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ON INITIATION OF TROPICAL DEPRESSIONS AND CONVECTION
IN A CONDITIONALLY UNSTABLE ATMOSPHERE

A H. L. Kuo
[Manuscript received April 25, 1960; revised August 8, 1960]

ABSTRACT

The analysis shows that if the stratification is umstable
for ascending motion over an infinite area and small random per-
turbations of various scales are introduced, the final disturb-
ance evolved will have the dimension of a cumulus cloud. The
stable stratification in the descending region has the effect of
increasing the critical lapse rate and meking it independent of
the actual values of viscosity and conductivity. It also tends
to narrow the ascending region and to make the descending motion
widespread, but its effect on the most favored scale of the
ascending motion is insignificant. Even though a large horizon-
tal eddy viscosity favors the large-scale motion s its introduc-
tion seems not entirely Jjustifiable.

On the other hand, if the conditionally unstable atmosphere
is originally unsaturated, and if saturation is produced only in
a limited region, by the perturbation, it is then necessary to
have the vertical velocity of the perturbation above a certain
threshold value. Under this circumstance, the disturbances may
organize themselves into a large-scale circulation.

The effects of stable layers above and below the unstable
layer have been investigated by the use of three models, two
based on a constant static stability factor in each layer and
the third model with stability factor increasing with height.
The results from all these models show a rapid decrease of the
perturbation in the stable layer, but the temperature field ob-
tained from the first two models is discontinuous while that
derived from the third model is continuous. It has also been
shown that the effect of the convective transport of heat is to
make the middle troposphere nearly adisbatic (moist) and the
upper part more stable.

The meximum vertical velocity that can be derived from the
unstable tropical atmosphere is about 15 m. sec. — if the con-
vection is of the cumulus cloud type, and the corresponding
horizontal velocity is about 30 m. sec.”l, If the motion devel-
oped is of much larger horizontal dimension, the velocity will
be mainly horizontal.
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1. INTRODUCTION

_ Unless specific initial conditions that lead to the formation of the
tropical storms have been found, we can only interpret their initiation in
terms of the growth of small perturbations due to some kind of instability.

It is generally accepted that the main source of energy of the tropical storms
is the latent heat of condensation, and that horizontal temperature contrast

is almost absent during the initial stage of their development. On the basis
of these facts, it would seem appropriate to attribute the initiation of these
storms to the unstable stratification of the atmosphere, expressed in terms of
the equivalent potential temperature Qe, which includes the effect of the water

vapor content. Such an instability theory of origin of the tropical storms
has been proposed by many theoretical meteorologists, for example, Hague [6],
Syono [12], and most recently Lilly [10].

In these theories, the authors attributed the formation of the tropical
storms directly to the unstable stratification by identifying the storms with
the limiting perturbation whose growth rate is zero, while disregarding all
the other growing disturbances. However, since in the linear stability theory
one assumes that small perturbations of all scales are present, the final motion
that evolves from the system must be dominated by the perturbation with the
highest growth rate, or the one which starts at the lowest Rayleigh number,
unless some other physical processes are present which prevent the continued
growth of this component. Therefore on the basis of the linear theory, one
can only expect the motion field to be dominated by the component with the
largest growth rate.

In this paper we shall at first study the nature of the small perturba-
tions inan absolutely unstable or a conditionally unstable atmosphere, and
then determine the most preferred scale of motion by finding the one which
yields the highest growth rate. The effects of the hydrostatic and the balance
approximations on the solutions will also be analyzed. It will be shown that
in such an atmosphere which is at rest and is either absolutely or condition-
ally unstable, only cumulus cloud type convection can be expected to evolve
if rendom infinitesimal perturbations are introduced. An organizing mechanism
is definitely needed in order to build up a large-scale circulation if unstable
stratification is the source of energy.

