
AU G U S T  2 0 2 2  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 1 4 . T H E  T R O P I C S S219

record (since 1980). Ida’s destruction was unique in that its damage was concentrated in two 
distinct regions. It made landfall as a powerful Category 4 storm in Louisiana, causing heavy 
damage to the Gulf Coast. As Ida’s remnants moved northward, it merged with a frontal system 
to produce severe weather and flash flooding in the mid-Atlantic states and Northeast, with 
especially significant impacts in areas of Pennsylvania, New Jersey, and New York. Sidebar 4.1 
provides more details on Ida’s meteorological history and records.

2) ATLANTIC BASIN—M. Rosencrans, E. S. Blake, C. W. Landsea, H. Wang, S. B. Goldenberg, and R. J. Pasch
(i) 2021 Seasonal activity 
The 2021 Atlantic hurricane season produced 21 named storms, of which 7 became hurricanes 

and 4 of those became major hurricanes (Fig. 4.22b). The HURDAT2 (Landsea and Franklin 2013) 
1991–2020 seasonal averages (included in IBTrACS) are 14.4 named storms, 7.2 hurricanes, and 
3.2 major hurricanes. The 21 named storms during 2021 were the third most on record, trailing 
the 30 named storms in 2020 and 28 in 2005. Eight of the 21 named storms during 2021 were 
short-lived (≤ 2 days). There has been a large increase (approximately five per year) in detection 
of these “shorties” since 2000 (Landsea et al. 2010; Klotzbach et al. 2022). These increased counts 
primarily reflect new observational capabilities such as scatterometers, Advanced Microwave 
Sounding Units, and the Advanced Dvorak Technique, and have no association with any known 
climate variability (Villarini et al. 2011).

The 2021 seasonal Accumulated Cyclone Energy (ACE) value was 149.2% of the 1951–2020 
median (which is 96.7 × 104 kt2; Fig. 4.22c). This value was the 13th highest since 1970 and above 
NOAA’s threshold for an above-normal season (126.1 × 104 kt2, or 130% of median). There have 
now been a record six consecutive above-normal seasons, extending the current record of five. 
Since the current Atlantic high-activity era began in 1995 (Goldenberg et al. 2001; Bell et al. 2019, 
2020), there have been 17 above-normal seasons, with 10 of those considered extremely active 
(ACE ≥ 165% of median, also referred to as hyperactive). By comparison, the preceding 24-year 
low-activity era of 1971–94 had only two above-normal seasons with none extremely active.

Table 4.2. Global counts of TC activity by basin for 2021. “+” denotes top tercile; “++” is top 10%; “−” is 
bottom tercile; “−−” is bottom 10% (all relative to 1991–2020). (Note that some inconsistencies between 
Table 4.2 and the text of the various basin write-ups in section 4g exist and are unavoidable, as tallying 
global TC numbers is challenging and involves more than simply adding up basin totals, because some 
storms cross TC basin boundaries, some TC basins overlap, and multiple agencies are involved in track-
ing and categorizing TCs.) 

Basin TCs HTCs Major HTCs SS Cat 5 ACE (× 104 kt2)

North Atlantic
21  
++

7 4 
+

0 146  

Eastern Pacific
19 
+

8  2 
−

0 94  
−

Western Pacific
23 
−

10  
−−

5 
−

4 
+

209 
−

North Indian
5 3 

+
1 
+

0 21 

South Indian
12 
+

5 2 
−

1 
++

100 

Australia
12 
+

3 
−

2 1 
++

44 
−

Southwest Pacific
9 
+

4 2 1 
++

41

Global Totals
97  
+

38 
−−

17 
−−

7 
+

656 
−



AU G U S T  2 0 2 2  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 1 4 . T H E  T R O P I C S S220

(ii) Storm formation times, regions, and landfalls
Tropical cyclone (TC) activity occurred throughout most of the 2021 hurricane season (Fig. 

