had operational SFMRs installed in 2005 (SFMR-2 and SFMR-3). The unusually active 2005 At-

lantic hurricane season provided ample opportunity to evaluate the SFMRs’ performances over the entire

range of expected surface wind speeds (10–70 ��� �
�
). In particular, extreme wind speed ( � 60 ��� �

�
)

measurements were obtained from flights into Saffir-Simpson category-5 hurricanes Katrina and Rita.

The SFMR measures nadir brightness temperature ( ��� ) at six C-band frequencies, and a retrieval al-

gorithm uses a geophysical model function (GMF) relating surface emissivity and wind speed to produce

surface wind speed estimates along the flight track. Previous emissivity/wind speed models used in mi-

crowave radiometry applications have been developed for winds � 25 ��� �
�
(Goodberlet et al. 1989; Wentz

et al. 1986; Wentz 1983; Webster et al. 1976), or either relied upon or were validated against aircraft flight-

level high-wind data extrapolated to the sea surface (Uhlhorn and Black 2003; Tanner et al. 1987; Black

and Swift 1984; Swift et al. 1984; Jones et al. 1981). All of these methods resulted in uncertainty about the
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retrieved hurricane surface wind speed, especially under extreme conditions. The current emissivity/wind

speed GMF development takes an approach decidedly different from the previous methodology; recent

improvements to the GPS dropwindsondes have increased the availability of surface wind speed estimates

in extreme conditions, and are utilized here to re-evaluate the SFMR GMF.

Recent studies (Dunion et al. 2003; Franklin et al. 2003; Powell et al. 2003, 1999) indicate boundary-

layer models used to extrapolate flight-level wind speeds (Powell 1980; Deardorff 1972; Cardone 1969;

Blackadar 1965) show a tendency to underestimate surface wind speeds � 50 ��� �
�
. Anecdotal evidence

has also suggested that the SFMR underestimated surface wind speeds in similar conditions. Utilizing the

previous GMF, comparisons of SFMR-derived wind speeds with GPS surface-reduced, 0–500 m layer-

averaged winds indicated no such tendency (Uhlhorn and Black 2003), but, in fact, very little in situ data

were available at speeds above 50 �����
�

. However, when compared with surface-adjusted lowest 150 m

layer-averaged winds obtained in 2004, a low bias in SFMR retrievals became apparent at extreme wind

speeds. With the recent surge in particularly intense hurricanes, analyzing and correcting this anomalous

behavior has become critical. During 2005, a large dataset of contemporaneous SFMR and GPS dropwind-

sonde observations was obtained, resulting in significant improvement to the empirically-derived SFMR

emissivity/wind speed GMF, most notably at extreme wind speeds. This new model function has been

implemented operationally beginning in 2006.

This paper is organized as follows: Section 2 presents the methodology for the new SFMR GMF

development using measurements obtained from one of the two AOC SFMRs. Section 3 contains an

evaluation of retrievals computed using the proposed GMF for all three SFMRs operated during 2005. In

Section 4, SFMR overall wind speed measurement uncertainty is analyzed relative to other surface wind

estimates, and peak surface wind speed accuracy and expected azimuthal location are identified. Section

5 discusses physical implications for the results, and Section 6 contains concluding remarks.
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2. Empirical Model Function Development

In 2005, for the first time, the NOAA/Aircraft Operations Center (AOC) operated a wing pod-mounted

SFMR on each of the two WP-3Ds (N42RF and N43RF). The AOC SFMR (designed and built by ProSens-

ing, Inc. of Amherst, MA) includes improved calibration hardware, with fast switching between antenna

and calibration loads, and an internal cold load for improved calibration stability and lower � � � noise

level (Goodberlet and Mead 2006). Additionally, N43RF also carried HRD’s fuselage-mounted research

SFMR. Brightness temperature data, calibrated in weak wind speed ( � 5 ��� �
�
) conditions, were ob-

tained on over 70 flights between the two aircraft. From a subset of � � measurements, the sea surface

emissivity is computed, and regressed with surface (assumed 10 m) wind speed measurements from GPS

dropwindsondes. Due to the significant number of extreme wind speeds observed from N43RF, data from

this SFMR (SFMR-3) are utilized.

a. Emissivity data

The SFMR algorithm, as detailed in Uhlhorn and Black (2003), uses a forward radiative transfer

model (Ulaby et al. 1981) to estimate the atmospheric contribution to the total brightness temperature

measured by the SFMR. The intervening atmosphere assumes tropical thermodynamic structure (Jordan

1958), which introduces negligible error under nearly all flight conditions. Given a calibrated SFMR

� � measurement, the sea-surface emissivity, � , may be computed by rearranging the brightness tempera-

ture equation (Equation A6 of Uhlhorn and Black (2003)):

��� � �����	�
��� ����
��� �����
�	�
����� ���� ����
��� � (1)
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where ��� and ��� are the transmissivities of the rain column and atmosphere below the aircraft, respectively,

����
� is the sky brightness temperature which is the sum of the downwelling atmopheric contribution and

cosmic source, ����� is the upwelling atmospheric brightness temperature, and �  is the sea surface temper-

ature.

In tropical cyclones (TCs), rainfall is often a significant contributor to the microwave radiation budget.