The second aim of this paper is to explore the possible mechanism which
will produce such an organizing effect. It will be shown that such an organ-
izing effect can be produced in an unsaturated conditionally unstable atmos-
phere by random but .inite perturbations if the vertical velocity associated
with the longer waves exceeds a threshold velocity of about 2 cm. sec.” 1

Thirdly, the effect of stable layers above and below the unstable layer
on convection will be investigated. We shall also determine the maximum verti-
cal and horizontal velocities attainable from the unstable stratifications ob-
served in the Tropics, and obtain the vertical transport of heat and the mean
temperature distribution from the solution.
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2. PERTURBATION EQUATIONS

In order to investigate the stability of the fluid due to vertical varia-
tion of temperature, we divide the temperature T, the pressure p and the
density p into two parts: gn equilibrium part and a departure from this equi-

librium, represented by To, po, po, and T', p', p'. We assume that Phe equi-
librium state is a state of no motion, therefore the quantities TB, po, and po
are functions of the vertical coordinate z only. Further po and po are related
by the hydrostatic equation

apo
3T %, (2.1)

where g is the gravity acceleration. In addition, the equation of state gives

p, =R T (2.2).

where R is the universal gas constant.

Since '1‘0 is the equilibrium temperature when the fluid is at rest, its

vertical distribution is determined by the nonadiabatic processes such as heat
conduction, radistion, and condensation and evaporation. Heat conduction alone
will give a linear dependence on z, while the other nonadiabatic processes may
result in more complicated vertical variations. Here we merely consider T as
& known function of z. °

In dealing with a gas medium it is more convenient to use the potential
temperature 9, defined by the relation

o=1(%)" (2.3)

where P is a standard pressure, usually taken as 1000 mb., and K = R/cp, F
cp being the specific heat under constant pressure. We also divide © into an '
equilibrium part Oo, and a departure 9'.

Since the departures p', T', p', and ©' are usually much smaller than the %
corresponding equilibrium !

et _pL I
P p T 1
°c "o © (2.4) »
_ R _8
Yo 9, {

where ¥ = cy / ey -
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In what follows, we shall make use or une following symbols:

u, v = components of the horizontal velocity vector <.

h
w = vertical velocity.
k = vertical wave number. i
& - d - ;
Vy =t 5+ 3 is the horizontal delta operator. !

= two-dimensional Laplacian operator.

<L e

2
R VARER VAR F

| Bz

J‘; —.a—.-)/v 2 xl— -Kve- i %:x:z :
E T ot 232"’ EE nVn " 27 2 :

s l
Y., = horizontal and vertical kinematic viscosity, or their equivalences. *
| h z ;
} Kh ’ Kz = horizontal and vertical thermometric conductivity, or their !
!

|

equivalences. Part of the radiation process is approximated by

} a conductive process. i
c, = v YRT ° velocity of sound. |
! o !

Coriolis parameter.

o}
I}

rate of addition of heat to unit mass by nonadiabatic processes other

o
U

| than heat conduction.

’ Neglecting perturbation quantities of higher order, we have the following _
‘ equations of motion, first law of thermodynamics, and continuity equation: ‘

"
) ll-'
040/
]

R (2.5)

o' (2.6)

i
pO

=-—(§L 55 +% (2.7
O

Zu - fv

%
+
+
=
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:C’Q‘+jf5—23=Q (2.8)

A different symbol in has been used for the operator Z in the vertical

equation of motion in order to see more clearly the effects of the departure
from the hydrostatic approximation. :

It can easily be shown that the local change of density in the continuity
equation is important only for the high frequency gravitational and sound

waves whose period is less than 3 minutes. Excluding these high frequency
waves from the present investigation we may write the continuity equation as

— o(p w) "
Vo' Yty ——=0 (2.9)

o

The vertical distribution of the undisturbed mean density po is related

to the mean temperature distribution by the following relation

o= fé +s (2.10)

o
where ¢ = - 3 log Py / 9z, s =3 log o / z. 1In the earth's atmosphere, the
value of s is about 1.0 x lO-sm.-l while the values of o and g/qs are about