4.23b), with a TC present every month in the official season as well as in May. Activity ramped 
up relatively quickly, with Elsa becoming the earliest developing fifth named Atlantic storm on 
record when it formed on 1 July. Of the first five named storms in the 2021 Atlantic hurricane sea-
son, four were classified as a “shortie”, lasting two days or fewer. On average, 1–2 named storms 
form per year during May–July.

August–October (ASO), typically the most active part of the hurricane season, featured 16 named 
storms during 2021 compared with the 1991–2020 average of 11.1, and at least one TC was present 
at all times from mid-August through early October. Six of these 16 storms became hurricanes (the 

Fig. 4.22. (a) 2021 Atlantic basin storm tracks. Seasonal Atlantic hurricane activity during 1950–2021 for (b) numbers of 
named storms (blue), hurricanes (orange), and major hurricanes (gray) and (c) the Accumulated Cyclone Energy (ACE) index 
expressed as percent of the 1951–2020 median value. ACE is calculated by summing the squares of the 6-hourly maximum 
sustained surface wind speed (kt) for all periods while the storm is at least tropical storm strength. The black (orange) line 
represents NOAA’s limit for an above-normal (below-normal) season and the red line is the threshold for an extremely- 
(aka hyper-) active season, (http://www.cpc.ncep.noaa.gov/products/outlooks/ background_information.shtml). Note that 
there is a low bias in activity from the 1950s to the early 1970s due to the lack of satellite imagery and technique (Dvorak) 
to interpret tropical cyclone intensity for systems over the open ocean. (Source: HURDAT2 [Landsea and Franklin 2013].)
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seventh hurricane of the season, Elsa, formed in July), and four of those became major hurricanes. 
Most of these ASO storms (9 of 16) formed in the main development region (MDR), which is also 
typical of an above-normal season. The MDR spans the tropical Atlantic Ocean and Caribbean 
Sea between 9.5°N and 21.5°N (Goldenberg and Shapiro 1996; Goldenberg et al. 2001; Bell and 
Chelliah 2006; Bell et al. 2017, 2018, 2019). After a highly active late August and most of Septem-
ber, Atlantic TC activity dropped precipitously, with only one named storm developing after 29 
September. Tropical Storm Wanda was first named as a subtropical storm on 31 October, gaining 
tropical characteristics in early November, ending a nearly month-long quiet period.

Historically, above-normal seasons result from a sharp increase in the number, intensity, and 
duration of storms that develop in the MDR. For the entire 2021 season, 10 of the 21 named storms 
formed in the MDR (Fig. 4.23a) and accounted for five of the season’s seven hurricanes and all 
of the season’s four major hurricanes. The associated MDR-related ACE value was 129% of the 
basin-wide median. By comparison, named storms forming in the Gulf of Mexico only contributed 
5% of the basin-wide median in 2021, and storms from the extratropics contributed 15%. This 
MDR-related ACE value is lower than the 1991–2020 MDR average for above-normal seasons of 
140% of the median. These values are roughly five times higher than the MDR average of 20% of 
the median for below-normal seasons (defined by NOAA as having a total basin-wide ACE less 
than 73 × 104 kt2).

The actual storm tracks during 2021 (Fig. 4.22a) showed two main regions of activity. One area 
was oriented from west-southwest to east-northeast across the extratropics, where eight named 
storms formed. The MDR was also active, but in the middle of these active areas there was a quiet 
area in the extreme southwest Atlantic including the east coast of Florida and the Bahamas. 

Fig. 4.23. Atlantic TC activity in 2021. (a) Total seasonal storm counts for the three storm classifications and for ACE shown 
for each region the storm was first named. (b) Named storm counts shown for the month and region the storm was first 
named. ACE reflects the entire storm ACE and is attributed to the region in which the storm was first named. Regions in 
(a) and (b) are indicated by the color bar below panel (b). The Atlantic MDR spans 20°–87.5°W and 9.5°–21.5°N. The “ex-
tratropics” includes all regions except for the MDR and Gulf of Mexico. (Source: HURDAT2 [Landsea and Franklin 2013].)
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Several of the MDR formations have long tracks to the west-northwest. The season also featured 
eight storms making landfall in the continental United States, with others impacting the Carib-
bean, Mexico, Central America, Newfoundland, and Bermuda.