In lieu of accurate, independent estimates of microwave emission by rain below the aircraft, computing

the surface emissivity while simultaneously retrieving the rain rate from a set of � � measurements using

the SFMR algorithm is required. The rain absorption coefficient ( � � ) is modeled typically as:

� ����� ��� � (2)

where
�

is rain rate in � ���
	�� � , � is a frequency-dependent function (Olsen et al. 1978) and � �������� 1

(Jiang et al. 2006; Jorgensen and Willis 1982). The nadir transmissivity of the rain column is then calcu-

lated as an exponentially-weighted function of the rain-column depth � :

����������� ��� � ��� ��� (3)

For SFMR channel � , the smooth sea surface nadir emissivity, �	�� is computed using the Klein and

Swift (1977) algorithm as a function of frequency, sea surface temperature and salinity. Subtracting ����

from the total emissivity calculated at each channel by Equation 1 gives a remaining frequency-dependent

contribution, which may be written as ���� � �! "�$#��&% � � , where �' "� is the wind-induced emissivity and

# �(�*),+
������% (Webster et al. 1976). A mean �' is computed from the six channel �' �� measurements,

1In Uhlhorn and Black (2003), the exponent was mistakenly presented as -/.1032 465 , which is in fact the C-band radar
reflectivity-rain rate relation exponent for hurricanes (Jorgensen and Willis 1982). In practice, using this incorrect value has a
negligible effect on the retrieved wind speed, but decreases the retrieved rain rate by roughly a factor of two.
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and is averaged over 10 s of data. Typically three measurements are made by each channel during a 10-s

period, therefore the average represents 18 independent samples. Figure 1 (left panel) shows a time series

of � � from SFMR-3 for a radial pass through Hurricane Katrina, and the right panel is the time series of

corresponding �' .

[Figure 1 about here.]

b. Surface wind speed data

GPS dropwindsondes (Hock and Franklin 1999) have been deployed from the NOAA WP-3D aircraft

for nearly ten years. The dropwindsondes measure atmospheric temperature, pressure and moisture as

they descend from the aircraft to the sea surface. Additionally, they yield estimates of the horizontal wind

velocity, sampled at 2 Hz, which gives an approximately 5 m vertical resolution. Dropwindsondes reach

the sea surface downwind of the launch location, and in hurricanes, may be horizontally advected 10 km

or more.

Improvements to the GPS dropwindsonde have increased the availability of 10-m wind speed measure-

ments ( � ��� ). However, this single instantaneous measurement may be interpreted as containing “gusti-

ness”, and not necessarily representative of the 1-min average, 10-m wind speed required for operations.

For this reason, representative near-surface wind speeds are better estimated from a layer-averaged drop-

windsonde wind speed. Franklin et al. (2003) estimate the eyewall-mean ratio, � ��� � , of near-surface wind

speed � ���� to the average wind speed in the lowest available 150-m layer, �
	 ����� �� � , where � is the mean

altitude of the layer 2. Figure 2 indicates the functional form of � ��� � . For a dropwindsonde that reports

wind speeds to the 10-m level, the function gives � �� � � � ��+������ .

[Figure 2 about here.]

2 �������� is reported as the “WL150” wind speed in the encoded GPS dropwindsonde message
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As an independent check of this near-surface adjustment method, winds measured from GPS drop-

windsondes deployed in 2005 are examined. Figure 3 shows the actual 10-m wind speed ( � ��� ) measured

by the dropwindsonde vs. � 	 ����� (left panel) and vs. � ��� (right panel).

[Figure 3 about here.]

The regression line slope ( � � +
� � � � +
� + � ) in the left panel of Figure 3 indicates that the Franklin

et al. (2003) near-surface wind speed adjustment method represents the data used in this analysis within

observational error limits. Although the empirical profile-based near-surface adjustment was intended for

the hurricane eyewall, no obvious indication exists here that this method cannot be applied throughout the

entire distribution of wind speeds.

c. Wind speed/emissivity correlations

Since the GPS dropwindsonde reaches the surface both tangentially and radially downwind of the

SFMR footprint, emissivity/wind speed pairings are not co-located. Additionally, data are temporally

separated by the time required for the dropwindsonde to fall to the surface, which is typically � 3 min for a

sonde deployed at the 700 mb level. To decide on the optimal SFMR measurement with which to correlate

in situ winds, two options are considered. Previously, Uhlhorn and Black (2003) paired SFMR wind

speed retrievals at the time of dropwindsonde launch with surface wind speed estimates. Alternatively,

the possibility of radial displacements affecting the correlation is examined by comparing the SFMR

wind speed estimate at the location where the paired measurements’ radial distance differences from the

hurricane’s center are minimized.

Uhlhorn and Black (2003) applied a maximum 15 km launch-to-splash separation distance criterion to

reject pairings, although no obvious decorrelation with increased distance was found. Based on analysis of
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data from dropwindsondes deployed at 
 700 mb in 2005, the average azimuthal displacement is roughly

given by � ������3+
� � � km/( ��� �
�
), so a sonde typically travels 
 15 km azimuthally when � ���� ����+ ��� �

�
.

Since a goal here is to improve SFMR retrievals at surface wind speeds at least this intense, we choose not

to apply the previous 15 km criterion.

