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ABSTRACT

A statistical prediction method, which is based entirely on the optimal combination of persistence, month-to-
month trend of initial conditions, and climatology, is developed for the El Nifio—Southern Oscillation (ENSO)
phenomena. The selection of predictors is by design intended to avoid any pretense of predictive ability based
on ‘“‘model physics’ and the like, but rather isto specify the optimal *‘ no-skill’’ forecast as a baseline comparison
for more sophisticated forecast methods. Multiple least squares regression using the method of leaps and bounds
is employed to test a total of 14 possible predictors for the selection of the best predictors, based upon 1950—
94 developmental data. A range of zero to four predictors were chosen in developing 12 separate regression
models, developed separately for each initial calendar month. The predictands to be forecast include the Southern
Oscillation (pressure) index (SOI) and the Nifio 1+2, Nifio 3, Nifio 4, and Nifio 3.4 SST indices for the equatorial
eastern and central Pacific at lead times ranging from zero seasons (0—2 months) through seven seasons (21—
23 months). Though hindcast ability is strongly seasonally dependent, substantial improvement is achieved over
simple persistence wherein largest gains occur for two—seven-season (623 months) lead times. For example,
expected maximum forecast ability for the Nifio 3.4 SST region, depending on the initial date, reaches 92%,
85%, 64%, 41%, 36%, 24%, 24%, and 28% of variance for leads of zero to seven seasons. Comparable maxima
of persistence only forecasts explain 92%, 77%, 50%, 17%, 6%, 14%, 21%, and 17%, respectively. More
sophisticated statistical and dynamic forecasting models are encouraged to utilize this ENSO-CLIPER model in
place of persistence when assessing whether they have achieved forecasting skill; to this end, real-time results
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for this model are made available via a Web site.

1. Introduction

Year-to-year variations of the El Nifio-Southern Os-
cillation (ENSO) produces robust, large-scale changes
in the distribution of global precipitation (Ropel ewski
and Halpert 1987, 1989) and surface temperature (Hal-
pert and Ropelewski 1992) in addition to altering both
the frequency and location of tropical cyclones (Gray
et a. 1994; Nicholls 1992; Lander 1994). These tele-
connected effects are due to ENSO-forced global cir-
culation changes (Horel and Wallace 1981; Arkin 1982).
Thus, successful seasonal forecasts of ENSO variability
are crucial for useful predictions of these precipitation,
temperature, and tropical cyclone variations.

In recent years, efforts to understand the ENSO phe-
nomena have moved into the real-time forecasting arena
of ENSO itself. Predictions associated with this activity
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are published quarterly within the Experimental Long-
lead Forecast Bulletin (hereafter referred to as ELLFB;
Barnston 1996a). Methodologies presently being used
to forecasting ENSO variability can be broadly subdi-
vided into two groups including 1) statistical models
[nonlinear analog model (NLAM), Drosdowsky (1994);
linear inverse model (LIM), Penland and Magorian
(1993) and Zhang et al. (1993); single spectrum anal-
ysis—maximum entropy method (SSA-MEM), Keppen-
ne and Ghil (1992) and Jiang et al. (1995); constructed
analog forecasts (CAF), Van den Dool (1994); canonical
correlation analysis (CCA), Barnston and Ropel ewski
(1992)] and 2) dynamic models [hybrid coupled model
(HCM), Barnett et al. (1993); Cane and Zebiak model
(CZ), Zebiak and Cane (1987); LDEO2, Chen et a.
(1995); coupled model project 9 and 10 (CMP9 and
CMP10), Ji et al. (1994); Center for Ocean-Land-At-
mosphere (COLA), Kirtman et al. (1996); Bureau of
Meteorology Research Centre (BMRC), Kleeman
(1993); Oxford, Balmasedaet al. (1994)]. Many of these
models (LIM, HCM, CZ, LDEO2, CMP9, CMP10,
COLA, BMRC) predict the spatial aspects of the SST
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field; however, it is common to compare the predictive
capabilities of all of these models by examining re-
gionally averaged SST anomalies.

