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ABSTRACT

The results of a simulation study of multiple regression prediction models for meteorological forecasting are
reported. The effects of sample size, amount, and severity of nonrepresentative data in the population, inclusion
of noninformative predictors, and least (sum of) absolute deviations (LAD) and least (sum of) squared devia-
tions (LSD) regression models are examined on five populations constructed from meteorological data. Artificial
skill is shown to be a product of small sample size, LSD regression, and nonrepresentative data. Validation of
sample results is examined, and LAD regression is found to be superior to LSD regression when sample size is
small and nonrepresentative data are present.

1. Introduction

Recently developed prediction models of various at-
mospheric phenomena have motivated this study (Gray
et al. 1992, 1993, 1994). We are interested in the in-
fluence of various conditions on the degree of agree-
ment between observed values and values predicted by
a meteorological regression model. Of particular inter-
est are differences between least (sum of) absolute de-
viations (LAD) regression models and least (sum of)
squared deviations (LSD) regression models (com-
monly termed least squares models) under a variety of
research conditions. Such conditions include sample
size, the inclusion of uninformative independent vari-
ables, and the influence of the amount and severity of
nonrepresentative data.

In the context of artificial skill and validation in me-
teorological forecasting, we present examples of pre-
diction of intensity change of Atlantic tropical cyclones
24 h into the future. Datasets containing values of in-
dependent variables that deviate either moderately or
severely from the bulk of the available data are termed
‘‘nonrepresentative’’ or ‘‘contaminated’’ datasets. The
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use of contaminated data is to represent potential sit-
uations that frequently arise in forecasting, whether
it be day-to-day or seasonal forecasting. For predic-
tions of tropical cyclone intensity change in this case,
large errors (or contamination) in the predictors can
frequently occur. One common problem relates to
monitoring tropical cyclones at night with only in-
frared-channel satellite data available. When strong
vertical shear develops, often the convectively active
portion of the storm can be separated from the lower
portion of the storm circulation. At night, with just
the infrared pictures, a shear-forced separation will
not be detectable because the lower portion of the
storm will be nearly invisible to the infrared sensors.
When the first visible channel images are available
in the morning and it becomes apparent that the storm
has been sheared, there would have been overnight
errors of current intensity by up to 15 m s01 too high,
position errors about 100 km or more, and several
meters per second in storm motion error (Holland
1993) . Real errors like this are similar to the type
of contamination that we have built into the skill
testing.

The results of this study suggest that large samples
( i.e., n § 100) are needed for most forecasting stud-
ies of this type and that LAD regression is superior
to LSD regression whenever a small amount of mod-
erately contaminated data is present. The results also
suggest that meteorological regression studies of the
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type considered here should not be undertaken when-
ever a large amount of severely contaminated data is
expected.

2. Description of statistical measures

Let the population and sample sizes be denoted by
N and n , respectively; let yi denote the dependent (pre-
dicted) variable; and let xi1 , . . . , xip denote the p in-
dependent (predictor) variables associated with the i th
of n events. Consider the linear regression model given
by

p

y Å b / b x / e ,∑i 0 j ij i

jÅ1

where b0 , . . . , bp are p / 1 unknown parameters and
ei is an error term associated with the i th of n events.
The LAD and LSD prediction equations are given by

p

Iy Å Hb / Hb x ,∑i 0 j ij

jÅ1

where ỹi is the predicted value of yi and . . . ,Hb , Hb0 p

minimize the expression

n
£

Ée É∑ i

iÅ1

and where £Å 1 and £Å 2 are associated with the LAD
and LSD regression models, respectively.

The question arises as how best to determine the cor-
respondence between the observed (yi) values and the
predicted ( ỹi) values, for i Å 1,···, n . A widely used
method is to calculate the Pearson product-moment
correlation coefficient (r) or the coefficient of deter-
mination (r 2) between the paired values (e.g., Barnston
and Van den Dool 1993). The coefficient of determi-
nation is strictly a measure of linearity, and r 2 Å 1.0
implies that all paired values of yi and ỹi for i Å 1,···,
n fall on a line that does not necessarily have a unit
slope nor passes though the origin. Consequently, an
r2 Å 1.0 does not imply complete agreement between
the paired yi and ỹi values since r 2 Å 1.0 if yi and ỹi

differ by an additive constant and/or by a multiplica-
tive constant. For example, if the observed values are
yi Å i for i Å 1,···, n and the corresponding predicted
values are ỹi Å 50 / 2i for i Å 1,···, n , then the co-
efficient of determination between yi and ỹi is r 2

Å 1.0; clearly, the prediction model that generated
the ỹi values is useless. Thus, the use of the Pearson
product-moment correlation coefficient in assessing
prediction accuracy often produces an inflated index
of forecast skill. To avoid this problem, either the
mean square error (MSE) given by

n1 2MSE Å (y 0 Iy )∑ i in iÅ1

or the root-mean-square error (rmse) given by
1/2n1 2rmse Å (y 0 Iy )∑ i iF Gn iÅ1

is often employed. While the MSE and rmse are zero
when the yi and ỹi values are identical, the two measures
are not standardized measures and have no upper lim-
its. In addition, neither measure is independent of the
unit of measurement, and therefore, the measures are
difficult to compare across studies. For example, if yi

is measured first in knots and second in meters per
second, the values of the MSE and the rmse will
change. Finally, both the MSE and rmse are concep-
tually misleading. The often-cited geometric repre-
sentation of row vectors (y1 , . . . , yn ) and ( ỹ1 , . . . ,
ỹn ) in an n -dimensional space and the interpretation
of n 1 / 2 rmse as the Euclidean distance between the
observed and predicted n -dimensional points in this
space is an artificial construct. In reality, the n paired
values {(y1 , ỹ1 ) , . . . , (yn , ỹn )} are n repeated pairs
of points in a one-dimensional space. Furthermore,
the MSE and the rmse involve squared Euclidean dif-
ferences and they can be heavily influenced by one
or more extreme values (Cotton et al. 1994) , which
are not uncommon in meteorological research. An
alternative to the MSE or the rmse is the mean ab-
solute error (MAE) , in which the absolute differ-
ences are considered; that is,

n1
MAE Å Éy 0 Iy É.∑ i in iÅ1

Like the MSE and the rmse, the MAE is not indepen-
dent of the unit of measurement, is not a standardized
measure, and has no upper limit. However, the MAE
does mitigate the problem of extreme values. Finally,
while the rmse is a minimum when the ỹi values are
based on an LSD prediction model, the MAE is a min-
imum when the ỹi values are based on an LAD predic-
tion model. Although the MAE is often computed on
an LSD prediction model (e.g., Elsner and Schmert-
mann 1994), it is difficult to interpret when based on
LSD regression, and when LSD regression is used,
MAE values may not be comparable.

Because of the problems with these measures, many
researchers have turned to measures of agreement in
assessing prediction accuracy—for example, Willmott
(1982), Willmott et al. (1985), Tucker et al. (1989),
Gray et al. (1992), McCabe and Legates (1992), Bad-
escu (1993), Elsner and Schmertmann (1993), Hess
and Elsner (1994), and Cotton et al. (1994). For a
recent comparison of various measures of agreement,
see Watterson (1996).

In this study, the measure of agreement for both the
LAD and LSD prediction equations is given by

d
r Å 1 0 ,

md
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where
n1

£d Å Éy 0 Iy É ,∑ i in iÅ1

£ Å 1 is associated with LAD regression, £ Å 2 is as-
sociated with LSD regression, and md is the average
value of d over all n! equally likely permutations of y1 ,
. . . , yn relative to ỹ1 , . . . , ỹn under the null hypothesis
that the n pairs (yi and ỹi for i Å 1,···, n) are merely
the result of random assignment. This reduces to the
simple computational form given by

n n1
£m Å Éy 0 Iy É .∑ ∑d i j2n iÅ1 jÅ1

Since r is a chance-corrected measure of agreement, r
Å 1.0 implies that all paired values of yi and ỹi for i
Å 1,···, n fall on a line with unit slope that passes
through the origin (i.e., a perfect forecast) . Because d
Å MAE when £ Å 1 and d Å MSE when £ Å 2, all
values of r are based on £ Å 1 due to the geometric
concern involving mse.