As a dropwindsonde descends into the hurricane boundary layer, it is typically transported by the

frictionally-induced radial flow. Since hurricane winds vary as a function of radius, an inward (outward)

radial displacement outside (inside) of the radius of maximum wind could result in an acceleration. The

2005 data indicate a mean inward GPS dropwindsonde launch-to-splash displacement of +
��� � ����� km, with

no significant tendency as a function of � ���� . Correspondingly, the SFMR wind speed at the nearest radial

distance from the storm center as the dropwindsonde splash location is very well correlated ( �	� � +��
��� )

with, and unbiased ( � 0.1 ��� �
�
) with respect to, the SFMR measurement at the launch location. The

time (10-s) averaged SFMR �' measurement at the time of dropwindsonde launch is therefore deemed

satisfactory, and is correlated with � ���� to develop the GMF. Table 1 lists the 2005 season NOAA WP-3D

flights from which measurements are utilized.

[Table 1 about here.]

Samples are next statistically screened for outliers. First, a quadratic function is initially fit to the �  
vs. � ��� data using a robust parameter estimation technique (adapted from Holland and Welsch (1977))

on the basis of the previous quadratic GMF applied in Uhlhorn and Black (2003). Emissivity residuals

falling three average deviations outside of the distribution are identified as outliers; a total of six samples

were rejected based on this criterion. Two of the rejected data were contaminated by land-based emission

(anomalously high emissivities), and the remaining four were likely deployed in high gradient areas where

the sonde was transported into, or out of, a higher wind.

The basis for the proposed new GMF is the observation of a non-linear increase in �� at low to moderate

wind speeds (below hurricane force), and an apparent linear increase at greater wind speed. With respect

to previous results (Wentz et al. 1986), a weak-wind speed (roughness-induced) linear portion is retained,

and in moderate wind speeds, a quadratic shape is assumed where foam contributes to emission. This
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function is fit using piecewise nonlinear least-squares to the emissivity and wind speed data:

�! � � � � ��� � � ��������� � (4)

� � � ) ��� � � � ) �	� � ����� � ��� � � ������� � �
� � � ) ��
 � � � � � � � ��� � �

where ��� �� ��� �
�
, � � is the objectively-determined knot point where the upper two curves meet, and

the � s are the fitted parameters. The model function is constrained such that the derivative is continuous

across the knots, which results in the loss of two parameters. The upper knot location is found by identi-

fying the minimum rms difference produced by the overall fit; trial � � s are tested from 20–50 �����
�
. The

best-fit parameters are found to be:

� � � � � � � ��� � �	� � �
�
� ��
	� � ��+
� + � +�� � +
�

� ����� � � +�� + �
� � � +
� +�+ � � � ���"�
����� � � +
� ���
� � ��� � + � � �
� � � �
����� ��� �

�
�

Figure 4 shows the development dataset, along with the model function. The rms of the residuals is 0.011,

around 10
�

of the mean at 50 ��� �
�
.

[Figure 4 about here.]

To estimate the resultant wind speed uncertainty of the SFMR GMF, retrievals are computed from the

SFMR measurements and correlated to the same � ��� estimates used to develop the model function. The

wind speed rms difference is found to be 3.6 ��� �
�
. Uhlhorn and Black (2003) examined a number of

contributions to this uncertainty, including variability in atmospheric and sea surface conditions, and found

that the largest source of error in hurricanes was due to inaccurate sea surface temperature specification,

especially at weak wind speeds ( � � + ��� �
�
). Other sources of error may be due to inaccuracies of the

rain absorption model, random instrument noise causing spurious solutions in the retrieval algorithm, and

general spatial/temporal mis-location of measurement ground truth.
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3. Evaluation Results

1) DEPENDENT SAMPLES

The improvement in SFMR retrieved wind speeds utilizing the new model function over the previous

version is demonstrated in a number of ways. First, the retrievals obtained using the both new and old

GMFs are compared for all 2005 SFMR-3 measurements (Fig. 5). As a majority (160/189) of the samples

was used to develop the model function, these are not independent results. But this does illustrate the

overall decrease in the GMF bias with respect to surface wind speed measurements. The resulting bias

(–0.5 �����
�
) is not found to be statistically significant based on a Student � -test.

[Figure 5 about here.]

An improvement is indicated by the near elimination of the moderate wind speed SFMR high bias

(noted in Uhlhorn and Black (2003)), as well as the extreme wind underestimate. In developing the

previous GMF, surface-adjusted flight-level winds speeds were increased by 10% (M. Powell, personal

communication), based on the assumption that the extrapolated flight-level estimate represented a 
 10-

min mean wind speed, whereas an estimate of the peak 1-min sustained wind speed was sought. The

results here make no such assumption.

The previous GMF was derived using surface wind speed estimates no greater than 55 ��� �
�
. There-

fore, the uncertainty about the correct functional dependence at greater wind speeds was large. It is appar-

ent here that the functional behavior at low-to-moderate wind speeds does not continue at extreme winds

speeds, and the previous assumption to the contrary is likely responsible for the wind speed underestimate

by SFMR. Based on these results, a linear increase in ��� with wind speed of 
 1.0 K/( �����
�
) is indicated

for hurricane conditions, which is significantly greater than assumed in early SFMR studies. For example,

Jones et al. (1981) used 0.7 K/( ��� �
�
) based on the results of Webster et al. (1976).