The real-time ENSO forecasting ability of a subset of
these models—two satistical (CCA and CAF) and three
dynamic (CZ, HCM, and CM P9)—was assessed by Barns-
ton et al. (1994). Two-season lead time predictions (as for
example, a forecast of December through February con-
ditions issued two seasons in advance on the first of June)
were examined. In this analysis, forecast ability was mea-
sured by computing linear correlation coefficients of pre-
dicted SST variations versus those observed. All of the
models achieved correlations of around 0.65, about 40%
of the variance of observed eastern and central equatorial
Pacific SST anomalies during the years 1982-93. These
results were suggested to show “skill”” in that they were
able to exceed the forecast ability of a simple 1-month
persistence forecast that could explain only about 5% of
the variance in observations. (A forecast of ** persistence”
is the use of the current 1-month anomalous conditions as
a predictor itsalf of future anomaly values. For example,
if the SSTswere 0.73°C above average, persistence would
forecast also a +0.73°C anomaly to occur for thefollowing
months.) Note that validation tests of the three dynamic
models, because of their relatively recent origin, entailed
4 yr of hindcast testsin lieu of independent data. (A ** hind-
cast” specifically refers to prediction of some past event
based upon initia conditions assessed prior to the event
in gquestion. Both dtatistical and dynamic models utilize
hindcast testing.) However, successful hindcasts, evenwith
dynamic models, do not ensure equally successful future
predictions. As noted by Barnston et al. (1994), “thereis
no substitute for real-time forecasting.”

Nonetheless, two issues complicate the assessment of
real-time forecast skill in these statistical and dynamic
ENSO models. The first concern is the lack of success
by these models during the last few years. For example,
during late 1994 and early 1995, there was a reemer-
gence of El Nifio conditions including SST anomalies
ranging from +1.0° to 2.0°C above average developing
throughout the eastern and central equatorial Pacific.
Southern Oscillation index (SOI) values averaging 1.5
standard deviations below average, convective activity
well above normal near the date line and equator, and
weakened trade winds throughout much of the equa-
torial Pacific also occurred, consistent with a mature El
Nifio event (Halpert et al. 1996). The June 1994 issue
of ELLFB (Barnston 1994b) noted that nearly all mod-
els—statistical and dynamic—suggested that no El Nifio
was imminent, even though the models were run only
a half-year before the 1994-95 El Nifio appeared and
reached its mature stage. The statistical models includ-
ing the LIM, SSA-MEM, CAF and CCA schemes all
predicted neutral ENSO conditions for December 1994
through February 1995. The dynamic models including
the CMP9 and BMRC schemes called for weak ENSO
cold phase conditions (or La Nifia), and the CZ model
suggested near-neutral conditions. Only the HCM cor-
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rectly forecast the warming that was later observed in
the central tropical Pacific (140° to the date line). How-
ever, in June 1995 (Barnston 1995b), even the HCM
was unable to forecast the moderate La Nifia event of
late 1995 and early 1996 (Halpert et al. 1996) and also
incorrectly predicted a very strong El Nifio event to
occur in late (boreal) spring and summer 1996; neutral
conditions actually prevailed. Whereas, the reasons for
these wide-scale forecast failures are beyond the scope
of this paper, sufficeit to say that the forecast ** success”
reported by Barnston et a. (1994) may have been pre-
mature.