3. Construction of the population

In the notation of the previous section, the 3958 avail-
able primary events used to construct the five populations
of this study consist of a dependent (predicted) variable
(y) and 10 independent (predictor) variables (x1, . . . ,
xp), where p Å 10. The dependent ‘‘variable’’ for these
populations is constructed from two datasets. In one data-
set the predicted values are intensity change 24 h into the
future; in the second dataset, the predicted values are in-
tensity 24 h into the future. A simulation study of this
type requires a population with a r value of approxi-
mately 0.50 in order to observe changes due to various
sampling conditions and to reflect obtained r values in
related studies (Gray et al. 1992, 1993, 1994). The de-
scriptions for each of these variables follow:

y Intensity change/intensity 24 h into the future (in
knots)

x1 Julian date (e.g., 1 is 1 January and 365 is 31
December)

x2 Latitude (in degrees and tenths of degrees)
x3 Longitude (in degrees and tenths of degrees)
x4 Current intensity (in knots)
x5 Change of intensity in last 12 h (in knots)
x6 Change of intensity in last 24 h (in knots)
x7 Speed of storm in zonal direction (in knots, where

positive is toward the east)
x8 Speed of storm in meridional direction (in knots,

where positive is toward the north)
x9 Absolute magnitude of speed of storm (in knots)
x10 Potential intensity difference (in knots) is based

upon an exponential function of sea surface
temperature (SST) minus the current intensity
(DeMaria and Kaplan 1994)

The intensity change values and the 10 predictors were
obtained from two separate datasets. Most of the values
were constructed from the Atlantic basin best track data
maintained by the National Hurricane Center (Jarvinen
et al. 1984). Tropical storm and hurricane statistics of
position, highest surface sustained winds, and lowest
surface pressure (if measured) for every 6 h of their
existence are available. Tropical storm data were re-
moved for those storms that became extratropical or
weakened below 35 kt by the 24-h verification time.
Additionally, the SST data were obtained from the
monthly SST (COADS) climatology (Reynolds
1988). These data are available on a 27 1 27 grid based
on the period 1950–79.

Two regression models designated as case 10 and
case 6 are examined in this study. Case 10 involves all
10 independent variables (p Å 10), whereas case 6
involves only 6 of the 10 independent variables (vari-
ables x6 , x7 , x8 , and x9 are removed and p Å 6). All
datasets used in this study are available from the au-
thors.

4. Simulation procedures

The present study investigates the effect of sample
size, type of regression model (LAD and LSD),
amount and degree of contamination, and noise-to-sig-
nal ratio on the degree of agreement between observed
and predicted values in five populations that differ in
amount and degree of contaminated data. Sample sizes
(n) of 15, 25, 40, 65, 100, 160, 250, and 500 events
are obtained from a fixed population of N Å 3958
events that, for the purpose of this study, is not contam-
inated with extreme cases, a fixed population of N
Å 3998 events consisting of the initial population and
40 moderately extreme events (1% moderate contam-
ination), a fixed population of N Å 3998 events con-
sisting of the initial population and 40 very extreme
events (1% severe contamination), a fixed population
of N Å 4158 events consisting of the initial population
and 200 moderately extreme events (5% moderate con-
tamination), and a fixed population of NÅ 4158 events
consisting of the initial population and 200 very ex-
treme events (5% severe contamination).

The moderate 1% (5%) contamination consists of
40 (200) carefully designed additional events. The ad-
ditional values of the independent variables were se-
lected from the lowest and highest values of the spec-
ified independent variable in the initial population.
Then, either the lowest or the highest value was se-
lected, based on a random binary choice. The associ-
ated values of the dependent variable were selected
from the center of the distribution of the dependent
variable in the initial population, near the median. The
severe 1% (5%) contamination involves 40 (200) cen-
tered dependent-variable values with the values of the
independent variables placed at 2.5 times the lower and
upper values of the ranges associated with the corre-
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sponding independent variables in the initial popula-
tion. The random sampling of events from each popu-
lation was implemented in the bootstrap context; that
is, the random sampling was accomplished with re-
placement. It should be noted that the contamination
and examination of datasets containing extreme values
is not new. Michaelsen (1987) analyzed datasets con-
taining naturally occurring extreme values. Barnston
and Van den Dool (1993) contaminated Gaussian data-
sets with extreme values in a study of cross-validated
skill. As Barnston and Van den Dool (1993) note, ex-
treme values are representative of many meteorological
events and, in addition, inclusion of very extreme val-
ues, up to 10 standard deviations from the mean
(Barnston and Van den Dool 1993), may be important
as ‘‘extreme design experiments.’’ Finally, it should be
emphasized that the initial population was designed and
constructed from real data. The added events that con-
taminate the initial population create populations of
data that are contaminated relative to the initial popu-
lation. Whatever contamination preexists in the initial
population of real data is unknown.

Two prediction models are considered for each pop-
ulation. The first prediction model (case 10) consists
of p Å 10 independent variables, and the second pre-
diction model (case 6) consists of p Å 6 independent
variables. In case 10, 4 of the 10 independent variables
were found to contribute no information to the predic-
tions. Case 6 is merely the prediction model with the
four noncontributing independent variables of case 10
deleted. Beginning with the 10 independent variables
of case 10, backward selection was used on the entire
population to identify the 6 contributing independent
variables of case 6. The reason for the two prediction
models is to examine the effect of including noncon-
tributing independent variables in a prediction model.

A few caveats regarding the simulation study and its
application to actual meteorological research follow. 1)
Although the initial population is constructed from ac-
tual meteorological data, the purpose of this study is
not to generate prediction models but rather to inves-
tigate statistical questions involving meteorological
prediction methods. 2) While this study depends on the
five specific populations that have been generated, the
findings of this study are anticipated to hold for a va-
riety of other populations. 3) Since this study involves
random sampling from a fixed population, the results
must be interpreted as a stationary process rather than
an evolutionary process, which is commonly associated
with climatic events in a time series framework. 4) In
practice an investigator often exhausts the available
data associated with a given study. Consequently, the
results of the present study should be interpreted in the
context of an unknown population for which a predic-
tion model is desired. 5) The present study is strictly
an empirical study. No distributional assumptions (e.g.,
normality) are made about any of the variables in the
population. 6) The purpose of this study is to help in-

vestigators choose sample sizes and regression tech-
niques for future research. Because of the artificial na-
ture of the dependent variable, no predictions to actual
meteorological events are intended.

5. Discussion of the findings

The findings of the study are summarized in Tables
1–5. In Tables 1a, 2a, 3a, 4a, and 5a, each row is spec-
ified by 1) a sample size (n) , 2) p Å 10 (case 10) and
p Å 6 (case 6) independent variables, and 3) LAD and
LSD regression analyses. In each of these tables the
first column (C1) contains the true r values for the
designated population, the second column (C2) con-
tains the average of 10 000 randomly obtained sample

values of a specified size where the ỹ values are basedPr
on the true population regression coefficients, and the
third column (C3) contains the average of 10 000 ran-
domly obtained sample values where the ỹ values arePr
based on the sample regression coefficients for each of
the 10 000 independent samples. The fourth column
(C4) is more complicated and is designed to measure
the effectiveness of validating sample regression co-
efficients. Here the sample regression coefficients from
10 000 random samples are obtained from column C3;
then, for each of these 10 000 sets of sample regression
coefficients an additional set of five independent ran-
dom samples of the same designated size (n Å 15,···,
500) are drawn from the population. The sample re-
gression coefficients from C3 are then applied to each
of these five new samples, and values are computedPr
for each of these five samples for a total of 50 000 Pr
values. The average of these 50 000 values is reportedPr
in column C4 of Table 1a, yielding a measure of the
effectiveness of sample validation—that is, applying
the sample regression coefficients from a single sample
to five new independent samples drawn from the same
population.

In Tables 1b, 2b, 3b, 4b, and 5b, each row is specified
by a sample size (n) , p Å 10 (case 10) and p Å 6 (case
6) independent variables, and LAD and LSD regres-
sion analyses. In each of these tables the first column
(C2/C1) contains the ratio of the average value ofPr
C2 to the corresponding true population r value of C1,
the second column (C3/C1) contains the ratio of the
average value of C3 to the corresponding true pop-Pr
ulation r value of C1, the third column (C4/C1) con-
tains the ratio of the average value of C4 to the cor-Pr
responding true population r value of C1, and the
fourth column (C4/C3) contains the ratio of the aver-
age value of C4 to the average value of C3.Pr Pr

a. Overview of the findings

There are four types of predictive skill to be exam-
ined in this study: true skill, optimal skill, artificial skill,
and expected skill. Each of the four types is considered
under the following conditions: contamination of the
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TABLE 1a. Population 1: Initial population consisting of 3958 noncontaminated events. Columns are (C1) true population r values, (C2)
average of 10 000 sample values based on population regression coefficients, (C3) average of 10 000 sample values based on regressionPr Pr
coefficients for each sample, and (C4) average of 5 sample values for each of 10 000 random sets of regression coefficients associated withPr
the 10 000 samples of C3.