Several notable individual storms formed during the 2021 hurricane season. Hurricane Sam 
was a major hurricane for 7.75 days, contributing ~38% of the total seasonal ACE. Fortunately, 
Sam’s track remained out to sea with minimal impacts. In terms of damage, Hurricane Ida was 
the largest disaster for the United States in 2021, causing $75 billion (U.S. dollars). Preliminary 
estimates indicate Ida had winds of 130 kt as it made landfall in Louisiana, which would be tied 
for the fifth-strongest hurricane to make landfall in the United States since more reliable records 
began around 1900. In addition to significant damage along the Gulf Coast, Ida also interacted with 
a cold front to produce torrential rain and flooding across the mid-Atlantic and Northeast. More 
information on Hurricane Ida is detailed in Sidebar 4.1. Hurricane Henri also brought significant 
rains to the Northeast just a week earlier, establishing some localized daily records but no large 
regional records, and causing an estimated $700 million (U.S. dollars) in damage. Hurricane 
Grace spread damage across the Caribbean and into Mexico, causing an estimated $300 million 
(U.S. dollars) in damage. Tropical Storms Elsa and Fred and Hurricane Nicholas were storms that 
each caused more than $1 billion (U.S. dollars) in damage (see section 7b2).

(iii) Sea surface temperatures 
Four main sea surface temperature (SST) signals were present during ASO 2021 (Fig. 4.24). First, 

SSTs were above average throughout the MDR (Fig. 4.24a), and the area-averaged SST anomaly 
was +0.35°C (Fig. 4.24b). The largest anomalies in the MDR were observed throughout the Carib-
bean Sea and ranged from just above 0°C to +0.5°C.

Second, the area-averaged SST anomaly in the MDR was higher (by +0.17°C) than that of the 
remainder of the global tropics (Fig. 4.24c). This signal typifies the warm phase of the Atlantic 
multi-decadal oscillation (AMO; Enfield and Mestas-Nuñez 1999; Bell and Chelliah 2006) and 
is a ubiquitous characteristic of Atlantic high-activity eras, such as 1950–70 and 1995–present 
(Goldenberg et al. 2001; Vecchi and Soden 2007; Bell et al. 2018).

The third SST signal during ASO 2021 reflected above-average temperatures across most of the 
North Atlantic Ocean. Outside of the MDR, the largest anomalies (exceeding +1°C) occupied the 
western, and portions of the central, North Atlantic (Fig. 4.24a), areas where numerous tropical 
storms and hurricanes tracked. The area-averaged SST anomaly in the western North Atlantic 
(red box, Fig. 4.24a) was +0.79°C and reflected a continuation of exceptional warmth that began 
in 2014 (Fig. 4.24d).  

The fourth SST signal during ASO 2021 was the development of La Niña in the equatorial Pacific 
(section 4b). As discussed below, La Niña contributed to the enhanced hurricane activity during 
August and September.



AU G U S T  2 0 2 2  |  S t a t e  o f  t h e  C l i m a t e  i n  2 0 2 1 4 . T H E  T R O P I C S S223