- - *
1.0 x 10 lLm. l. We may therefore replace g/cg in equation (2.7) by ¢ ,

and obtain the following spproximation
1 1
xw=-%—(-a——£z’-—+op')+§—. (2.7a)

Eliminating ©' between (2.7Ta) and (2.8), disregarding the variation of oy in
applying the operator ;f, we obtain

' g0
(g5 + X, %) (ow) = - ' (-4 op') + o (2.11)
o

*When the local change of density is taken into consideration in the continuity
: 2 .
equation, s will be added to g/ci so that we shall have ¢ instead of g/co in

the final equation for w.
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Applying the operators Vﬁt and vh * to the vectorial horizontal equation of-

motion and then solving for the vorticity ¢t = th —\;r' and the divergence

h
-
Vh " v, from the two resulting equations, we obtain
2 2 £ 2
(£°+X5) t = =V, P (2.12)
o
—

2 2 . L <72 o

(£F+ L)V Yn= g Vy P (2.13)

where V§ is the horizontal Laplacian operator.

Now if we treat 2" as a factor rather than an operator, we may take the
fatio of these two equations and find

v, v

h ot
_h—t__— == (2.1%)
which shows that in a rotating system with small friction and slow time

variation, the horizontal divergence is always small compared with the verti-
cal component { of the vorticity. In other words, the motion should be main-

- 1y geostrophic for such motions.

This fact leads to another mathematical simplification which is often
used in meteorology, that is, the quasi-geostrophic or balance condition.
This approximation is equivalent to the neglecting of x2 against £2 in (2.12)
and (2.13). When the variables are independent of y, this approximation is
the same as neéglecting Zu in (2.5). To analyze the effect of this approxi-
mation, let us use Xe instead of X in the first equation of motion so that
we may have

- X - tv = - i—o X (2.58)
—
(24 XLV, vy == V2 (2.15)
o .

>
Eliminating Vh " v, between (2.9) and (2.15) we obtain

.

(f2 + Zl;) %z' (pow) = ZV% p'. (2.16)

Finally, eliminating p' between the equations (2.11) and (2.16) and in-

~ troducing the new dependent variable ® defined by




®=p eoz/ew (2.17)
we obtain the following equation in w:
> o 0z/2
- O w d . 0,8 2
?: (r +Xo2:2)(§z~§‘rw)+°\f(gs+xlx)vlf‘”= Zpgoxth-
(2.18)

When f is zero, a factor Qf’can be removed from this equation.

In this study we shall be concerned only with the nonadiabatic addition

of heat Q due to condensation, which is considered to be determined by verti-'
cal motion alone. Thus we shall assume -

[}

dm dm
Q=-1L 3t - Lw Sz for saturated upward motion,

(2.19)
Q=0 for unsaturated or descending motion.

Here m is the mixing ratio of the air and L is the latent heat of condensation.
With this Q we may combine the term on the right hand side of equation (2.18)
with the last term on the left by introducing the stebility factor S, defined
by

0
S=-35- Eis'gg = - %IEEE for saturated ascending motion
T [}
(A - )-8 (2.20)

S=-58= g (/? - fﬂ ) for umsaturated or descending motion.

In this form S is always discontinuous across the plane separating the ascend-
ing and descending motions.

The mean vertical distributions of the factors s and SE in the Tropics

are plotted in figure 1. These values are deduced from the mean soundings
over West Indies published recently by Jordan [8,9]. The data show that dur-
ing the hurricane season (July-Oct.) the stratification is more unstable (con-
ditional) than the annual mean throughout the troposphere.