Sample size Case Model C1 C2 C3 C4

15 10 LAD 0.51495 0.48082 0.83216 0.21959
LSD 0.51154 0.47761 0.76579 0.24721

6 LAD 0.51130 0.47737 0.69947 0.32214
LSD 0.50917 0.47552 0.64059 0.34883

25 10 LAD 0.51495 0.49471 0.69659 0.34693
LSD 0.51154 0.49153 0.63931 0.37427

6 LAD 0.51130 0.49102 0.61963 0.39741
LSD 0.50917 0.48911 0.57839 0.41795

40 10 LAD 0.51495 0.50259 0.62613 0.41279
LSD 0.51154 0.49937 0.58533 0.43132

6 LAD 0.51130 0.49918 0.57687 0.43965
LSD 0.50917 0.49717 0.54955 0.45455

65 10 LAD 0.51495 0.50770 0.58265 0.45361
LSD 0.51154 0.50438 0.55438 0.46425

6 LAD 0.51130 0.50414 0.55102 0.46701
LSD 0.50917 0.50212 0.53274 0.47611

100 10 LAD 0.51495 0.51068 0.55843 0.47627
LSD 0.51154 0.50729 0.53790 0.48182

6 LAD 0.51130 0.50702 0.53651 0.48269
LSD 0.50917 0.50499 0.52353 0.48814

160 10 LAD 0.51495 0.51224 0.54290 0.49184
LSD 0.51154 0.50890 0.52759 0.49302

6 LAD 0.51130 0.50855 0.52727 0.49364
LSD 0.50917 0.50650 0.51780 0.49598

250 10 LAD 0.51495 0.51352 0.53325 0.50076
LSD 0.51154 0.51010 0.52141 0.49982

6 LAD 0.51130 0.50987 0.52160 0.50012
LSD 0.50917 0.50771 0.51454 0.50081

500 10 LAD 0.51495 0.51363 0.52527 0.50865
LSD 0.51154 0.51017 0.51661 0.50562

6 LAD 0.51130 0.50992 0.51685 0.50578
LSD 0.50917 0.50779 0.51206 0.50500

population data in both degree and amount; type of
regression model used, that is, LAD and LSD; the ratio
of noise-to-signal in the data where the 10-predictor
model (case 10) contains a relatively high noise-to-
signal ratio and the 6-predictor model (case 6) contains
a relatively low noise-to-signal ratio; and sample size,
which varies from n Å 15 to n Å 500.

The first type of skill to be considered is true skill,
which is defined as the agreement, measured by a r
value, between the observed (y) and predicted ( ỹ) val-
ues when the entire population is available and the r
values are based on the true population regression co-
efficients. In general, true skill is used as a benchmark
against which the other three forms of skill are evalu-
ated. The true skill r values are given in column C1 of
Tables 1a, 2a, 3a, 4a, and 5a.

The second type of skill is optimal skill, which re-
flects the average agreement, measured by a value,Pr
between the observed (y) and predicted ( ỹ) values
when only a specified sample is available and the ỹ
values are based on the true population regression co-
efficients. Optimal skill is measured as the ratio of the
sample value, with the population regression coeffi-Pr

cients presumed known, to the corresponding true skill
r value. Specifically, the relevant values are given inPr
column C2 of Tables 1a, 2a, 3a, 4a, and 5a, and the
optimal skill ratios are given in the C2/C1 column of
Tables 1b, 2b, 3b, 4b, and 5b. The expectation is that
the tabled C2/C1 ratios will be a little less than 1.0,
even for small samples, because they reflect what
would happen if a researcher drew a sample and, for-
tuitously, happened to get a set of sample-based re-
gression coefficients very close to the true population
regression coefficients. The reason that the tabled C2/
C1 ratios are not equal to 1.0 is because the sum of
errors in the sample is not minimized by the population
regression coefficients. Note, however, that as sample
size increases the corresponding sample optimal fit
approaches the population fit and the C2/C1 values ap-
proach 1.0.

The third type of skill is artificial skill, which reflects
the average agreement, measured by a value, betweenPr
the observed (y) and predicted ( ỹ) values when a spec-
ified sample is available and the ỹ values are based on
the sample regression coefficients (Shapiro 1984). For
an alternative definition of artificial skill, based on the
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TABLE 1b. Population 1: Initial population consisting of 3958 noncontaminated events. Columns are ratio estimators
C2/C1, C3/C1, C4/C1, and C4/C3 associated with C1, C2, C3, and C4 of Table 1a.

Sample size Case Model C2/C1 C3/C1 C4/C1 C4/C3

15 10 LAD 0.934 1.616 0.426 0.264
LSD 0.934 1.497 0.483 0.323

6 LAD 0.934 1.368 0.630 0.461
LSD 0.934 1.258 0.685 0.545

25 10 LAD 0.961 1.353 0.674 0.498
LSD 0.961 1.250 0.732 0.585

6 LAD 0.961 1.212 0.777 0.641
LSD 0.961 1.136 0.821 0.723

40 10 LAD 0.976 1.216 0.802 0.659
LSD 0.976 1.144 0.843 0.737

6 LAD 0.976 1.128 0.860 0.762
LSD 0.976 1.080 0.893 0.827

65 10 LAD 0.986 1.131 0.881 0.779
LSD 0.986 1.084 0.908 0.837

6 LAD 0.986 1.078 0.913 0.848
LSD 0.986 1.046 0.935 0.894

100 10 LAD 0.992 1.084 0.925 0.853
LSD 0.992 1.052 0.942 0.896

6 LAD 0.992 1.049 0.944 0.900
LSD 0.992 1.028 0.959 0.932

160 10 LAD 0.995 1.054 0.955 0.906
LSD 0.995 1.031 0.965 0.934

6 LAD 0.995 1.031 0.965 0.936
LSD 0.995 1.017 0.974 0.958

250 10 LAD 0.997 1.036 0.972 0.939
LSD 0.997 1.019 0.977 0.959

6 LAD 0.997 1.020 0.978 0.959
LSD 0.997 1.011 0.984 0.973

500 10 LAD 0.997 1.013 0.988 0.968
LSD 0.997 1.010 0.988 0.985

6 LAD 0.997 1.011 0.989 0.979
LSD 0.997 1.006 0.992 0.986

difference between hindcast and forecast skill, see Mi-
chaelsen (1987). Artificial skill is measured as the ratio
of the sample value, with the population regressionPr
coefficients presumed unknown, to the corresponding
true skill r value. Specifically, the relevant values arePr
given in column C3 of Tables 1a, 2a, 3a, 4a, and 5a,
and the artificial skill ratios are given in the C3/C1
column of Tables 1b, 2b, 3b, 4b, and 5b. The expec-
tation is that the C3/C1 values will be slightly above
1.0 because of what is commonly termed ‘‘retrospec-
tive’’ fit (Copas 1983) between the y and ỹ values; that
is, the sum of errors is minimized because the regres-
sion coefficients are based on the sample data. In gen-
eral, tabled C3/C1 values greater than 1.0 reflect the
amount of artificial skill inherent in retrospective fit;
for convenience, we will call this a ‘‘degrading’’ of the
prediction; that is, the sample-based value overesti-Pr
mates the true population r value and the sample Pr
value must be degraded by multiplying it by the recip-
rocal of the tabled C3/C1 value.

It should be noted in this context that artificial skill
is a type of optimizing bias where the results are biased
upward. There is a second type of bias that also con-
tributes to artificial skill: selection bias. This occurs
when a subset of independent variables is selected from

the population based on information in the sample. As
in the case of optimizing bias, artificial skill is biased
upward when selection bias is present. In this study,
the measure of artificial skill reflects only optimizing
bias. Selection bias has been controlled by selecting the
two sets of independent variables (cases 10 and 6) from
information contained in the designed population, not
from information contained in a sample.

The fourth type of skill is expected skill, which re-
flects the average agreement, measured by a value,Pr
between the observed (y) and predicted ( ỹ) values
when a specified sample is available and the sample
regression coefficients are applied to an additional set
of samples independently drawn from the same popu-
lation. Expected skill is measured as the ratio of the
average sample value to the corresponding true skillPr
r value. The relevant values are given in column C4Pr
of Tables 1a–5a, and the expected skill ratios are given
in the C4/C1 column of Tables 1b–5b. The expectation
is that the tabled C4/C1 values will be slightly less than
1.0 because they reflect what is commonly termed
‘‘prospective’’ or ‘‘validation’’ fit (Copas 1983) be-
tween the y and ỹ values; that is, the sum of errors is
not minimized because the regression coefficients are
based on only one of the six independently drawn ran-
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TABLE 2a. Population 2: Contaminated population of 3998 events consisting of the initial population of 3958 events and 40 moderately
extreme events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on population regressionPr
coefficients, (C3) average of 10 000 sample values based on regression coefficients for each sample, and (C4) average of 5 samplePr Pr
values for each of 10 000 random sets of regression coefficients associated with the 10 000 samples of C3.