Fig. 4.24. (a) Aug–Oct 2021 SST anomalies (°C). (b–d) Time series of Aug–Oct area-averaged SST anomalies (black) 
and 5-pt running mean of the time series (red); (b) In the MDR (green box in (a) spanning 20°–87.5°W and 9.5°–
21.5°N); (c) difference between the MDR and the global tropics (20°S–20°N); and (d) in the western North Atlantic 
(red box in (a) spanning 42.5°–80°W and 25°–40°N). Anomalies are departures from the 1991–2020 period means. 
(Source: ERSST-v5 [Huang et al. 2017].)
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(iv) Atmospheric conditions
Climatologically, the ASO peak in Atlantic hurricane activity largely reflects the July–Septem-

ber (JAS) peak in the West African monsoon as noted in section 4e. The inter-related circulation 
features of an enhanced monsoon act to further increase hurricane activity, while those with 
an anomalously weak monsoon act to suppress it (Gray 1990; Hastenrath 1990; Landsea et al. 
1992; Bell and Chelliah 2006; Bell et al. 2018, 2020). The association on multi-decadal time scales 
between the West African monsoon and Atlantic hurricane activity largely exists because of a 
common relationship to multi-decadal modes of variability (Bell and Chelliah 2006).

The West African monsoon was enhanced during JAS 2021, as indicated by negative outgoing 
longwave radiation (OLR) anomalies across the African Sahel (red box, Fig. 4.25a). Total OLR 
values in this region averaged 239 W m−2 (Fig. 4.25b), with values less than 240 W m−2, indicating 
deep tropical convection. Consistent with these conditions, the larger-scale divergent circulation 
at 200-hPa featured an extensive area of anomalous divergence and a core of negative velocity 

Fig. 4.25. (a) Jul–Sep 2021 anomalous OLR (W m−2), with negative (positive) values indicating enhanced (suppressed) convec-
tion. (b) Time series of Jul–Sep total OLR (black) and 5-pt running mean of the time series (red) averaged over the African 
Sahel region (red box in (a, c) spanning 20°W–0° and 12.5°–17.5°N). (c) Aug–Oct 2021 anomalous 200-hPa velocity potential 
(× 106 m2 s−1) and divergent wind vectors (m s−1). In (a), contours show total OLR values of 220 W m−2 and 240 W m−2. In (a, 
c), the green box denotes the Atlantic MDR. Anomalies are departures from the 1991–2020 means. (Sources: NCEP/NCAR 
Reanalysis [Kalnay et al. 1996] for velocity potential and wind, and Liebmann and Smith [1996] for OLR.)
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potential anomalies across subtropical northern Africa extending into the eastern Atlantic (Fig. 
4.25c). The OLR time series shows that an enhanced monsoon has largely prevailed throughout 
the current Atlantic high-activity era and warm AMO of 1995–present (Fig. 4.25b). By contrast, 
a much weaker monsoon with OLR values well above 240 W m−2 in the Sahel region was typical 
of the low-activity and cool AMO period from 1971 to 1994. During ASO 2021, core atmospheric 
conditions within the MDR reflected a combination of the enhanced West African monsoon, La 
Niña, and midlatitude influences.

At 200-hPa, the enhanced monsoon amplified subtropical ridges (indicated by anticyclonic 
streamfunction anomalies) across Africa in both hemispheres (Fig. 4.26a). La Niña impacts in that 
field (Bell and Chelliah 2006) included cyclonic streamfunction anomalies in both hemispheres 
of the western and central subtropical Pacific. Farther north, a large anticyclonic anomaly was 
evident over eastern Canada. Troughing extended from northern Mexico, across Florida, and 
into the central extratropical Atlantic near 40°N. The streamfunction pattern over the western 
and central subtropical Pacific aligns with the La Niña response identified in Bell and Chelliah 
(2006), while the cyclonic streamfunction anomalies over northern Mexico, across Florida, and 
into the extratropical Pacific are dissimilar to that identified response pattern, pointing to some 
other source of variability having influence over those regions. The 1000-hPa anomalous height 
and wind field (Fig. 4.26c) showed just how strong some of the midlatitude circulations were and 
even shows evidence of flow deep into the tropics. Sea level pressure was also below normal over 
the central and eastern MDR, which would typically correspond to decreased wind shear and 
more convection, but vertical wind shear was near normal for the season, and OLR indicates 
slightly above-normal convection.