Since the operator - involves Y ve while X' involves KVQ, equation
(2.18) is of eighth order in z. However, for some special problems the order
of the equation can be lowered. For example, for steady state solutions we

have = 4 'y while for inviscid flow we have‘gf = ' = 9 ). This is
K ot
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Figure 1. - Vertical distributions of the stability factors S and the relative
humidity h in West Indies during the hurricane season (July-October).
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9
also the case if M =K. Since for application to many atmospheric problems
we must use eddy viscosity and eddy conductivity whose values are rather un-

certain, we may put ;f’= ﬁ? Z' and remove one factor from the equation by
%

replacing g by i 8 = g'. Equation (2.18) then reduces to the following
2 bl 52(1) 02 b 2 -
(£° + L 2)(32—2—-,:—{1))-(@;8- 1) Vi o =o. (2.21)

This equation shows that in discussing the stability problem for motions
produced by unstable stratification one cannot make use of the hydrostatic

approximation (:fi = 0) and the balance approximation (Jf; = 0) at the same

time, because if one does, the differential equation will contain no & .
operator and the prospect of instability is completely lost. What is left is
the steady state non-viscous equation for the disturbance with the largest
horizontal scale possible and it will then be impossible to draw any con-
clusion concerning the smaller disturbances. In this respect the stability
problem for an unstable vertical stratification is quite different from that
of horizontal baroclinicity, because for the latter problem the essential
result can be obtained by assuming both hydrostatic and balance approximations.

To the present approximation, the effect of the departure from the hydro-
static equilibrium is represented by the last term alone. This term may be
neglected for the disturbances whose horizontal scale is much larger than the

vertical scale (i.e., for disturbances for which V& << 3°/3:2). Unless
such restrictions are made, the hydrostatic approximation will lead to error.
On the other hand, for problems of atmospheric motion the term containing the

2
factor o is usually much smaller than the first term and can be neglected.
In discussing the explicit form of the horizontal variation of w we
shall make the additional simplifying assumption that the various quantities
have circular symmetry, with a view to the application to convective cilrcular

vortices. Since the effect of loeal change of density has been neglected, we
may introduce a Stokes stream function ¥ , defined by

of _o¥

P B = spy by TW S (2.22a)

where u stands for the radial velocity. It is again more convenient to use
the variable ¥ as the dependent variable, defined by

Y .y (2.22b)

In terms of this variable, equation (2.21) becomes

o aEyf 02 r 2 )
(f +‘{"7{2) (F-FY) - (gs*o?_’Il) Vh-'_'fr—O (2.23)
z
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2

1
vhere §7£ =T fé i 3% « In the above equation, the operators ;Zi ;:l’ and;Z;
all contain this horizontal Laplacian rather than §7§.

This equation will be solved by separation of variables through the
substitution

Y - eTp(2) 4 (x) (2.24)

Besides the case of a constant unstable stratification, we shall deal
with the following types of S distributions:

A. Horizontal variations

(1) Constant unstable S (= 0) both for ascending and for descending
motions

(2) Constant conditionally unstable stratification and saturated
ascending air. S changes sign according to the sign of w.
B. Vertical distribution
(1) Constant unstable S (> 0) at all levels

(2) Constant unstable S in lower atmosphere and constant stable S (<< 0)
in upper atmosphere.

(3) S increases linearly with height, unstable below and stable above.

Because of the different S distributions we must use different solutions
in different regions and join them across the internal boundaries. In order
to simplify the solutions, we shall make the additional assumption that when
S changes in the vertical direction it is constant horizontally, whereas when
S varies horizontally it is constant along the vertical.

Thus either ¢ or P is a harmonic function. The case with S varying both
vertically and horizontally will be discussed only briefly.