Sample size Case Model C1 C2 C3 C4

15 10 LAD 0.48886 0.45910 0.83077 0.20662
LSD 0.45120 0.42411 0.76387 0.23315

6 LAD 0.48220 0.45252 0.69081 0.30215
LSD 0.44984 0.42341 0.63008 0.32887

25 10 LAD 0.48886 0.46911 0.69099 0.32943
LSD 0.45120 0.43261 0.63311 0.35703

6 LAD 0.48220 0.46237 0.60467 0.37074
LSD 0.44984 0.43126 0.56220 0.39249

40 10 LAD 0.48886 0.47813 0.61657 0.38947
LSD 0.45120 0.44118 0.57548 0.40904

6 LAD 0.48220 0.47150 0.55632 0.40805
LSD 0.44984 0.43999 0.52658 0.42208

65 10 LAD 0.48886 0.48137 0.56622 0.42434
LSD 0.45120 0.44442 0.53715 0.43587

6 LAD 0.48220 0.47475 0.52586 0.43418
LSD 0.44984 0.44322 0.50036 0.43615

100 10 LAD 0.48886 0.48438 0.53914 0.44413
LSD 0.45120 0.44706 0.51555 0.44819

6 LAD 0.48220 0.47785 0.51103 0.45081
LSD 0.44984 0.44588 0.48556 0.44265

160 10 LAD 0.48886 0.48586 0.51867 0.45922
LSD 0.45120 0.44862 0.49590 0.45266

6 LAD 0.48220 0.47922 0.49982 0.46294
LSD 0.44984 0.44729 0.47246 0.44554

250 10 LAD 0.48886 0.48792 0.50767 0.46914
LSD 0.45120 0.45021 0.48257 0.45410

6 LAD 0.48220 0.48128 0.49408 0.47041
LSD 0.44984 0.44889 0.46486 0.44727

500 10 LAD 0.48886 0.48793 0.49896 0.47922
LSD 0.45120 0.45036 0.46904 0.45367

6 LAD 0.48220 0.48131 0.48999 0.47780
LSD 0.44984 0.44905 0.45838 0.44897

dom samples. In general, tabled C4/C1 values less than
1.0 indicate the amount of skill that is expected relative
to the true skill possible when a population is available.
More specifically, if researchers were to use the sample
coefficients in a prediction equation, as is commonly
done in practice, then the C4/C1 values indicate the
expected reduction in fit of the y and ỹ values for future
results. Any tabled C4/C1 value greater than 1.0 is
cause for concern since this indicates that the sample
estimates of the population regression coefficients pro-
vide a better validation fit, on average, than would be
possible had the actual population been available and
is evidence that some sort of inflation of expected skill
is present in the analysis.

b. Population 1

Population 1 is the initial population of N Å 3958
noncontaminated events. The results of the analysis of
population 1 are summarized in Tables 1a and 1b. Since
sample values that are based on true population re-Pr
gression coefficients behave very much like unbiased
estimators of the true r values, the average sample Pr

values in column C2 of Table 1a are, as expected, very
close to the true population r values in column C1 of
Table 1a. The corresponding ratios are given in the C2/
C1 column of Table 1b. It is obvious from an inspec-
tion of these values that larger sample sizes provide
better predictions; that is, the ratio approaches 1.0 as
sample size increases from n Å 15 to n Å 500, there
are no differences between the 10-predictor model
(case 10) and the 6-predictor model (case 6) , and
there are no appreciable differences between the
LAD and LSD regression models, other conditions
being equal.

In most studies, the population regression coeffi-
cients are not known, and the sample value is basedPr
strictly on the sample regression coefficients, as in col-
umn C3 of Table 1a. Whenever a sample is obtained
from a population there will be, on average, a degrad-
ing of the prediction; that is, the sample-based valuePr
will overestimate the true population r value. Column
C3/C1 in Table 1b is a measure of the degrading for
this population. Inspection of the C3/C1 column indi-
cates that the sample values are indeed biased up-Pr
ward, as all of the C3/C1 values are greater than 1.0.
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TABLE 2b. Population 2: Contaminated population of 3998 events consisting of the initial population of 3958 events and 40 moderately
extreme events. Columns are ratio estimators C2/C1, C3/C1, C4/C1, and C4/C3 associated with C1, C2, C3, and C4 of Table 2a.

Sample size Case Model C2/C1 C3/C1 C4/C1 C4/C3

15 10 LAD 0.937 1.699 0.423 0.249
LSD 0.940 1.693 0.517 0.305

6 LAD 0.938 1.433 0.627 0.437
LSD 0.941 1.401 0.731 0.522

25 10 LAD 0.960 1.413 0.674 0.477
LSD 0.959 1.403 0.791 0.564

6 LAD 0.959 1.254 0.769 0.613
LSD 0.959 1.250 0.873 0.698

40 10 LAD 0.978 1.261 0.797 0.632
LSD 0.978 1.275 0.907 0.711

6 LAD 0.978 1.154 0.846 0.733
LSD 0.978 1.171 0.938 0.802

65 10 LAD 0.985 1.158 0.868 0.749
LSD 0.985 1.190 0.966 0.811

6 LAD 0.985 1.091 0.900 0.826
LSD 0.985 1.112 0.970 0.872

100 10 LAD 0.991 1.103 0.909 0.824
LSD 0.991 1.143 0.993 0.869

6 LAD 0.991 1.060 0.935 0.882
LSD 0.991 1.079 0.984 0.912

160 10 LAD 0.994 1.061 0.939 0.885
LSD 0.994 1.099 1.003 0.913

6 LAD 0.994 1.037 0.960 0.926
LSD 0.994 1.050 0.990 0.943

250 10 LAD 0.998 1.038 0.960 0.924
LSD 0.998 1.070 1.006 0.941

6 LAD 0.998 1.025 0.964 0.952
LSD 0.998 1.033 0.994 0.962

500 10 LAD 0.998 1.021 0.980 0.960
LSD 0.998 1.040 1.005 0.967

6 LAD 0.998 1.016 0.991 0.975
LSD 0.998 1.019 0.998 0.979

It is also clear that the amount of degrading decreases
with increasing sample size, that case 6 (6 predictors)
is superior to case 10 (10 predictors) , and that the LSD
regression model provides less bias than the LAD re-
gression model. Note also that most of these differences
disappear as the sample size becomes larger.

A comparison of the C2/C1 and C3/C1 columns
yields an important conclusion: should an investigator
be fortunate enough to select a sample, of any size, that
yields regression coefficients that are close to the true
population regression coefficients, then, as can be seen
in column C2/C1, the predicted values will show high
agreement with the observed values. A luxury of a sim-
ulation study of this type is that the true population
values are known. In most research situations, an in-
vestigator has only a single sample with which to work
and has no way of knowing if the obtained value isPr
too high.

The problem of validated predictions (really predic-
tions which are not validated) is important in meteo-
rological forecasting, and the C4/C1 column provides
a measure of the effectiveness of validated predictions
for population 1. The values presented in the C4/C1
column indicate that validation is extremely poor for
small sample sizes where the expected skill ratios are

considerably less than 1.0, but the problem nearly dis-
appears for larger samples. There is a considerable dif-
ference between case 10 and case 6 for small samples,
but most of the difference disappears for the larger sam-
ples. The LSD regression model is superior to the LAD
regression model for small samples, but there is no dif-
ference for the larger samples. Note that no tabled C4/
C1 value exceeds 1.0. Values greater than 1.0 would
indicate, as noted previously, that sample estimates of
the population regression coefficients provide better
validation fits, on average, than would be possible had
the actual population been available. The ratio values
in the C4/C3 column contain the amount of expected
skill (C4/C1) adjusted for the amount of artificial skill
(C3/C1). There is an amount by which validation fit
(C4) falls short of retrospective fit (C3), and the values
in the C4/C3 column summarize this ‘‘shrinkage’’ (cf.
Copas 1983) in a ratio format. The C4/C3 ratio pro-
vides the most stringent measure of anticipated reduc-
tion in prediction, relative to available sample infor-
mation. While it is not possible to compare across cases
(10 and 6) or across models (LAD and LSD) because
a common base does not exist, it is possible to compare
across sample size (nÅ 15 to nÅ 500) within the same
case and model. It is clear that, within these restrictions,
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TABLE 3a. Population 3: Contaminated population of 3998 events consisting of the initial population of 3958 events and 40 very extreme
events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on population regression coefficients, (C3)Pr
average of 10 000 sample values based on regression coefficients for each sample, and (C4) average of 5 sample values for each ofPr Pr
10 000 random sets of regression coefficients associated with the 10 000 samples of C3.