The results in Figure 5 generally indicate a greater degree of scatter at wind speeds higher than 
 30

��� �
�
, and is reflective of the GMF developmental data (Fig. 4). However, it is difficult to assess from

these figures whether a majority of the variabilty lies in the SFMR or dropwindsonde measurements, as

each contributes to the scatter. To examine the source of variability, error distributions are examined
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separately for data plotted in Figure 5. For each set of data (SFMR-3 and � � � ), wind speed measurements

are sorted and detrended, and cumulative distributions below and above the 31.9 �����
�
GMF breakpoint

are shown in Figure 6.

[Figure 6 about here.]

For low wind speeds (Fig. 6a), the dropwindsonde � ��� data contribute significantly less variability than

SFMR, based on a Kolmogorov-Smirnov test of the empirical cumulative distribution difference. At high

winds (Fig. 6b), both data sets essentially contribute equally, as indicated by the distribution standard

deviations.

A semi-independent demonstration of improvement is seen in HRD SFMR wind speed measurements

for an expanded dataset obtained from N43RF flights (Figure 7). The residual scatter in the AOC SFMR

retrievals is less than that from the HRD unit, such that the unexplained variability with respect to the

GPS dropwindsonde ground truth is reduced by 
 1 ��� �
�
. However, this is not a statistically significant

improvement, as indicated by a Kolmogorov-Smirnov test.

[Figure 7 about here.]

2) INDEPENDENT EVALUATIONS

An independent test of the updated GMF is applied to surface wind speeds measured by SFMR-2

flown on N42RF. Unfortunately, no surface wind speeds were measured above 60 �����
�

in 2005 from

this aircraft, so the extreme wind response cannot be independently evaluated. However, enough data

were obtained at lower wind speeds to clearly demonstrate overall improvement (Figure 8). A � -test of

the difference in mean bias between datasets processed with both the old and updated GMFs indicates

significance at the 95% confidence level. A small, but statistically significant SFMR-2 high bias ( 
 1.6

��� �
�
) using the new proposed GMF is noted which could be due to a slight calibration difference between

the two operational SFMRs. in SFMR-2 was calibrated using measurements obtained over a broad ambient

temperature (i.e. altitude) range, whereas SFMR-3 was calibrated at one altitude.

[Figure 8 about here.]
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In Fig. 3, it was seen that the � ���� estimate compared reasonably well with the actual measured 10-m

wind speed ( � ��� ). It is of interest to examine how well SFMR winds compare with � ��� , as shown in

Figure 9. Expectedly, the scatter is slightly enhanced in the SFMR-2 and SFMR-3 10-m correlations as

compared to the results for � � � , but the bias is also affected, with a tendency for a slight decrease relative

to the � ���� results. This result is likely due to the small ( 
 2%) average difference between � ���� and � ���

noted in the previous section.

[Figure 9 about here.]

4. Surface Wind Measurement Accuracy

With recent technological advances has come a fairly rapid growth in the quantity and type of near sur-

face wind speed measurements in hurricanes. The GPS dropwindsonde has become an important tool to

obtain surface wind velocity data, and airborne remote sensors, such as the SFMR, are increasingly used

to measure surface quantities from a safe location. Often, numerous estimates of seemingly equivalent

quantities are simultaneously available from different sources. In theory, increasing the number of obser-

vations of a random variable will improve measurement accuracy, but each datum has its own statistical

characteristics, and utilizing multiple data sources for analysis often has the unintended consequence of

increasing subjective uncertainty in a measurement. Additionally, remote sensing retrieval algorithms may

require use of an empirical geophysical model function (GMF) that depends on external “ground-truth”;

the derived model function therefore combines errors from multiple sensors.

In an operational hurricane forecast setting, data from multiple sources are often evaluated against one

another to arrive at the best estimate of maximum surface wind speed. An attempt is made here to quantify

individual measurement precision and accuracy of data sources that are typically used in conjunction with

SFMR surface wind speed estimates. The two platforms of most interest here are surface-adjusted aircraft

flight level and GPS dropwindsonde wind speeds. Recent research experiments have developed flight

strategies to obtain measurements in a reasonably controlled environment to facilitate this assessment.

Since a hurricane’s intensity is defined by the maximum near-surface wind speed, the relationship between

the peak SFMR-measured wind speed and conventional peak surface wind estimates is examined. Also,
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we exploit the updated historical (1998-2005) SFMR dataset to identify the expected azimuthal location

of the peak hurricane surface wind speed.

a. HSFMR vs dropwindsonde; flight-level winds

In 2003, a series of flights were conducted as part of the Office of Naval Research (ONR)-sponsored

Coupled Boundary-Layer Air-Sea Transfer (CBLAST) experiment (Black et al. 2007). A major compo-

nent of these flights was a number of “stair-step” patterns, flown by both WP-3Ds, designed to measure

boundary layer profiles on the periphery of hurricanes. The flight patterns consisted of legs coordinated

between the two aircraft. The higher aircraft (N42RF, 
 2100 m) deployed a series of GPS dropwindson-

des along a single 40 km leg, while the lower aircraft (N43RF) performed repeated legs at varying heights

(60–800 m) of the same length and at the same location. The lower WP-3D carried the HRD SFMR.