3. THE BOUNDARY CONDITIONS

The‘external_boundaries of the system under consideration are horizontal

oz/2

planes at 2 =0 and z =00. Since w = P, ¥ € and Py =P e"Uz where Poo

00

is the mean sea level density, we must require the vanishing of w both at the
lower and at the upper boundary. The latter is necessary in order to have the
kinetic energy per unit volume approach zero as z approaches infinity. There-
fore two of the boundary conditions that must be satisfied by w are

w=0 at z=0 and as z-> o00. (3.1)

When the viscous effect is taken. into consideration in full, additional
conditions must be imposed because the differential equation is of higher
order. However, only in discussing the stability criterion and the preferred
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scale of motion we will use equation (2.23) in its complete form, and there we
will take S as a positive constant. In this case the vanishing of tangential
stresses and of @' shall be imposed. These conditions can be satisfied by
harmonic solutions. In seeking solutions for a vertically variable stability
factor, we shall approximate the viscous effect by replacing the Laplacian

operator Va in the viscous term by a factor -( k2 + 0C2) » which is equiva-
lent to the use of a harmonic function as the solution in estimating the
viscous effect.

In the horizontal directions the fluid is assumed to extend to infinity.
The conditions we impose in the horizontal direction are either finiteness or
periodicity of the solution. Specifically, for the case of circular symmetry
we shall require the vanishing of the radial velocity u at the axis of symmetry.
We shall also require u to vanish at r = Tss which may be finite or infimite.

In addition, g% is also assumed to vanish at these two radii. Thus the exs

ternal boundary conditions in the r - direction are:

¢ =0 and %; % %g =0Qatr=0and r = T, (3.2)

It may be mentioned that for inviscid flow these two conditions are iden-
tical and therefore there is only one condition for each given value of r.

When the stability factor S varies discontinuously in space, we must
impose certain conditions on the internal boundaries. Two necessary require-
ments are the continuity of the normal velocity Vo and of the pressure p'.

In terms of the function Y’, the first of these two conditions is equivalent
to the continuity of ¥, while the second depends upon the S variation.

A. S varies horizontally - conditional instability. When viscosity is neglect-
ed, the elimination of @' between the equations (2.6a) and (2.7) gives
2 op'
(65 - P w=2 (&4 o)
o v
!
Since p' and g%— are continuous across the vertical boundary, the quantity on
the left side of this equation must also be continuous. However, since S
changes its sign and is discontinuous, w must also change its sign and have a

finite discontinuity. Such a discontinuity has been revealed in the solution
obtained by Haque [6].

In terms of the function g, we have the following conditions across the
vertical boundary for inviscid flow: i

# =%

, 2 (3.3)

i, 29, 2 "8'S*ta ]
Era w4
1
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B. Vertically variable S. When viscosity is neglected, equations (2.5) and
(2.6) show that the horizontal velocity components are continuous, implying
the continuity of 6?/8 z. Thus across a horizontal internal boundary we have

) dP]. dP2
(1) P, =p, and (ii) FF==g7"- (3.4)

4. THE GROWTH RATE AND MOST PREFERRED SCALE

In an unstable layer with a constant stability factor S = Sl>0, the

solution ® of equation (2.21) that satisfies the free boundary conditions is
of the form

® = A%’ sin k t F(x,y), ¢ = -g—z- (4.1)

whére, F(x ,¥) is a harmonic function satisfying the equation

2
V2r=-X?L F (k.1a)
h 2
h .
In dealing with atmospheric motions we should use the eddy coefficient of
viscosity, which in general has different values in different directions. We

shall denote the eddy viscosity coefficient in the horizontal directions by
y " and that in the vertical direction by Vz. When the solution (4.1) is

substituted in equation (2.21), we find the relation

g'8,0c? - 2% + A2 .
=2 2 2 ’ = (+.2)
oY, + (k7 + AN Y, )

where Y is defined by
2
S 2 2 2 _ o2
¥mar) G e, e X /% (1.3)

and 3'1 = -32 = ¥ when the equations (2.5) and (2.7) are taken in full. The

length scale being used is a depth h, and oC is the horizontal wave number and
k is the vertical wave number.

Equation (4.2) shows tha.t ¥ is either real or purely imaginary, according
2
to whether gS; -4 2 is greater or less than f2 (k2 + A%). In the latter case

q will be complex but with a negative real-part. Therefore the solution repre-
sents the stable gravitational-internal wave with diminishing amplitude. It is

a.l:éé_) seen that the maximum value of q2 corresponds to the first vertical mode
of the solution, k = 1, if we take h as the effective depth. We shall use this

value of k only.