Sample size Case Model C1 C2 C3 C4

15 10 LAD 0.44873 0.43134 0.83121 0.20082
LSD 0.29776 0.28300 0.76468 0.22665

6 LAD 0.43722 0.42140 0.69002 0.29357
LSD 0.27225 0.26012 0.62930 0.31866

25 10 LAD 0.44873 0.43807 0.69172 0.31845
LSD 0.29776 0.28593 0.63445 0.34486

6 LAD 0.43722 0.42716 0.60065 0.35366
LSD 0.27225 0.26222 0.55827 0.37435

40 10 LAD 0.44873 0.44390 0.61802 0.37532
LSD 0.29776 0.29164 0.57769 0.39366

6 LAD 0.43722 0.43308 0.54451 0.37879
LSD 0.27225 0.26747 0.51698 0.39520

65 10 LAD 0.44873 0.44517 0.56667 0.40517
LSD 0.29776 0.29398 0.53918 0.41701

6 LAD 0.43722 0.43396 0.49965 0.38841
LSD 0.27225 0.26908 0.47894 0.39580

100 10 LAD 0.44873 0.44689 0.53523 0.41757
LSD 0.29776 0.29530 0.51541 0.42518

6 LAD 0.43722 0.43560 0.47492 0.39691
LSD 0.27225 0.27015 0.44794 0.38686

160 10 LAD 0.44873 0.44739 0.50458 0.42088
LSD 0.29776 0.29634 0.48765 0.42113

6 LAD 0.43722 0.43595 0.45708 0.40649
LSD 0.27225 0.27109 0.41056 0.36825

250 10 LAD 0.44873 0.44871 0.48421 0.42473
LSD 0.29776 0.29699 0.45964 0.40951

6 LAD 0.43722 0.43730 0.44837 0.41433
LSD 0.27225 0.27167 0.37856 0.34883

500 10 LAD 0.44873 0.44838 0.46656 0.43340
LSD 0.29776 0.29723 0.40724 0.37716

6 LAD 0.43722 0.43696 0.44242 0.42437
LSD 0.27225 0.27190 0.33445 0.31859

larger sample sizes yield less shrinkage of expected
skill than smaller sample sizes. For example, given case
6, the LAD regression model, and n Å 15, C4/C3
Å 0.461; however, C4/C3 Å 0.762 when n Å 40.
Shrinkage in expected skill is minimal for n § 250.

Finally, with respect to Table 1a, a feature worth
noting is that a true population r value of 1.0 implies
that the corresponding values in columns C2, C3, andPr
C4 must also be 1.0. A population value of r Å 1.0
reflects a perfect linear relationship between the ob-
served and predicted values; that is, all points are on a
straight line having unit slope and zero origin. Conse-
quently, any sample of values selected from such a pop-
ulation must necessarily yield a value of 1.0.Pr

c. Population 2

Population 2 is the contaminated population of N
Å 3998 events consisting of the initial population of
3958 events and 40 moderately extreme events ( i.e.,
1% moderate contamination). The results of the anal-
ysis of population 2 are summarized in Tables 2a and
2b. The average sample values in column C2 of TablePr

2a are very close to the true population r values in
column C1, and as can be seen in the C2/C1 column
of Table 2b, larger sample sizes provide better predic-
tions than smaller samples. In addition, there is no dif-
ference between the LAD and LSD regression models,
and very little difference between case 10 and case 6.
It should be noted that case 10 and case 6 are well
defined only for the initial population (population 1),
which contains no contaminated data. That is, in the
initial uncontaminated population, the four additional
predictors of case 10 are truly noise and add no pre-
dictive power above and beyond the 6 predictors of
case 6. However, in populations 2–5 the difference be-
tween case 10 and case 6 is not necessarily only noise.
Because the contamination has been added to the in-
dependent variables, it may be that for populations 2–
5 the four additional predictors of case 10 now contain
a real signal.

Examination of the C3/C1 column in Table 2b re-
veals that degrading follows the same general pattern
as the C3/C1 column of Table 1b except that there is
more degrading due to the contamination of the pop-
ulation. Again, the amount of degrading decreases with



/ams 3q04 0208 Mp 162 Thursday May 23 03:46 PM AMS: Forecasting (June 96) 0208

162 VOLUME 11W E A T H E R A N D F O R E C A S T I N G

TABLE 3b. Population 3: Contaminated population of 3998 events consisting of the initial population of 3958 events and 40 very extreme
events. Columns are ratio estimators C2/C1, C3/C1, C4/C1, and C4/C3 associated with C1, C2, C3, and C4 of Table 3a.

Sample size Case Model C2/C1 C3/C1 C4/C1 C4/C3

15 10 LAD 0.961 1.852 0.448 0.242
LSD 0.950 2.568 0.761 0.296

6 LAD 0.964 1.578 0.671 0.425
LSD 0.955 2.311 1.170 0.506

25 10 LAD 0.976 1.538 0.710 0.460
LSD 0.960 2.131 1.158 0.544

6 LAD 0.977 1.374 0.809 0.589
LSD 0.963 2.051 1.375 0.671

40 10 LAD 0.989 1.337 0.836 0.607
LSD 0.979 1.940 1.322 0.681

6 LAD 0.991 1.245 0.866 0.696
LSD 0.982 1.899 1.452 0.764

65 10 LAD 0.992 1.263 0.903 0.715
LSD 0.987 1.811 1.400 0.773

6 LAD 0.993 1.143 0.888 0.777
LSD 0.988 1.759 1.454 0.826

100 10 LAD 0.996 1.193 0.931 0.780
LSD 0.992 1.731 1.428 0.825

6 LAD 0.996 1.086 0.908 0.836
LSD 0.992 1.645 1.421 0.864

160 10 LAD 0.997 1.124 0.938 0.834
LSD 0.995 1.638 1.414 0.864

6 LAD 0.997 1.045 0.930 0.889
LSD 0.996 1.508 1.353 0.897

250 10 LAD 1.000 1.079 0.947 0.877
LSD 0.997 1.544 1.375 0.891

6 LAD 1.000 1.026 0.948 0.924
LSD 0.998 1.390 1.281 0.921

500 10 LAD 0.999 1.040 0.966 0.929
LSD 0.998 1.368 1.267 0.926

6 LAD 0.999 1.012 0.971 0.959
LSD 0.999 1.228 1.170 0.953

increasing sample size, and case 6 is consistently su-
perior to case 10. However, in contrast to Table 1b, it
is the LAD regression model that provides less bias
than the LSD regression model once sample size is in-
creased to about n Å 40. Column C4/C1 of Table 2b
reflects the same general pattern of expected skill as
column C4/C1 of Table 1b except that the validation
fit is worse overall due to the contamination of the pop-
ulation. Again, the validation fit is poor for small sam-
ples. Case 6 generally does better than case 10, and the
LSD regression model performs better than the LAD
regression model, for most cases. One problematic re-
sult appears in the C4/C1 column for case 10, LSD,
and n Å 160, n Å 250, and n Å 500, where the average

values exceed 1.0. In all three cases this occurs withPr
large n , with the LSD regression model, and with case
10, which contains the four predictors that add nothing
to the prediction equation in population 1. These results
are consistent with the findings of Barnston and Van
den Dool (1993) in their study of cross-validation skill.

As noted previously, the LSD regression model ap-
pears to do better than the LAD regression model for
small to moderate sample sizes. However, for larger
sample sizes the LSD regression model is clearly bi-
ased, overstating the validation fit and producing ex-

aggerated estimates of expected skill. It appears, from
the larger sample results, that LSD may not really be
doing better than LAD for smaller sample sizes and that
exaggerated skill may also be present in these small
sample results without pushing the ratios over 1.0. The
tabled C4/C1 values greater than 1.0 indicate that the
LSD regression model provides a validation fit that is
too optimistic and casts a shadow of suspicion on those
LSD regression results that are higher than the LAD
regression results but still less than 1.0. The C4/C3
values in Table 2b indicate that the shrinkage of ex-
pected skill decreases as sample size increases, and
shrinkage is of little consequence for n § 250.

d. Population 3

Population 3 is the contaminated population of N
Å 3998 events consisting of the initial population of
3958 events and 40 very extreme events ( i.e., 1% se-
vere contamination). The results of the analysis of pop-
ulation 3 are summarized in Tables 3a and 3b. Inspec-
tion of Table 3b discloses that even a small amount
(i.e., 1%) of severe contamination of a population pro-
duces acute problems for the LSD regression model. In
this population there is a small amount of severe con-
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TABLE 4a. Population 4: Contaminated population of 4158 events consisting of the initial population of 3958 events and 200 moderately
extreme events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on population regressionPr
coefficients, (C3) average of 10 000 sample values based on regression coefficients for each sample, and (C4) average of 5 samplePr Pr
values for each of 10 000 random sets of regression coefficients associated with the 10 000 samples of C3.