The second ENSO forecasting assessment issue re-
gards the method for determining skill in the seasonal
forecasts. Traditionally, skill, as defined by Barnston
et al. (1994) and in most of the statistical and dynam-
ical modeling studies referenced previously, isthe abil-
ity to show significantly greater forecasting success
when compared to persistence of initial conditions.
Success has usually been achieved either by maximiz-
ing the linear correlation coefficient or by minimizing
the root-mean-square error (rmse). However, we sug-
gest that persistence is an inappropriately limited test
for determining the threshold of skill in forecasting the
ENSO phenomena. For example, in January 1988 the
Nifio 3 (5°N-5°S and 90°-150°W) SST anomaly value
was +0.75°C, which though moderately warm was
nevertheless much reduced from the +2.03°C value
that occurred during September 1987, at the height of
the 1986-87 El Nifo event. The use of the January
1988 anomaly val ue as the benchmark persistencefore-
cast to improve upon would subsequently providelarge
errors as conditions moved quickly to astrong LaNifa
within only a few months. Any modeling scheme that
predicted acold ENSO event or even areturn to neutral
conditions would show success above persistence and
thus skill, at least for this particular case. However, in
determining whether skillful forecasts were made by
a particular model, the inclusion of month-to-month
(trends) of the initial conditions would have made for
amore stringent test. In this case, persistence plustrend
would have suggested that a return to La Nifia or at
least neutral ENSO conditions was to occur. Of course
the addition of trend of initial conditions will not al-
ways lead to correct forecasts as borne out by the lack
of a La Nifia following the 1991-1992 and 1993 El
Nifio events. The point is that adding trend to persis-
tence generally provides improved forecasts over per-
sistence alone.

In addition to trend of initial values, ENSO conditions
are also known to decay preferentially depending on the
season (Wright 1985; Wright et al. 1988). Persistence
of SST anomalies typically produces the smallest errors
when forecasting the boreal late fall and winter con-
ditions and the largest errors for late spring and summer
values. This tendency is due to the as yet unexplained
strong phase locking between ENSO and the annual
cycle. Rasmusson et al. (1990) showed that the ENSO
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TaBLE 1. Description of data time series used to create the predictor and predictand datasets for the ENSO—CLIPER at each of the lead
times.

Lead time (seasons) Predictor data

Predictand data

March 1950—November 1992
March 1950-November 1992
March 1950—November 1992
March 1950-November 1992
March 1950—November 1992
March 1950-November 1992
March 1950—November 1992
March 1950-November 1992

~NoubhwNEO

January 1951—February 1993
April 1951-May 1993
July 1951-August 1993
October 1951-November 1993
January 1952—February 1994
April 1952—-May 1994
July 1952-August 1994
October 1952—November 1994

sequel has two dominant timescales. One is a biennial
mode with a period very close to 24 months. The other
has a period of 4-5 yr. More importantly, the biennial
cycle is tightly locked to the annual cycle. Therefore,
consideration for the calendar date with respect to the
climatology of composite ENSO events can enhance the
forecast ability of ENSO prediction schemes. For in-
stance, if January initial conditionsarewarm, itislikely
that the conditionsin the following January will be cool -
er.

To provide a more stringent test for skill in seasonal
ENSO forecasting, a multiple regression technique has
been fashioned that takes best advantage of climatology,
persistence, and trend of initial conditions—the ENSO-
CLIPER. This new model is presented as a replacement
of the use of pure persistence for determining the skill
threshold for ENSO forecasting. We then redefine skill
in ENSO prediction as the ability to show significant
improvements over the forecast capability of ENSO-
CLIPER, rather than just persistence. Thus, the ENSO-
CLIPER, which is based upon 43 yr of surface data, is
in this sense an optimal ‘‘no-skill”” forecasting proce-
dure, in that when other models’ performance compares
unfavorably with ENSO-CLIPER they are said to have
no skill. Note that optimal combinations of climatology,
persistence, and trend to provide no skill forecasts is
already in common usage for both tropical cyclone mo-
tion (CLIPER, Neumann 1972) and intensity (SHIFOR,
Jarvinen and Neumann 1979) forecasting. CLIPER-type
models have proved invaluable for providing bench-
marks in testing tropical cyclone track and intensity
forecasting algorithms (Neumann and Pelissier 1981,
DeMaria et al. 1990; DeMaria and Kaplan 1994; Gross

and Lawrence 1996). All statistical and dynamical trop-
ical cyclone models are compared for their relative im-
provement with respect to CLIPER and SHIFOR, rather
than simple persistence (see DeMaria et al. 1990). The
use of these two no skill models has provided an in-
valuable tool in validating new tropical cyclone predic-
tion schemes, in both real time and hindcasts.