Ideally, wind measurements would have been obtained under stationary and horizontally homoge-

neous conditions, but some super turbulence-scale variability will inevitably exist. Patterns were flown in

clear-air conditions, so measurements are largely free of convective motions and rainfall. Also, temper-

ature profiles from GPS dropwindsondes indicate reasonably neutral stratification (potential temperature

changes � 0.3 K) over the lowest 200–400 m of each profile. Four downwind and two crosswind coordi-

nated profiles were obtained in Hurricanes Fabian and Isabel.

To generate statistics, 10-s averaged SFMR wind speeds are computed. GPS dropwindsonde statistics

are also calculated for each set of sondes deployed by the higher-altitude aircraft – typically 3–4 sondes

were dropped along a leg. For reference, flight-level statistical quantities are also estimated, although

significant variability as a function of altitude would be expected. It is assumed that spatial and temporal

variability on the scale of the sampled domain can be represented by a linear trend. Trends are identified

separately for each type of data and subsequently removed prior to computing statistics. Figure 10 shows

an example coordinated flight pattern and associated sonde profiles from one of six total patterns examined

here, and Figure 11 shows corresponding SFMR and flight level wind speed time series’.

[Figure 10 about here.]

[Figure 11 about here.]
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Statistics for the dropwindsonde 10-m wind measurement ( � ��� ) and the near-surface estimate ( � ��� )
are calculated, and normalized measurement variability ( �

���
) for each data source is shown in Table 2.

HRD SFMR retrieved wind speed variability is around 5–8
�

of the mean, which is similar to that for � ��� ,

and greater than that for � � � (1–5
�

). Under the assumption of stationarity and spatial homogeneity of the

wind speed measurements, these values represent random measurement variability. Previous results from

inter-comparisons of SFMR and dropwindsonde estimates indicate normalized rms differences of 10-15
�

at similar wind speeds (20–30 �����
�
). This suggests that as much as 50% of the error in the GMF may be

due to natural surface wind variability, further substantiating the results in Fig. 6, which indicate smaller

rms errors in the individual data than in the derived GMF.

[Table 2 about here.]

b. HSFMR vs. AOC SFMR-3

The newer AOC operational SFMR theoretically contains a 
 50% lower noise-equivalent � � � than

does its predecessor. Unfortunately, not until 2005 were reliable measurements obtained simultaneously

from both instruments, and flight patterns similar to those performed in 2003 were not executed due to

experiment priorities. On the other hand, a flight pattern was flown as part of the NOAA Intensity Fore-

casting Experiment (IFEX) in which a single WP-3D (N43RF, with two SFMRs installed) flew extended

legs parallel to, and outside of, rain bands. Numerous legs were flown during one particular flight (Hurri-

cane Rita on 21 September 2005) under reasonably homogeneous and stationary conditions. These flights

allowed a comparison of variability from both SFMRs.

A total of three flight legs of lengths 7, 13 and 10 minutes are used to compute wind speed statistics in

identical fashion to the 2003 data. Time series of wind speeds from both SFMRs (SFMR-3 and HSFMR)

and at flight level ( 
 3700 m) are shown in Fig. 12, and Table 3 gives error statistics for the measurements.

[Figure 12 about here.]

[Table 3 about here.]

The AOC SFMR produces wind speed measurements on average 
 50% less noisy than the HSFMR,

which is simliar to the variability in � ��� data from GPS dropwindsondes (2–4
�

). Again, these individual
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error statistics are significantly smaller than the cross-compared samples of SFMR and GPS estimates

(10–15
�

), which have been used to develop the GMF, as well as evaluate SFMR performance.

c. Estimating peak winds

Among the more important operational requirements of TPC/NHC is diagnosing the intensity of a

hurricane in terms of the maximum sustained surface wind speed. Conventional methods of estimating

this quantity from aircraft include extrapolating from flight level and utilizing pressure-wind relationships.

The fairly recent advent of the GPS dropwindsonde has yielded direct measurements of near-surface wind

speeds. Each of these estimates has their own limitations and we attempt here to demonstrate the added

value of SFMR surface wind speed data in terms of reducing maximum wind speed uncertainty in hurri-

canes.

An evaluation of previously used flight-level-to-surface peak wind reductions is performed with re-

spect to SFMR surface wind data. Numerous methods to estimate maximum wind speeds in TCs have

been employed over time; current operational practice relies heavily on a relationship between GPS drop-

windsonde near surface winds and aircraft measurements at standard reconnaissance flight levels (Franklin

et al. 2003). The peak surface wind speed was found to be, on average, 
 90% of that at the 700 mb level,

and 
 80% of the wind speed at 850 mb. Surface wind speed estimates are computed using these ad-

justment factors for eyewall penetrations during 2005 and correlated with the peak wind speed measured

by GPS dropwindsonde along the same flight leg, as shown in Figure 13a, and compared with SFMR

estimates (Fig. 13b).

[Figure 13 about here.]