Sample size Case Model C1 C2 C3 C4

15 10 LAD 0.36924 0.34738 0.82319 0.17630
LSD 0.31192 0.29274 0.75362 0.19886

6 LAD 0.36698 0.34557 0.66307 0.24413
LSD 0.30599 0.28720 0.59807 0.26934

25 10 LAD 0.36924 0.35603 0.66658 0.26978
LSD 0.31192 0.30014 0.60568 0.29496

6 LAD 0.36698 0.35403 0.54840 0.28455
LSD 0.30599 0.29463 0.50205 0.30704

40 10 LAD 0.36924 0.36334 0.57417 0.30939
LSD 0.31192 0.30653 0.52983 0.33079

6 LAD 0.36698 0.36115 0.48241 0.30925
LSD 0.30599 0.30071 0.44501 0.32037

65 10 LAD 0.36924 0.36553 0.50310 0.33020
LSD 0.31192 0.30853 0.46771 0.34046

6 LAD 0.36698 0.36338 0.43752 0.32591
LSD 0.30599 0.30268 0.39896 0.32084

100 10 LAD 0.36924 0.36664 0.45960 0.34149
LSD 0.31192 0.30930 0.42314 0.33801

6 LAD 0.36698 0.36439 0.41285 0.33750
LSD 0.30599 0.30348 0.36963 0.31813

160 10 LAD 0.36924 0.36788 0.42656 0.34929
LSD 0.31192 0.31047 0.38503 0.33172

6 LAD 0.36698 0.36563 0.39421 0.34556
LSD 0.30599 0.30464 0.34668 0.31471

250 10 LAD 0.36924 0.36784 0.40505 0.35441
LSD 0.31192 0.31052 0.35909 0.32608

6 LAD 0.36698 0.36567 0.38328 0.35161
LSD 0.30599 0.30475 0.33194 0.31188

500 10 LAD 0.36924 0.36859 0.38708 0.36071
LSD 0.31192 0.31133 0.33582 0.32013

6 LAD 0.36698 0.36635 0.37622 0.36011
LSD 0.30599 0.30544 0.31932 0.30961

tamination, and an examination of the C2/C1 column
in Table 3b shows that larger sample sizes increase
accuracy, that case 6 is superior to case 10, and that,
for the first time, the LAD regression model performs
better than the LSD regression model. Column C3/C1
underscores the problem of estimating population pa-
rameters from sample statistics whenever contamina-
tion is present. Obviously, there is a large amount of
artificial skill, indicated by values considerably greater
than 1.0. Here, as in the C2/C1 column, case 6 is better
than case 10, and the LAD regression model consis-
tently outperforms the LSD regression model. Finally,
the results listed in the C4/C1 column reveal acute
problems with the LSD regression model, which intro-
duces severe inflation of expected skill for both case
10 and case 6 and for nearly all sample sizes. On the
other hand, the LAD regression model does very well,
provided the sample size is greater than n Å 65. The
C4/C3 ratio values in Table 3b are similar to those in
Tables 1b and 2b: there is little shrinkage for the larger
samples, and shrinkage decreases as sample size in-
creases.

e. Population 4

Population 4 is the contaminated population of N
Å 4158 events consisting of the initial population of
3958 events and 200 moderately extreme events ( i.e.,
5% moderate contamination). The results of the anal-
ysis of population 4 are summarized in Tables 4a and
4b. Inspection of column C2/C1 of Table 4b yields the
following conclusions: the larger sample sizes yield
better results except for the largest sample sizes in
which the results are approximately equal, case 6 per-
forms better than case 10, and the LAD regression
model is much better than the LSD regression model.
Column C3/C1 clearly shows the bias in estimation
when relying on sample estimators. While very large
samples control for this bias, results with smaller sam-
ple sizes are clearly biased upward with much artificial
skill in evidence. Again, case 6 performs better than
case 10, and the LAD regression model is consistently
superior to the LSD regression model. Column C4/C1
clearly demonstrates the inherent difficulties with the
LSD regression model, where almost all of the ratios



/ams 3q04 0208 Mp 164 Thursday May 23 03:46 PM AMS: Forecasting (June 96) 0208

164 VOLUME 11W E A T H E R A N D F O R E C A S T I N G

TABLE 4b. Population 4: Contaminated population of 4158 events consisting of the initial population of 3958 events and 200 moderately
extreme events. Columns are ratio estimators C2/C1, C3/C1, C4/C1, and C4/C3 associated with C1, C2, C3, and C4 of Table 4a.

Sample size Case Model C2/C1 C3/C1 C4/C1 C4/C3

15 10 LAD 0.941 2.229 0.477 0.214
LSD 0.939 2.416 0.638 0.242

6 LAD 0.942 1.807 0.665 0.368
LSD 0.939 1.955 0.880 0.450

25 10 LAD 0.964 1.805 0.731 0.405
LSD 0.962 1.942 0.946 0.487

6 LAD 0.965 1.494 0.775 0.519
LSD 0.963 1.641 1.003 0.612

40 10 LAD 0.984 1.555 0.838 0.539
LSD 0.983 1.699 1.060 0.624

6 LAD 0.984 1.315 0.843 0.641
LSD 0.983 1.454 1.047 0.720

65 10 LAD 0.990 1.363 0.894 0.656
LSD 0.989 1.499 1.091 0.728

6 LAD 0.990 1.192 0.888 0.745
LSD 0.989 1.304 1.049 0.804

100 10 LAD 0.993 1.245 0.925 0.743
LSD 0.992 1.357 1.084 0.799

6 LAD 0.993 1.125 0.920 0.817
LSD 0.992 1.208 1.040 0.861

160 10 LAD 0.996 1.155 0.946 0.819
LSD 0.995 1.234 1.063 0.862

6 LAD 0.996 1.074 0.942 0.877
LSD 0.996 1.133 1.028 0.908

250 10 LAD 0.996 1.097 0.960 0.875
LSD 0.996 1.151 1.045 0.908

6 LAD 0.996 1.044 0.958 0.917
LSD 0.996 1.085 1.019 0.940

500 10 LAD 0.998 1.048 0.977 0.932
LSD 0.998 1.077 1.026 0.953

6 LAD 0.998 1.025 0.981 0.957
LSD 0.998 1.044 1.012 0.970

exceed 1.0. Here, the LAD regression model provides
excellent validation fits and reasonable estimates of ex-
pected skill, while the LSD regression model is clearly
overfitting the y and ỹ values and providing inflated
estimates of expected skill. The C4/C3 ratio values in
Table 4b indicate that as sample size increases, shrink-
age decreases.

f. Population 5

Population 5 is the contaminated population of N
Å 4158 events consisting of the initial population of
3958 events and 200 very extreme events ( i.e., 5% se-
vere contamination). The results of the analysis of pop-
ulation 5 are summarized in Tables 5a and 5b. The C2/
C1 values are not that different from the C2/C1 values
of the other populations. The values in column C3/C1
show just how bad sample estimators can be, especially
for small samples, with many estimates of artificial skill
in excess of 4.0 and some even greater than 5.0. It is
interesting to note, however, that the LAD regression
model performs better than the LSD regression model
for all sample sizes. In addition, case 10 outperforms
case 6 in these circumstances. Column C4/C1 dem-
onstrates the problem of generalizing to other samples

with contaminated population data. Here, both the LAD
and LSD regression models incorporate inflated ex-
pected skill, although the LAD regression model is less
affected than the LSD regression model. As in Tables
1b, 2b, 3b, and 4b, the C4/C3 values indicate that as
sample size is increased, shrinkage decreases. A com-
parison of the C4/C3 values across Tables 1b, 2b, 3b,
4b, and 5b reveals that as contamination is increased
in amount and severity, the C4/C3 shrinkage ratio val-
ues decrease. However, the decrease in the C4/C3 ratio
values for Tables 1b, 2b, 3b, 4b, and 5b is quite small
relative to the amount of contamination introduced.

6. The problem of degrading

a. General discussion

An obvious common feature of the results in Tables
1–5 is the degrading of the sample values that in-Pr
creases with decreasing values of the true population r
values. Another feature is the degrading of the sample

values that decreases with increasing sample size. InPr
addition, it should be noted that the sample values ofPr
column C3 must necessarily be equal to 1.0 whenever
the sample size equals the number of independent re-
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TABLE 5a. Population 5: Contaminated population of 4158 events consisting of the initial population of 3958 events and 200 very extreme
events. Columns are (C1) true population r values, (C2) average of 10 000 sample values based on population regression coefficients, (C3)Pr
average of 10 000 sample values based on regression coefficients for each sample, and (C4) average of 5 sample values for each ofPr Pr
10 000 random sets of regression coefficients associated with the 10 000 samples of C3.