This paper will detail the development of an ENSO-
CLIPER scheme and its suggested ENSO forecast abil-
ity including the SOI and the various SST indices. The
next section describes the developmental datasets uti-
lized for both the predictors and predictands. Section 3
details the methodology utilized in the creation of the
ENSO-CLIPER model, and section 4 presentstheresults
of hindcasts on dependent data and estimates of future
forecast ability. Section 5 compares the performance of
the ENSO-CLIPER with other ENSO prediction
schemes. Section 6 provides an example of an inde-
pendent forecast of ENSO conditions for 1996-98. Fol-
lowing a summary and discussion section, the appendix
presents al of the independent ENSO-CLIPER fore-
casts.

2. Data

Two predictor and predictand datasets were utilized.
The years from 1950-1994 were chosen as the depen-
dent dataset from which the multiple regression equa-
tions were derived. Forty-three years of data are used
to create the predictors for each equation, but because
of the variation of lead times the predictand datasets
vary asshownin Table 1. The SOI dataset was computed
as the standardized Tahiti minus Darwin (Fig. 1) sea

. () %
% 3.4
|— ——————————— 1
|
f’g' v 4 | 1 3 ' 2
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Darwin & - —e

Fic. 1. Locations of the four SST indices and of the SOI stations utilized as predictors and
predictands.
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level pressure difference, analyzed as monthly values.
Following Trenberth and Shea (1987) the SOI was cre-
ated from monthly sealevel pressure anomaliesrelative
to 1950—79 mean values, and standardized by dividing
by climatological standard deviation, yielding the dif-
ference between the standardized Tahiti minus the stan-
dardized Darwin sea level pressure anomalies. These
datawere retrieved from the Climate Prediction Center’'s
anonymous FTP site (140.90.50.22).

The SST data were the high-resolution global SSTs
(Smith et al. 1996), which are based upon optimal in-
terpolation of in situ ship and buoy data, supplemented
by satellite SST retrievals as available. The SSTs are
monthly values on a 2° grid spacing for 1950-90. Areal -
averaged anomalies were computed from a 1950-79
monthly climatology to derive the four standard SST
indices commonly utilized for ENSO monitoring (e.g.,
Barnston and Ropelewski 1992). These were supple-
mented with amore detailed (1° X 1°) dataset described
in Reynolds and Smith (1995), which is available for
the period 1991—present. These areas, shown in Fig. 1,
include Nifio 1+2 (0°-10°S, 80°-90°W), Nifio 3 (5°N—
5°S, 90°—150°W), Nifio 4 (5°N-5°S, 150°W-160°E), and
Nifio 3.4 (5°N-5°S, 120°-170°W). The Nifio 3.4 index
has been identified as the SST region having strongest
concurrent association with midlatitude and tropical
ENSO-forced circulation variations (Barnston et al.
1997).

3. Methodology

The ENSO-CLIPER predictive model utilizes a mul-
tiple linear regression based on least squares deviations,
which uses the method of leaps and bounds (IMSL
1987). This predictor selection routine steps forward
using every possible combination of the predictorseven-
tually finding the best multiple regression equation hav-
ing one, two, three, ..., predictors. Prospective pre-
dictors were retained only if they correlated in the re-
gression test at a significance level beyond 95% using
at test and increased the total variance explained by at
least 2.5%. If no predictor met these two criteria, then
no ENSO-CLIPER forecast equation is obtained and a
zero anomaly (climatology) forecast is made. This oc-
curred only occasionally but most notably for the three-
season lead times and beyond. Other restrictions on re-
gression predictors related to avoiding ** overfitting’” are
detailed below.