Overall, a statistically-significant improvement by SFMR over the flight-level reduction method is in-

dicated, with the largest differences in the 30-50 ��� �
�
range; comparable accuracy is found at extreme

winds speeds. A fairly significant high bias in the flight-level reduced estimate relative to GPS dropwind-

sondes is shown (Fig. 13a), thus accounting for a 50% bias reduction improvement seen in the SFMR

data. The “90
�

rule” is well confirmed for the extreme wind cases in this dataset, and considering the

unexplained variability (
� � + � ) in the results found by Franklin et al. (2003), applies reasonably well in
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general. Interestingly, however, a significant underestimate (2.6 ���	�
�
) by GPS dropwindsondes relative

to SFMR (Fig. 13b) appears for peak wind speeds not present in the results obtained overall.

[Figure 14 about here.]

[Figure 15 about here.]

Figure 14 shows wind speeds as a function of radial distance from storm center for a typical eyewall

aircraft penetration. Referring to Fig. 14, Figure 15a indicates a good correlation with minimal bias for the

maximum � ���� and SFMR measured at the sonde release, which is expected since these data were used

to develop the GMF. However, as previously noted, a consistent low bias is found in the peak ��� � with

respect to the maximum SFMR wind speed (Fig. 15b). It is believed that the underestimate in the peak

observed � ��� relative to the peak observed SFMR wind speed is a result of the increased spatial coverage

of SFMR measurements as compared to the typically single peak wind estimate from GPS dropwindsondes

deployed in the eyewall. Figure 15c shows generally good correlation between peak SFMR and � ��� from

20-60 �����
�
, at the expense of expectedly increased scatter.

d. Surface peak wind location

Since a hurricane’s intensity is defined by the maximum wind speed at any point in the storm, it is

of interest to quantify the expected azimuthal location of the SFMR-measured earth-relative peak wind.

Maximum 10-s average SFMR wind speeds ( �  ) from 390 eyewall penetrations on 59 flights from 1998-

2005 are found. For each measurement, the clockwise azimuth angle with respect to the direction of storm

motion ( � ) is calculated. A wavenumber � � � (per
���

radians) asymmetric trigonometric function of the

form:

�  ��# � ) # ����� � ��� ) # � � (5)

is fit to the data for each flight. The rms error of each fit is calculated, and fits with � 10% error about

the mean ( # � ) are rejected. A total of 49 cases are accepted. An example from Hurricane Rita on 22

September 2005 is shown in Figure 16.

[Figure 16 about here.]
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The expected SFMR peak wind phase is located at � � � # � . Peak phase estimates are binned into

30 � intervals, and the peak wind speed location frequency distribution is shown in Figure 17. Additionally,

the frequency distributions for minimal (SS category 1/2) and major (category 3/4/5) hurricanes are also

plotted.

[Figure 17 about here.]

The peak SFMR wind speed is found to be located roughly 40 � clockwise from the storm motion direction,

on average. Also, the peak is located in the right-front storm quadrant (0 � � � 90 � ) in around 50% of the

cases, and is in the right-rear quadrant approximately 25% of the time. For intense hurricanes, the peak

wind right-front quadrant frequency increases to almost 65%. These results are consistent with previous

observations (Powell 1982) and theoretical results (Shapiro 1983; Kepert 2001) concerning the spatial

distribution of boundary-layer winds.

The location of the peak depends partly on the storm’s translation speed, and is due to enhanced

nonlinear asymmetric advective interactions as speed increases (Shapiro 1983). A fairly clear tendency

emerges (not shown), such that the SFMR peak location rotates 
 8 � clockwise for each ��� �
�

increase

in forward speed. Based on this limited sample, the SFMR peak wind speed is found in the right-rear

quadrant for hurricanes translating faster than 
 11 ���	�
�
. It is important to note that several other factors

may control the peak wind location, such as the environmental shear in which a hurricane is embedded,

spatial variability of sea surface conditions, and frictional effects due to coastal proximity.

5. Discussion

In developing the previous GMF, the wind-induced surface emissivity was calculated and correlated

with simultaneous surface wind speed estimates extrapolated from flight-level (500 m) winds using the

boundary-layer model of Powell (1980). Fundamentally, the model assumes that the neutral stability wind

profile, � ��� � , from flight level to the surface has a logarithmic shape. The slope in log-height coordinates

is proportional to the friction velocity ( � � ), and intercept is determined by the surface roughness length

( � � ), viz.:

� ��� ���
�
������ � �

� �	� � (6)
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where
�

is the von Karman constant. Closure is achieved by relating � � and � � by dimensional argument

through a Charnok (1955) expression. Errors in these quantities (or in the assumed shape) will, of course,

induce biases in extrapolated surface wind speeds. For example, if the observed roughness is smaller than

predicted, one might expect a relatively higher surface wind speed extrapolation from flight-level.

A recent analysis of GPS dropwindsonde wind speed profiles in the hurricane inner core (Franklin

et al. 2003) indicated that surface (10-m) winds were, on average, around 88% of the wind speed at 700

mb ( 
 3100 m). This value is roughly 10% greater than predicted by traditional BL models. Franklin et al.