The West African monsoon was enhanced and showed direct influences on the circulation 
pattern during ASO 2021. An aspect of the enhanced West African monsoon system during ASO 
2021 was an upward extension of the westerly wind anomalies over the eastern half of the MDR 
to at least 700-hPa (Fig. 4.26d), which is the approximate level of the African Easterly Jet (AEJ). 
This anomaly pattern contributed to a deep layer of anomalous cyclonic relative vorticity (i.e., 
increased horizontal cyclonic shear) along the equatorward flank of the AEJ. These conditions are 
known to favor increased TC activity by helping African easterly waves to be better maintained 

Fig. 4.26. Aug–Oct 2021: (a) 200-hPa streamfunction (contours, interval is 5 × 106 m2 s−1) and anomalies (shaded), with 
anomalous vector winds (m s−1) also shown in (b); (c) anomalous 1000-hPa heights (shaded, m) and vector winds; and 
(d) anomalous 700-hPa cyclonic relative vorticity (shaded, × 106 m2 s−1) and vector winds. Green box denotes the MDR. 
Anomalies are departures from the 1991–2020 means. (Source: NCEP/NCAR Reanalysis [Kalnay et al. 1996].)
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and by providing an inherent cyclonic rotation to their embedded convective cells (Bell et al. 
2020; Landsea et al. 1998).

The anomalous low-level circulation also reflected an extensive flow of deep tropical moisture 
into the southern half of the central and eastern MDR. This moisture not only helps feed the 
monsoon, but also favors increased Atlantic hurricane activity. This situation contrasts with the 
drier and cooler air that normally accompanies enhanced northeasterly trade winds when the 
monsoon is weak.

The ASO 2021 200–850-hPa vertical wind shear was about average for much of the MDR and 
slightly higher than average for the western MDR/Caribbean (Fig. 4.27a). The area-averaged 
magnitude of the vertical wind shear for the entire MDR was 9.4 m s−1 (Fig. 4.27b) and for the 
Gulf of Mexico was 10.4 m s−1 (Fig. 4.27c). Both of these values are above the upper threshold of 
8 m s−1 considered conducive to hurricane formation on monthly time scales (Bell et al. 2017), so 
the above-normal overall activity is even more remarkable. The sharp peak and busy month of 
September, in which nine named storms developed (Fig. 4.23b), was coincident with a period of 
anomalously low vertical wind shear in the MDR (Fig. 4.27d). The abrupt end to the season, with 
only one storm developing after 29 September, coincided with a period of anomalously strong 
wind shear across the Gulf of Mexico, Caribbean, MDR, and the extratropical Atlantic.

The MJO (Madden and Julian 1971), as discussed in section 4c, was generally stationary and 
inactive during September and October. Nonetheless, variations in the large-scale tropical con-
vection may have played a role in the quiescent October. From September to October, the main 
convective activity shifted from the Indian Ocean to the Maritime Continent, as assessed via a 
combination of the multivariate MJO index of Wheeler and Hendon (2004; Fig. 4.8d) and Climate 
Prediction Center’s weekly MJO analysis. For a typical MJO, this circulation results in increased 
shear over and decreased convection in the tropical Atlantic (Mo 2000), both of which decrease 

Fig. 4.27. Aug–Oct (ASO) magnitude of the 200–850-hPa vertical wind shear (m s−1): (a) 2021 anomalous magnitude and 
vector. (b, c) Time series of ASO vertical wind shear magnitude (black) and 5-pt running mean of the time series (red) aver-
aged over (b) the MDR (spanning 87.5°–20°W and 9.5°–21.5°N), and (c) the western Gulf of Mexico (spanning 80°–97.5°W 
and 21.5°–30°N). (d) Same as (a), but for Sep 2021. (e) Same as (d), but for Oct 2021. Anomalies are departures from the 
1991–2020 means. (Source: NCEP/NCAR Reanalysis [Kalnay et al. 1996].)
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tropical cyclone formations. Even if this were not a typical MJO, the shift in the variations of the 
tropical circulation may have contributed to the lack of activity in October.