The SST indices and SOI are forecast at leads of zero
to seven seasons. All forecasts are made for 3-month
target prediction intervals but are made for each indi-
vidual monthly initiation time. Here we follow the no-
menclature of Barnston and Ropel ewski (1992) wherein
zero lead indicates predictions for the next immediately
upcoming month (their Fig. 5). For example, aforecast
issued on 1 February for February—April conditions is
termed a zero-lead seasonal forecast. A 1 February fore-
cast for May—-July is a one-season lead forecast and so
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forth. A limit of 2-yr lead time (i.e., seven seasons)
reflects the fact that hindcast ability becomes negligible
beyond seven seasons lead.

As stated in our introduction, the aim is to optimally
utilize trend and climatology to augment persistence as
a no-skill ENSO forecast. As shown by Wright (1985)
and Wright et al. (1988), persistence of initial conditions
depends both upon the region being forecast and sea-
sonality. For example, persistence (the anomaly of the
previous month) explains 92% of variance in a zero-
season lead for Nifio 3.4 during November—January but
only 45% for May—July. In contrast, Nifio 1+2 SSTs
have peak zero-season |ead persistence during July—Sep-
tember (85% of the variance) and a minimum in Feb-
ruary—April (29%). Thus to account for such a strong
annual cycle in the effectiveness of persistence, separate
regressions were performed for each monthly initial
starting date.

A pool of 14 predictors were available for selection
by the regression scheme. Each regression had the
choice of 1-, 3-, or 5-month averages of initial predictor
anomaliesfor each parameter to be predicted and similar
choices for the trend of the initial conditions (1-, 3-, or
5-month differences of average anomalies). For exam-
ple, predictions made 1 January had the choice of De-
cember, October—December, or August—December mean
initial values for predictor conditions. Options for trend
of initial conditions (again from a 1 January starting
point) included December minus November, October—
December minus July—September, or August—December
minus March-July trends. Similarly, the regression con-
sidered the 3-month initial conditions and trend of the
other four predictands. Hence, the potential predictors
used for a prediction of Nifio 3.4 are as follows:

1) initial Nifio 3.4 conditions (1 month)
2) initial Nifio 3.4 conditions (3 month)
3) initial Nifio 3.4 conditions (5 month)
4) trend of Nifio 3.4 conditions (1 month)
5) trend of Nifio 3.4 conditions (3 month)
6) trend of Nifio 3.4 conditions (5 month)
7) initial Nifito 1+2 conditions (3 month)
8) trend of Nifio 1+2 conditions (3 month)
9) initial Nifio 3 conditions (3 month)

10) trend of Nifio 3 conditions (3 month)

11) initial Nifio 4 conditions (3 month)

12) trend of Nifio 4 conditions (3 month)

13) initial SOI conditions (3 month)

14) trend of SOI conditions (3 month)

As noted above, the regression procedure imposed an
additional criterion to inhibit predictor selection beyond
meaningful significance. The additional criterion is that
the regression may not retain more than one of predic-
tors 1, 2, or 3 and no more than one of the predictors
4, 5, or 6. This restriction is to minimize multicolli-
nearity of predictors creating hindcast ability (Aczel
1989). The variety of initial conditions and trends of
the predictand alows flexibility in handling a strong
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annual cycle of persistence. For example, for Nifio 3.4
SST zero- and one-season lead forecasts, it was common
for the 1-month initial conditions and trends to be cho-
sen, whereas at lead times of four seasons and longer,
the 3-month or 5-month initial conditions (typically as
negatively correlated predictors) and trend were instead
chosen. Rather than manually selecting the highest per-
sistence and trend time periods, we allowed the regres-
sion model to perform the selection adhering to the
above criterion. If no predictors are found, which is
occasionally the case at longer leads, the equation pro-
duces a climatology forecast.