Sample size Case Model C1 C2 C3 C4

15 10 LAD 0.16541 0.15865 0.82410 0.15671
LSD 0.13645 0.12858 0.75637 0.17684

6 LAD 0.10284 0.09984 0.65648 0.21212
LSD 0.08999 0.08536 0.59195 0.23220

25 10 LAD 0.16541 0.16201 0.67046 0.23397
LSD 0.13645 0.13157 0.61289 0.25467

6 LAD 0.10284 0.10133 0.52745 0.22739
LSD 0.08999 0.08691 0.48267 0.24628

40 10 LAD 0.16541 0.16389 0.57754 0.26244
LSD 0.13645 0.13407 0.53669 0.27945

6 LAD 0.10284 0.10222 0.42604 0.21735
LSD 0.08999 0.08863 0.39821 0.23444

65 10 LAD 0.16541 0.16494 0.48744 0.26077
LSD 0.13645 0.13526 0.46297 0.27581

6 LAD 0.10284 0.10283 0.33718 0.19921
LSD 0.08999 0.08927 0.30874 0.20295

100 10 LAD 0.16541 0.16441 0.40913 0.24710
LSD 0.13645 0.13491 0.38873 0.25578

6 LAD 0.10284 0.10221 0.27822 0.18593
LSD 0.08999 0.08906 0.23511 0.17010

160 10 LAD 0.16541 0.16504 0.33696 0.23219
LSD 0.13645 0.13564 0.30317 0.22288

6 LAD 0.10284 0.10274 0.23075 0.17241
LSD 0.08999 0.08959 0.17580 0.14063

250 10 LAD 0.16541 0.16478 0.28582 0.21974
LSD 0.13645 0.13574 0.23539 0.19305

6 LAD 0.10284 0.10253 0.19584 0.15837
LSD 0.08999 0.08960 0.13849 0.11975

500 10 LAD 0.16541 0.16524 0.23315 0.20148
LSD 0.13645 0.13631 0.17699 0.16198

6 LAD 0.10284 0.10269 0.15889 0.14052
LSD 0.08999 0.08981 0.11112 0.10326

gression variables (i.e., n Å p / 1). As noted in the
discussion of population 1, case 10, which involves 10
independent variables, yields a true r value that is al-
most identical to the one for case 6, which uses only 6
independent variables. However, the sample valuesPr
of column C3 in Table 1a are distinctly larger for case
10 than for case 6. Thus, the degrading of the valuesPr
for case 10 is much more severe than for case 6. The
rule of parsimony is confirmed here: use the fewest
number of independent variables as possible for any
given situation. Of course, independent variables that
make substantial contributions to the size of must bePr
kept; if any of the remaining 6 independent variables
of case 6 were to be removed, the true value of r would
reflect a nontrivial reduction in agreement. With the
exception of population 5 in which the performance
universally fails, case 6 clearly has an advantage over
case 10. Thus, the following discussion related to de-
grading is restricted to case 6. Sample sizes less than n
Å 40 produce severe degrading of the values for bothPr
the LAD and LSD analyses. This reduction is likely
due to the small ratio of n 0 p 0 1 to p / 1 (i.e., very
little information is available per predictor) .

For population 1, which involves no contamination,
the degrading associated with the LSD regression
model is less than the degrading associated with the
LAD regression model in every instance. However, the
degrading associated with the LSD regression model is
greater than the degrading associated with the LAD
regression model for populations 2–5. This feature is
further exaggerated for populations 3 and 5, which con-
tain severely contaminated data. A further feature of
populations 3–5 is that the average values of the LSDPr
analyses exceed the true population r values in column
C1 (see Tables 3–5). This same disconcerting result
is true for both the LAD and LSD regression models
in Table 5. Thus it is concluded that both the LAD and
LSD regression models fail for those populations con-
taining even 5% severe contamination.

Except for the degrading feature of the LSD analyses
documented in Table 2, the LSD regression model ap-
pears to do a reasonable job for populations involving
small amounts of moderate contamination. If a popu-
lation contains either small amounts (roughly 1%) of
severe contamination or up to approximately 5% of
moderate contamination, the LAD regression model is
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TABLE 5b. Population 5: Contaminated population of 4158 events consisting of the initial population of 3958 events and 200 very extreme
events. Columns are ratio estimators C2/C1, C3/C1, C4/C1, and C4/C3 associated with C1, C2, C3, and C4 of Table 5a.

Sample size Case Model C2/C1 C3/C1 C4/C1 C4/C3

15 10 LAD 0.959 4.982 0.947 0.190
LSD 0.942 5.543 1.296 0.234

6 LAD 0.971 6.384 2.063 0.323
LSD 0.949 6.578 2.580 0.392

25 10 LAD 0.979 4.053 1.414 0.349
LSD 0.964 4.492 1.866 0.416

6 LAD 0.985 5.129 2.211 0.431
LSD 0.966 5.364 2.737 0.467

40 10 LAD 0.991 3.492 1.587 0.454
LSD 0.983 3.933 2.048 0.521

6 LAD 0.994 4.143 2.113 0.510
LSD 0.985 4.425 2.605 0.589

65 10 LAD 0.997 2.947 1.577 0.535
LSD 0.991 3.393 2.021 0.596

6 LAD 1.000 3.279 1.937 0.591
LSD 0.992 3.431 2.255 0.657

100 10 LAD 0.994 2.473 1.494 0.604
LSD 0.989 2.849 1.875 0.658

6 LAD 0.994 2.705 1.808 0.668
LSD 0.990 2.613 1.890 0.723

160 10 LAD 0.998 2.037 1.404 0.689
LSD 0.994 2.222 1.633 0.735

6 LAD 0.999 2.244 1.676 0.747
LSD 0.996 1.954 1.563 0.800

250 10 LAD 0.996 1.728 1.328 0.769
LSD 0.995 1.725 1.415 0.820

6 LAD 0.997 1.904 1.540 0.809
LSD 0.996 1.539 1.331 0.865

500 10 LAD 0.999 1.410 1.218 0.864
LSD 0.999 1.297 1.187 0.915

6 LAD 0.999 1.545 1.366 0.884
LSD 0.998 1.235 1.147 0.929

recommended over the LSD regression model. Because
investigators usually know neither the amount nor the
severity of contamination for a given population under
study, the LAD regression model analysis appears to
be the best choice for avoiding potential problems as-
sociated with possible population contamination.

The results of this study provide estimates of average
degrading from interpolations of the values in Tables 1–
5. The fact that the estimates are based on average de-
grading must be emphasized. For a specified study the
actual amount of degrading may vary from none to far
more than the average loss of skill since the values vary
about the average degrading determined for the popula-
tion. A final point regarding the results of this study is
that the average degrading depends on a specific popu-
lation. The results are anticipated to be different if other
populations are analyzed, even with the same true pop-
ulation r values and the same sample sizes used here.

b. Degrading equations

Nonlinear degrading equations are constructed for
both the LAD and LSD regression models. These equa-
tions yield predicted population r values and are( Ir )
functions of the obtained sample values based on thePr

six predictors of case 6 in column C3 of Tables 1–5
and the difference (wÅ n0 p0 1) between the sample
sizes (n) and the number of unknown parameters (p
/ 1) in the respective regression models. Both equa-
tions have the form given by

1/1.32ln( Pr )
Ir Å min Pr, max 0, 1 0K H F G JLH(w)

and
050 0.04 0.06 0.08H(w) Å min(010 , b w / b w / b w )1 2 3

where, for the LAD regression model,

b Å 147.855851

b Å 0266.539582

b Å 118.99034,3

and for the LSD regression model,

b Å 155.602301

b Å 0279.979962

b Å 124.79452.3
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TABLE 6. Nondegraded and degraded measures of agreement associated with LAD and LSD regression models. Column headings indicate
the seasonal total of NS (named storms), H (hurricanes), HD (hurricane days), IH* (intense or major hurricanes), IHD* (intense hurricane
days), HDP* (hurricane destruction potential), and NTC* (net tropical cyclone activity). Note that the data with asterisks are bias corrected
following the analysis of Landsea (1993).