The above conditions typified the many active seasons seen during the current Atlantic high-
activity era. However, as with other years, interannual signals were also in play during 2021. One 
of those was La Niña, which favors enhanced activity as in other recent La Niña events (2010, 2016, 
and 2020). However, the La Niña impact may have been reduced by other interannual signals like 
the strong ridge over eastern Canada (Figs. 4.26a,c) with troughing over the central extratropi-
cal Atlantic and over the Gulf of Mexico. The ridge/trough combinations likely contributed to 
increased wind shear, especially late in the season, which may have capped activity, despite the 
presence of many features of the high-activity era (above-normal SST, enhanced West African 
Monsoon, and early season activity).

Sidebar 4.1: Hurricane Ida: A landfalling Louisiana major hurricane for the record books—
P. KLOTZBACH AND R. TRUCHELUT

The 2021 Atlantic hurricane season was the sixth consecu-
tive above-average season based on NOAA’s definition, with 
21 named storms, seven hurricanes, and four major hurricanes. 
Eight named storms and two hurricanes made landfall in the 
continental United States, with Hurricane Ida by far the most 
significant landfalling Atlantic tropical cyclone of the year. Ida 
struck near Port Fourchon, Louisiana, with maximum 1-minute 
sustained winds of 130 kt (67 m s−1) on 29 August. Wind and 
surge caused tremendous destruction in south-central and 
southeastern Louisiana, with the New Orleans metropolitan 
area also experiencing significant wind damage. Ida’s remnants 
interacted with a frontal system to cause significant flash flood-
ing across the coastal plain of the northeastern United States, 
including Pennsylvania, New Jersey, New York, and Connecticut. 
The National Hurricane Center’s best track report on Hurricane 
Ida (Beven et al. 2022) estimated that Ida caused ~$75 billion 
(U.S. dollars) in damage. 

Here, we discuss the meteorological history of Ida and 
highlight some of the records that Ida set. Historical landfall 
records from 1851 to present are taken from the National Hur-
ricane Center/Atlantic Oceanographic and Meteorological 
Laboratory archive (http://www.aoml.noaa.gov/hrd/hurdat/
All_U.S._Hurricanes.html). Ida’s observed values are taken 
from the Atlantic hurricane database (HURDAT2; Landsea 
and Franklin 2013) that is based on Beven et al. (2022). 

Ida developed from a high-amplitude easterly wave, 
becoming a tropical depression at 1200 UTC on 26 August 
in the west-central Caribbean and intensifying into a tropi-
cal storm by 1800 UTC. Over the following 24 hours, Ida 
rapidly intensified from 35 kt (18 m s−1) to 70 kt (36 m s−1), 
while tracking northwestward in a light shear and warm 
water environment in the western Caribbean. Ida made two 
landfalls in Cuba as a Category 1 hurricane on 27 August, 

the first on the Isle of Youth and the second on Pinar Del Rio. 
Disruption of Ida’s circulation due to land interaction and dry 
air entrainment temporarily arrested Ida from strengthening, 
and it remained a Category 1 hurricane through 28 August. 

As Ida continued northwest, vertical wind shear relaxed 
as the hurricane tracked over a warm eddy in the east-central 
Gulf of Mexico, causing rapid intensification. Between 1200 
UTC on 28 August and 1200 UTC on 29 August, Ida’s maxi-
mum sustained winds increased by 60 kt (31 m s−1), from 70 kt 
(36 m s−1) to 130 kt (67 m s−1).  This 60-kt intensification in 24 
hours slightly exceeded Hurricane Laura (2020)’s rate of 55 kt 
(28 m s−1) in 24 hours in the Gulf of Mexico. Laura also made 
landfall over Louisiana as a 130 kt (67 m s−1) hurricane in late 
August. During this same time period, Ida’s minimum central 
pressure fell 57 hPa (from 986 hPa to 929 hPa). At the peak 
of its intensification, Ida’s pressure per aircraft reconnaissance 
fell by ~11 hPa in one hour between 1000 UTC and 1100 UTC 
on 29 August. Ida maintained a 130-kt intensity until initial 
landfall near Port Fourchon, Louisiana at ~1655 UTC on 29 
August (Fig. SB4.1). 