All results from the multiple regression coefficients
are adjusted or degraded to reflect what should be ex-
pected in completely independent future forecasts rather
than the value obtained in the hindcasts. This alteration
of both the variance explained and in the rmse is per-
formed following the methodology of Davis (1979) and
Shapiro (1984).

This methodology begins with a definition of the
amount of artificial ability (A,) or variance explained
in Eq. (2):

M- A
Avs M
1 -
N

where M = number of predictors (variesfromindividual
equation), N = number of observations (43 yr), and A,
= hindcast ability obtained from the regression equation
expressed as the percent variance explained.

When hindcasts are applied to independent data, it is
expected that the degradation is twice this estimate of
artificial ability and thus the actual forecast ability (Ag)
can be estimated as shown in Eq. (2):

AFZAH_ZAA- (2)

Since forecast ability is related to the square errors, the
adjusted rmse (rmse,) can aso be estimated as shown
in Eq. (3):

mss, = /M @
1-A,

The results to be shown in the following sections have
been adjusted to reflect these likely degradationsin per-
formance on independent data.

Five separate predictands (Nifio 1+2, Nifio 3, Nifio
4, and Nifio 3.4 SST indices and the SOI), plus eight
different forecast periods (zero to seven seasons lead),
and 12 initial starting times (1 January, 1 February, . . .,
1 December) yield atotal of 480 regression relationships
that were examined. An equation for each was devel-
oped using the 1950-94 data, which provided a sample
of 43 hindcast data points.
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4. Results

Of the total 480 possible regression equations, 411
met the first two criteria of 95% confidence and 2.5%
increase in hindcast ability, providing nonnegligible
forecast ability (i.e., significantly greater than a linear
correlation coefficient of zero). These were based on
one to four predictors, with most equations containing
two to three predictors. In the remainder of the paper,
we shall focus only on the Nifio 3.4 SSTs for detailed
examples of the results. An illustrative example of the
form of the prediction equations for Nifio 3.4 for a 1
January forecast initiation time in a nonnormalized for-
mat is as follows. (JFM = January—Mar AMJ = April—
June, JAS = July—September, and OND = October—
December.)

Zero-season lead (JFM)
= 0.065 + 0.693 (1-month Nifio 3.4)
One-season lead (AMJ)
= 0.121 + 0.492 (1-month trend Nifio 3.4)
+ 0.864 (3-month trend Nifio 4)
Two-season lead (JAS)
= 0.193 — 0.499 (3-month Nifio 3.4)
+ 1.511 (3-month trend Nifo 4)
Three-season lead (OND)
= 0.037 — 0.899 (3-month Nifio 3.4)
+ 2.432(3-month trend Nifo 4)
Four-season lead (JFM)
= 0.257 — 0.743 (3-month Nifio 3.4)
+ 1.964 (3-month trend Nifio 4)
Five-season lead (AMJ)
= 0.208 — 0.409 (3-month Nifio 3)
+ 0.873 (3-month trend Nifio 3.4)
Six-season lead (JAS)
= 0.099 — 0.503 (3-month Nifio 3.4)
— 0.381 (3-month SOI)
Seven-season lead (OND)
= 0.137

The equations were tested in the hindcast made on
195094 data, yielding linear correlation coefficients of
r = 0.93, 0.67, 0.56, 0.63, 0.64, 0.47, 0.36, 0.00, and
rmse's of 0.28°, 0.38°, 0.53°, 0.73°, 0.58°, 0.45°, 0.59°C,
respectively. (The seven-season lead forecast, for this
case, could not provide nonnegligible hindcasts, so the
195094 average anomaly value for October—December
is forecast. This value, while close to zero, is nonzero
because of the differences in climatological values for
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Fic. 3. ENSO-CLIPER adjusted anomaly correlations for all five predictands (Nifio 1+2, Nifio 3, Nifio 4, and Nifio 3.4 SST indices and
SOl) from lead times ranging from zero to seven seasons based upon initial forecast times of (a) 1 January, (b) 1 April, (c) 1 July, and (d)

1 Octaober.

the 1950-94 period versus the 1950—79 era that the
anomalies were computed from.) Following Davis
(1979) and Shapiro (1984), these values would be ex-
pected to degrade (in independent forecast tests) tor =
0.93, 0.64, 0.51, 0.59, 0.60, 0.42, 0.30, 0.00 and rmse’'s
of 0.29°, 0.39°, 0.55°, 0.76°, 0.61°, 0.46°, 0.61°, 0.59°C,
respectively.