(2003) speculated that convective transport of momentum downward toward the surface was responsible

for this momentum excess in the eyewall BL. The Powell et al. (2003) study yielded essentially identical

results, and demonstrated the observed weak slope of the logarithmic wind profile produced a lower drag

coefficient and roughness length than previously assumed. This conclusion suggests less of a frictional

drain on momentum in TC conditions.

With the recent ONR-sponsored CBLAST experiment, attention has turned toward gaining a better

understanding of air-sea momentum exchange in hurricanes. Data from both laboratory experiments

(Donelan et al. 2004) and field measurements (French et al. 2006) generally agree that the scalar mo-

mentum exchange (drag) coefficient, ����� � � � � � � � , does not continue to increase in hurricane force

winds speeds as it does at weaker winds. Previous boundary layer models that have assumed an extrapo-

lation of low-wind � � behavior to hurricane speeds would have a tendency to underestimate surface wind

speeds extrapolated from flight level. This is likely the reason for the initial bias in extreme SFMR surface

wind speed estimates utilizing the previously-developed GMF; excess emissivity measurements in these

conditions were correlated to surface wind speeds which were on average underestimated.

The laboratory results of Donelan et al. (2004) present compelling evidence that the physical nature of

the air-sea interface is markedly altered when wind speeds exceed hurricane force. The overall effect is to

reduce the downward flux of kinetic energy to the sea surface relative to what would be expected if the low-

wind speed behavior continued at higher wind speeds. Field observations of GPS dropwindsonde wind

profiles agree with this hypothesis, as the extrapolated roughness lengths are shown to be significantly

lower than previously expected. Though not directly related to the surface roughness and drag, the SFMR’s

emissivity measurements also corroborate these results.
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The excess emissivity is a function of the foam coverage, which is produced mainly by breaking surface

waves. Thus the emissivity is more directly related to surface wave energy dissipation,
���

, and not wind

energy input,
���

. These two quantities are related through the surface wave energy balance, which can

simply be expressed as:
��
� �
�

�
� ��� � ��� ) ���

� (7)

where
� � � �

	�
� ��


	�
� � � is the two-dimensional energy spectrum and

��
represents non-linear interac-

tions among spectral components. The energy input is related to the wind by (Terray et al. 1996):

���

 � � � � � (8)

where � is a characteristic wave phase speed. In the theoretical deep-water equilibrium limit, growth

is arrested, and
��� � ���

. Thus the growth of wind waves and spectral interaction prevents a unique

relationship between the surface wind speed and emissivity in all sea-state conditions. Following this in-

terpretation, Uhlhorn and Black (2003) noted a small ( 
 2.5 ���	�
�
) azimuthal (with respect to TC motion

direction) modulation of SFMR wind retrieval errors, and attributed this result to the strong variation in

fetch length and duration in a TC. If
��

is, on average, smaller than expected due to a lower � � (or � � ) for

the same wind speed, there should also be a compensating decrease in
���

to maintain the energy balance.

It appears that at around the same point where ��� levels off, the low-wind ( � 32 �����
�
) quadratic increase

in excess emissivity ceases, and a more modest linear increase is observed (Fig 4).

6. Conclusions

The new NOAA/AOC Stepped Frequency Microwave Radiometer represents a potentially significant

advancement in remote measurement of hurricane near-surface wind speeds, most notably in speeds � 50

��� �
�
. This improvement is due to both refined remote-sensing technologies, and more accurate ground-

truth data in the form of GPS dropwinsonde wind speed measurements. The AOC SFMR yields wind

speed measurements overall within 
 4 �����
�
rms of the dropwindsonde-estimated surface wind, and

within 
 5 �����
�
of the direct 10-m wind speed measurement. Wind speed measurements from the con-
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temporary AOC SFMR show precision better than the Hurricane Research Division’s SFMR by around a

factor of two.

The observation of a linear increase in sea surface emissivity with wind speed at hurricane-force is a

shift in understanding about sea surface radiometric properties. In practical terms, the previous quadratic

emissivity/wind speed model consistently underestimated winds at speeds � 50 ��� �
�
, and the new lin-

ear GMF corrects this anomaly. From a scientific standpoint, additional evidence is found for a distinct

physical change in the sea surface when surface winds exceed 
 30 ��� �
�
, and further, that momentum

and kinetic energy exchanges are relatively reduced at high wind speeds. This gain in understanding po-

tentially will lead to improvements in air/sea exchange parameterizations, ultimately resulting in superior

hurricane intensity forecasts.

With the recent spate of North Atlantic basin major hurricanes and the expected continuation of el-

evated activity, accurate intensity diagnosis is crucial for improved coastal watches/warnings and more

efficient evacuations. The anticipated installation of SFMRs aboard Air Force Reserve Command (AFRC)

hurricane reconnaissance aircraft will greatly increase the frequency at which storms are observed by

SFMR, and additional future algorithm modifications utilizing concomitant precipitation data from ad-

vanced airborne radars are expected to further improve SFMR hurricane wind speed accuracy.
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Figure 1: Time series (radial cross section) of � � measurements for each SFMR channel from Hurricane
Katrina (left panel), and the corresponding mean frequency-independent, wind-induced, excess emissivity
(right panel).
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using the eyewall-based surface adjustment method.
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Figure 4: Wind induced excess emissivity ( �  ) as a function of � � � (left panel), and binned �' estimates
(right panel). In the left panel, the best-fit result (Equation 5) is plotted as “New GMF”, and the previous
quadratic model function (“Old GMF”) is shown as the dashed line for comparison. The six points rejected
by the outlier detection are plotted as asterisks. In the right panel, the low wind speed quadratic portion
of the new GMF (“New GMF-Low”) is shown extended to the high-wind region to highlight the distinct
behavior difference below and above 
 32 ��� �

�
. Errorbars are 1 � , and values are number of observations

per bin.
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Figure 5: AOC SFMR-3 surface winds vs. � ���� for all dropwindsonde data obtained after July 2005. Left
panel uses old GMF, right panel uses new GMF. Note that the number of SFMR retrievals is different for
each GMF, since each function has unique convergence properties at weak wind speeds where sensitivity
is lowest.
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Figure 7: Same as Fig. 5, but for HRD SFMR and for data collected over entire 2005 season.
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Figure 8: Same as Fig. 5, but for SFMR-2 data collected over entire 2005 season.
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Figure 9: Surface wind speed retrievals vs. � ��� for all 3 SFMRs.
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Figure 11: Time series of winds for P-3 coordinated flight pattern example shown in Figure 10, along with
GPS surface wind estimates.
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Figure 12: Time series of wind measurements for three segments from both SFMRs installed on N43RF,
along with flight-level ( 
 3700 m) wind speeds.
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Figure 13: Peak GPS surface wind ( � ���� ) measured on a flight leg vs. peak surface wind estimated
from flight level data (a), and vs. peak SFMR wind speed (b). Mean values are computed over 10
��� �

�
bandwidths, and errorbars are 1 standard deviation. Values below errorbars are number of sam-

ples per bin, and values above indicate relative uncertainty (
�

). Overall statistics are also presented for
each comparison.
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Figure 14: Winds vs. radial distance from center for a typical aircraft eyewall penetration. Letters corre-
spond to panels in Figure 15 and refer to the data pairs examined.

42



0 20 40 60 80
0

20

40

60

80

12

13%

14

11%
13

10%

16

10%
11

7%

5

8%a

bias = −0.8 m s−1

S
F

M
R

 W
in

d 
S

pe
ed

 (
m

 s
−

1 )

Usfc  (m s−1)
0 20 40 60 80

12

14%

14

17%
13

10%

16

10%
11

7%

5

8%b

bias = +2.6 m s−1

Usfc  (m s−1)
0 20 40 60 80

0

20

40

60

80

9

16%

12

22%

7

18%

8

7%

5

12%c

bias = +1.4 m s−1

S
F

M
R

 W
in

d 
S

pe
ed

 (
m

 s
−

1 )

U 10 (m s−1)

Figure 15: Maximum GPS surface wind speed ( � � � ) vs SFMR at sonde release point (panel a); � ���� vs.
peak SFMR wind (b); and maximum GPS 10-m wind ( � ��� ) vs. peak SFMR (c). Panels correspond to data
points indicated in Fig. 14.
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Figure 16: Surface and flight-level wind speeds as a function of clockwise azimuth angle with respect to
storm motion direction. Also shown are wavenumber 1 fits to the data based on Equation 5.
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45



List of Tables

1 Summary of flights from which measurements were taken to develop the new �� �
% � � ���� � GMF. Flight ID is date and aircraft (I = N43RF). The number of sondes refers

to the potential number of paired SFMR emissivity/GPS sonde samples prior to outlier

screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Summary of normalized random variability for wind measurements obtained for the six

2003 CBLAST coordinated flight patterns in Hurricanes Fabian and Isabel. . . . . . . . . 48

3 Statistical summary of normalized random variability for wind measurements shown in

Figure 12 in Hurricane Rita on 21 September 2005. . . . . . . . . . . . . . . . . . . . . . 49

46



Storm Flight ID # Sondes # � ���� � 50 �����
�

# � ���� � 60 ��� �
�

Katrina 20050825I 9 0 0

Katrina 20050827I 22 0 0

Katrina 20050828I 33 11 5

Katrina 20050829I 23 0 0

Rita 20050921I 28 10 6

Rita 20050922I 30 6 0

Rita 20050923I 41 0 0

Table 1: Summary of flights from which measurements were taken to develop the new �  ���% ��� ���� � GMF.
Flight ID is date and aircraft (I = N43RF). The number of sondes refers to the potential number of paired
SFMR emissivity/GPS sonde samples prior to outlier screening.
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Data Source Variability (
�

)

Flt. Lvl. ( 
 2100 m) 2.8
�

1.3

Flt. Lvl. ( 
 350 m) 3.5
�

1.5

� ���� 2.0
�

2.3

� ��� 6.2
�

5.1

HSFMR 6.5
�

1.8

Table 2: Summary of normalized random variability for wind measurements obtained for the six 2003
CBLAST coordinated flight patterns in Hurricanes Fabian and Isabel.
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Data Source Variability (
�

)

Flt. Lvl. ( 
 3700 m) 3.7
�

0.5

HSFMR 4.1
�

1.4

AOC SFMR-3 2.2
�

0.4

Table 3: Statistical summary of normalized random variability for wind measurements shown in Figure 12
in Hurricane Rita on 21 September 2005.
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