Fig. SB4.1. Infrared satellite image of Hurricane Ida at the time of 
its landfall at ~1655 UTC on 29 Aug 2021. Image courtesy of NOAA.   
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Following landfall, Ida only slowly weakened. Ida maintained 
Category 3+ hurricane intensity for at least five hours and 
Category 1+ hurricane intensity for at least 11 hours following 
initial landfall. This is likely due to a combination of factors, 
including a slow forward motion that kept part of Ida’s circula-
tion over water for most of 29 August and elevated soil moisture 
due to heavy antecedent rainfall over southern Louisiana. The 
system weakened to a tropical storm by mid-day on 30 August 
as it accelerated northeast over Mississippi, and it became a 
tropical depression on 31 August. 

Ida was officially declared post-tropical while located over 
West Virginia on 1 September. However, as a post-tropical 
cyclone, Ida interacted with a frontal zone and produced 
copious rainfall (Fig. SB4.2), several violent tornadoes, and 
devastating flash flooding across the northern mid-Atlantic 
and southern New England. Flooding was particularly severe 
in and around the New York City metropolitan area, where 
widespread rainfall totals of 150–250 mm were recorded, 
including a 1-hour accumulation of 80 mm in New York’s 
Central Park between ~0100 and 0200 UTC on 2 September. 
The estimated return period for 12-hour rainfall totals as 
observed from post-tropical Ida from the northern suburbs 
of Philadelphia northeast into coastal Connecticut is gener-
ally 100 to 200 years, with locally higher return periods. The 
final advisory on post-tropical Ida was issued on 2 September. 
 

Hurricane Ida caused tremendous damage in southern 
Louisiana, with loss estimates in Louisiana of ~$55 billion 
(U.S. dollars), according to Beven et al. (2022). Flash flooding 
in the mid-Atlantic states was responsible for an additional 
~$205 million in damage. Ida caused 55 direct and 32 indirect 
fatalities in the United States, and its precursor disturbance 
also caused significant flooding in Venezuela, which led to 20 
fatalities. Storm surge exceeding three meters was reported to 
the east of where Ida made landfall. Ida’s strong winds also led 
to extensive power outages, with over one million residents in 
Louisiana reported without electricity at one point. 

Ida’s 130 kt (67 m s−1) intensity at landfall ties the Last Island 
Hurricane (1856) and Hurricane Laura (2020) for the strongest 
maximum sustained winds for a Louisiana landfalling hurricane 
on record. These sustained winds also equaled the fifth stron-
gest on record for the continental United States. Ida’s landfall 
pressure of 931 hPa was the second lowest for a Louisiana hur-
ricane on record, trailing only Katrina (920 hPa), which struck on 
the same date 16 years prior to Ida. Laura and Ida are also the 
first two 130+ kt hurricanes on record to make landfall in the 
continental United States in consecutive years. The continental 
United States has now experienced three 130+ kt hurricane 
landfalls in the past four years: Michael (2018), Laura (2020), 
and Ida (2021). This equals the three 130+ kt hurricane landfalls 
recorded in the previous 82 years, 1936–2017: Camille (1969), 
Andrew (1992), and Charley (2004). 

Fig. SB4.2. 48-h radar-estimated rainfall (mm) across the mid-
Atlantic states and southern New England ending at 1200 UTC on 
2 Sept 2021. Image courtesy of Gregory Carbin, NOAA/Weather 
Prediction Center. 
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