Hindcast test results for Nifio 3.4 SSTs are presented
versus observations in the time series in Fig. 2. For
simplicity and clarity, only values for spring (March—
May), summer (June-August), fall (September—Novem-
ber), and winter (December—February) are plotted.
Close correspondence between the hindcasts and ob-
served values occurred in the zero- and one-season lead
results but degraded with longer Ieads while remaining
nonnegligible at seven-season |lead. Forecasts made after
1 December 1992, designated by the vertical dashed

linesin Fig. 2, indicate independent tests of the ENSO-
CLIPER forecast scheme. Somewhat greater than ex-
pected performance degradation is noted in this small
dataset of out-of-sample forecasts. Values for indepen-
dent forecasts are provided in tabular form in the ap-
pendix and a comparison to other ENSO prediction
schemes is shown in the next section. For the remainder
of the paper, only the adjusted linear correlations and
rmse will be presented.

Figure 3 presents adjusted hindcast values (the ex-
pected variance explained when used to make indepen-
dent forecasts) for all five predictands at lead timesrang-
ing from zero to seven seasons based upon initial fore-
cast for 1 January, 1 April, 1 July, and 1 October. These
results are presented as adjusted anomaly correlation
coefficients. In general, forecast ability declines as the
lead time increases though not always. Notably, the 1

Fic. 2. ENSO-CLIPER Nifio 3.4 hindcasts and forecasts (dashed lines) versus observations (solid lines in °C). The dashed vertical line
demarks the separation between developmental sample-based hindcasts (on the left) versus independent forecast tests (on the right). Panels
display zero through seven season leads, respectively. Sample-based linear correlation coefficients and rmse are displayed.
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FiG. 4. Adjusted anomaly correlations for the Nifio 3.4 predictands for both the ENSO-CLIPER (solid line, °C) and a 1-month persistence
forecast (dashed line, P) from lead times ranging from zero to seven seasons based upon initial forecast times of (a) 1 January, (b) 1 April,

(c) 1 July, and (d) 1 October.

January initial time forecasts for October—December
Nifio 3.4 show higher correlation (r = 0.61) than do
the forecasts for the earlier July—September period (r =
0.52). Additionally, it is evident that the ability of the
same lead time forecasts for the same predictand are
extremely dependent on initial forecast time (of year).
Again using the example of Nifio 3.4, two-season lead
forecasts have regression coefficients that vary from a
low of r = 0.52 for those verifying in July—September
(see Fig. 3a) to a high of r = 0.80 for those verifying
in January—March (Fig. 3c). This variability confirms
the approach that takes advantage of the strong annual
cycle of predictability at the expense of reducing the
number of data points available for the regression.
Where no predictors were available that fit the two pri-
mary criteria, no forecast equations were produced and
the correlation for these is shown as **0.”
Comparisons of the five predictands in Fig. 3 reveal
that the Nifio 3.4 and Nifio 4 regions have, in general,
the most proficient hindcasts at all lead times. The low-
est hindcast correlations are generally observed at leads
of zero to two seasons for the SOI and at leads of three
to seven seasons for the Nifio 1+2 SSTs. Figure 4 shows
comparison with the forecast ability available from per-
sistence and the ENSO-CLIPER Nifio 3.4 forecast.
While persistence comprises essentially all of the fore-