NS NSD H HD IH* IHD* HDP* NTC*

LAD regression model
1 December forecast

nondegraded 0.440 0.514 0.447 0.493 0.473 0.452 0.451 0.547
degraded 0.305 0.407 0.315 0.379 0.352 0.323 0.321 0.450

1 June forecast
nondegraded 0.514 0.660 0.617 0.703 0.637 0.614 0.709 0.719
degraded 0.381 0.567 0.514 0.617 0.539 0.511 0.624 0.636

1 August forecast
nondegraded 0.447 0.608 0.472 0.516 0.598 0.579 0.555 0.598
degraded 0.299 0.513 0.335 0.396 0.501 0.478 0.447 0.501

LSD regression model
1 December forecast

nondegraded 0.359 0.407 0.388 0.400 0.478 0.428 0.428 0.524
degraded 0.174 0.253 0.223 0.242 0.356 0.284 0.284 0.418

1 June forecast
nondegraded 0.441 0.625 0.549 0.652 0.590 0.574 0.658 0.672
degraded 0.270 0.520 0.423 0.553 0.476 0.456 0.561 0.578

1 August forecast
nondegraded 0.435 0.528 0.428 0.489 0.580 0.499 0.523 0.595
degraded 0.277 0.408 0.266 0.355 0.476 0.369 0.402 0.494

As an example for the LAD regression model, sup-
pose n Å 40, p Å 6, w Å 33, and Å 0.60. Then thePr
estimated population r value is Å 0.510. The cor-Ir
responding estimate for the LSD regression model
is Å 0.507. Note that the LAD ratio Å 0.600 /Ir Pr / Ir
0.510 Å 1.177 and the LSD ratio Å 0.600 /0.507Pr / Ir
Å 1.183 are estimates of artificial skill and corre-
spond to entries in column C3 / C1 of Tables 1–5.
Finally, it is emphasized that each estimated popu-
lation r value is merely a single estimator. If( Ir )
one is fortunate enough to have calculated values
close to the population regression coefficients, then
obviously, very little degrading will occur. On the
other hand, the degrading may be more extreme than
indicated by a single estimator. It is not possible to
develop similar equations for shrinkage, since C4 /
C3 is a ratio of two random variables ( C3 and C4)
and no population values exist for prediction pur-
poses—that is, the values of C1 that were used in
the previous prediction models. However, when the
population is not contaminated ( population 1 ) , it is
apparent that the shrinkage is approximately twice
the artificial skill. Because artificial skill and shrink-
age are of diminished consequence with increasing
sample sizes, it is important to update temporal
datasets that exhaust all available information. This
will serve to increase the sample size and, conse-
quently, decrease both artificial skill and shrinkage.

c. Application to recent studies

The results of this study regarding the degrading
of forecast skill, as measured by agreement coeffi-

cients, permit clarification and explication of pre-
viously reported forecasts. For these purposes, three
studies by the authors are used to illustrate the de-
grading of forecast skill. Specifically, Gray et al.
( 1992, 1993, 1994 ) report LAD and LSD regression
model nondegraded measures of agreement between
various indices of tropical cyclone activity in the
Atlantic basin ( including the Atlantic Ocean, Carib-
bean Sea, and Gulf of Mexico ) : number of named
storms (NS) , number of named storm days (NSD) ,
number of hurricanes (H) , number of hurricane
days (HD) , number of intense hurricanes ( IH) ,
number of intense hurricane days ( IHD) , hurricane
destruction potential (HDP) , and net tropical cy-
clone activity (NTC) . The values for IH, IHD,
HDP, and NTC have been adjusted to reflect a small
overestimation of major hurricane intensities as re-
ported by Landsea (1993 ) and are identified as IH*,
IHD*, HDP*, and NTC* (cf. Gray et al. 1994 ) .
These eight indexes of tropical cyclone activity
were forecast using both LAD and LSD regression
models at three points in time: 1 December, 1 June,
and 1 August. The 1 December prediction was based
on six predictors ( including the intercept ) and 41
years of data (Gray et al. 1992 ) ; the 1 June predic-
tion was based on 14 predictors and 42 years of data
(Gray et al. 1994 ) ; and the 1 August prediction was
based on 10 predictors and 41 years of data. The 48
nondegraded measures of agreement based on the
LAD and LSD prediction models at 1 December, 1
June, and 1 August for the eight indexes of tropical
cyclone activity are from Gray et al. ( 1992, 1993,
1994 ) and are summarized in Table 6. Also included
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in Table 6 are the corresponding 48 degraded mea-
sures of agreement.

While it is clearly not possible to apply the degrading
formula to a single sample, Table 6 summarizes the C3/
C1 degrading (not C4/C3 shrinkage) as applied to the
original data of Gray et al. (1992, 1993, 1994) and
shows what might vaguely be anticipated, on average,
if the Gray et al. (1992, 1993, 1994) studies were re-
peated many times. Applying the degrading equation
to a single sample is analogous to making a statement
as to the likely truth of an individual statistical hypoth-
esis. For example, if a type I error is set at a Å 0.05, a
95% confidence interval is always a statement about
the interval not about the population parameter. That
is, of all intervals constructed, 95% will contain the true
population parameter. However, nothing can be said
about a particular interval calculated from a single sam-
ple. Any confidence that a researcher has in a particular
interval is undefined probabilistically. The same is true
of hypothesis testing; no inference can be made about
a particular sample. Rejection of a null hypothesis tells
us nothing about the particular sample in question.
However, in the long run and on average, we can expect
to reject the null hypothesis when it is true about 5 in
100 times when a Å 0.05.

7. The problem of validation

Because artificial skill, such as indexed in the C3/
C1 column of Tables 1b, 2b, 3b, 4b, and 5b, is perva-
sive in most prediction research, investigators often at-
tempt to validate their sample regression coefficients.
The usual method is called ‘‘cross-validation’’ in
which a few observations (up to one-half the obser-
vations) are omitted, at random, from a model and the
model is then tested on the omitted observations (Mi-
chaelsen 1987). More typically, a sample of size n is
divided into a construction sample of size n 0 1 and a
validation sample of size 1, and the model is then tested
in all possible (n) ways (Stone 1974, 112). In mete-
orological forecasting research, this cross-validation
procedure is usually realized by withholding each year
in turn and deriving a forecast model from the remain-
ing n 0 1 years, checking each of the n forecast models
on the year held in reserve (Livezey et al. 1990; Barns-
ton and Van den Dool 1993; Elsner and Schmertmann
1994). Ideally, of course, the construction model based
on sample regression coefficients should be validated
against several independent validation samples drawn
from the population of interest, but few researchers
have the luxury of a simulation study in which the en-
tire population is known and available. Column C4 in
Tables 1a, 2a, 3a, 4a, and 5a and the C4/C1 column in
Tables 1b, 2b, 3b, 4b, and 5b contain the results of just
such a validation study in which, it will be recalled,
sample regression coefficients are applied to five new
independent samples of size n , and agreement valuesPr
between the y and ỹ values are computed for each of

the five samples. With 10 000 construction samples and
5 validation samples, each entry in column C4 is the
average of 50 000 values. It is abundantly clear fromPr
even a cursory inspection of the C4/C1 column in Ta-
bles 1b, 2b, 3b, 4b, and 5b that when contamination is
present the LSD regression model produces inflated es-
timates of validation fit and expected skill.

Inspection of column C1 in Table 1a reveals that
both the LAD and LSD regression models yield about
the same amount of agreement between the y and ỹ
values in (the noncontaminated) population 1. Al-
though the LAD regression model yields systematically
higher agreement coefficients in every instance, the dif-
ferences are slight. On the other hand, inspection of
column C1 in Table 3a reveals that the LAD and LSD
regression models yield quite different amounts of
agreement between the y and ỹ values in population 3,
which contains 1% severe contamination. While the
LAD regression model yields slightly lower agreement
coefficients when compared to the agreement coeffi-
cients in the noncontaminated population 1, the LSD
regression model yields greatly reduced agreement co-
efficients, relative to those obtained in population 1.
Because the contaminated data points in population 2–
5 were added at the extremes of the independent vari-
ables, but cluster around the median of the dependent
variable, the added data points exert a considerable
amount of both leverage and influence that are mag-
nified by the intrinsic squaring function inherent in the
LSD regression model. These additional data points
have the general effect of moving the regression plane
from its position in the noncontaminated population
and increasing the overall sum of squared prediction
errors, resulting in a lower coefficient of agreement.
The LAD regression model, based on absolute devia-
tions, is less affected by these extreme values, as re-
flected in its higher agreement values.

When a sample is drawn with replacement from a
contaminated population, the chances are that the sam-
ple will not contain any of these extreme values, es-
pecially when the sampling fraction n /N is small. Thus,
considering column C4 of Table 3a where sample-
based regression coefficients are validated against five
new, independent random samples, it is clear that, in
most cases, successive samples are more representative
of each other than they are of the population from
which they were drawn. This results in higher average
sample agreement values than exist in the population
for the LSD regression model. The C4/C1 ratios are
given in column C4/C1 of Table 3b, where it can be
observed that nearly every LSD validation fit exceeds
1.0. The LAD regression model, based on absolute de-
viations about the median, is relatively unaffected by
even 1% severe contamination, but the LSD regression
model, based on squared deviations about the mean,
systematically overestimates the validation fit and
yields greatly inflated indexes (column C4/C1) of ex-
pected skill.
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