cast ability at lead times of zero and one season, par-
ticularly for the SST indices, predictability for the
ENSO-CLIPER model provided by the other predictors
is crucial during one to four season leads. At leads of
five to seven seasons, persistence again becomes a use-
ful predictor but in a negative sense for the Nifio 3.4
SSTs. Predictive ability is also much reduced. Whereas
persistence quickly drops to negligible levels, the
ENSO-CLIPER isableto retain significant forecast abil-
ity in some cases out to seven-season lead. Of basic
interest are the differences between the performance of
ENSO-CLIPER versus persistence only in relation to
the initial forecast date. While persistence has substan-
tial forecast ability (greater than r = 0.60) for zero-,
one-, and two-season leads for the 1 July initial point,
persistence only achieves this level at the zero-season
lead for the 1 April initial point, reconfirming earlier
results of the variability of persistence depending on the
annual cycle. Corresponding rmse values are shown in
Fig. 5. Typically, at times beyond zero-season lead,
ENSO-CLIPER has rmse values that are significantly
|lower than those provided by persistence only. The larg-
est values of rmse for both forecasts generally occur
during October—-December with minima during April—
June. This annual cycle is due to increased variability
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FiG. 5. Same as Fig. 4 except for showing rmse in °C.

of observed SST in the Nifio 3.4 region during October—
December and decreased variability during April-June.
Table 2 presents a more comprehensive view of the
forecast ability (correlation coefficient) for the zero—
seven-season leads for all five predictands stratified by
verification time, maxima/minima, and annual average
values. Note that for Nifio 3.4 SSTs, dependent on the
initial date, ENSO-CLIPER has peak maximum forecast
ability of 92%, 85%, 64%, 41%, 36%, 24%, 24%, and
28% of the variance explained (the square of the values
shown in Table 2) from leads of zero to seven seasons
in advance. Comparable 1-month persistence forecasts
should give 92%, 77%, 50%, 17%, 6%, 14%, 21%, and
17%, respectively. Averaged over the entire year (i.e.,
12 forecast initiation times) ENSO-CLIPER should give
81%, 55%, 34%, 24%, 18%, 18%, 12%, and 7% for
leads of zero to seven seasons in advance, whereas per-
sistence alone should provide only 74%, 34%, 7%, 0%,
3%, 6%, 8%, and 6%. Dramatic forecastability gains
are shown over persistence, especialy in the two—four-
season leads. The ENSO-CLIPER model improvement
upon persistence entails explaining 7%, 21%, 27%,
24%, 15%, 12%, 10%, and 6%, respectively, more of
the variance annually for lead 0—7. Thus, both for the
most ‘‘predictable’” time of year and for the year as a
whole, significant improvements are realized over per-
sistence alone with the use of ENSO-CLIPER.

5. Independent performance

The ENSO-CLIPER model was constructed from a
dependent dataset of 43 yr, which, given the typical
ENSO timescale of 3-5 yr giving 10-15 complete
ENSO realizations, may be on the short side of time
length needed for this regression technique. Other SST
datasets were examined before selecting the Smith et
al. (1996) data. However, it was found that before ap-
proximately 1950 the equatorial Pacific region data
quality was inadequate for the purposes of this scheme.
Included in the earlier section are estimates of future
skill based on the work of Davis and Shapiro, but it is
unknown whether these estimates will hold true in com-
pletely independent data. To supplement the reduced
correlation and rmse values, the available independent
forecast values since 1993 and their verification arelist-
ed in the appendix and acomparison is performed versus
other published schemes over that same period.

Overall, the years 1993-96 have been a particularly
difficult time period of ENSO history to predict, because
of the long-running 1990-95 warm ENSO conditions.
Using data available in the ELLFB (Barnston 1993a—b,
1994a-d, 1995a-d, 1996a—) as both numeric and
graphical formats, forecasts of Nifio 3.4 (CCA and CAF)
and Nifio 3 (CZ, LIM, CMP9) over the same years but
with differing initial forecast times, seasonal leads, and
verification times are compared. Table 3 showsthe rmse
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