The physical interpretation of this limiting wave number ocg = fe/gS is
that “for the perturbations with X smaller than ©(y, the kinetic energy of the




horizontal motion generated by the Coriolis effect through a displacement is

greater than the potential energy released, while the reverse is true for per-
turbations with €C greater than OCO.

For earth's atmosphere » the value of le is about 0.025, which is much
less than 1 and will be neglected in the following. Therefore the equation
for q is given by

2 2 -
y 8% - ¢ (k.2a)

=77
oC}l*-'b’g

In this section we shall examine the effects of various physical factors and
different mathematical simplifications on the growth rate q and on the most
preferred wave number OCm. :

The values of q computed from equation (4.2a), with ¥

5 1 17 %=,
f=5x10 " sec. » b =10 km. are plotted in figure 2 for three different
values of S which often exist in the Tropics. The solid lines correspond to

2 -1 _ ~
»h =) 2 = lO3 m. sec. , while the dashed curves correspond to inviscid

motion. It is seen that when friction is neglected, q has its maximum when
X = 00, whereas with friction the maximum q occurs at about OC = OCm = 1.6,

with a very slow shift toward a lower value as S decreases.

Comparing the dashed curves with the corresponding full curves, we see
that the effect of eddy viscosity on q is small for ©C << 1. We also mention
that except for very small values of OC, the effect of the Coriolis parameter
f is also small.

In computing the curves in figure 2, we have used ))h =) 2 The effect
of the inhomogeneity of ) is included in (%.2) through the use of the quantity

o("a = 0(2 ))h/ Y, This equation and the curves in figure 2 show that the

most preferred horizontal scale of the ascending motion will always be smaller
than h if the ratio yh/))’_ is less than 1. On the other hand, when ))h/ ))z

is greater than 1, the preferred horizontal scale may become larger than h.
For example, with all the other factors remaining the same, but with )V h/)) 2=

100, then the most preferred horizontal scale of the ascending motion will be
inereased to about 6h.l Thus an effective way of increasing the preferred
horizontal scale of motion in the present system is to increase the value of

J)h.

For the case of line symmetry, the horizontal scale of the ascending motion

is given by x = h/e<. For circular symmetry, it is given by 1= 2.405h/n0C,
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Figure 2. - The growth rate q as a function of the horizontal wave number for
three different values of S. Dashed curves given by inviscid approxima-
tion, solid curves given by viscous equation for Y = 103m.25ec.'1.
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The effect of ground friction may be included by making use of the
boundary condition

>
d Vh -
3z -CVy (4.k)

at z = &, the height of the anemometer, instead of the condition (3.1). The
result is to reduce the effective depth of the fluid. It may be remarked that
since no basic flow is included in this model, ground friction cannot be ex-
pected to work as s driving force for the motion.

Returning to equation (4.2a) we see that both the hydrostatic ()l = )
and the balance (¥ 5 = 0 ) approximations tend to overestimate the growth rate

q—f- and when these two approximations are used simultaneously, they lead to an
() infinite q for all disturbances whose horizontal dimensions are smaller

2
(or larger) than the limiting scale given by O(i = £~/ gS, while for this

limiting disturbance we have 4 = 0. Therefore these two approximations cannot
be introduced simultaneously. On the other hand » one or part of these two
approximations may be used without seriously damaging the system.

We shall now examine the effects of the following approximations on q:

2 2
a,: }2 _ 8K - ¢ F c?fl = cZ; = Z; rul equations,
1+ K
bl: 32 = gSO<2 - fg, 07:1 = 0 ; hydrostatic,
e 32 =gs - f2/0(2, 02‘; = 0 ; balance approximation
2
e _ .2 Y x (4.5)
8.2: 3’ = gsed =l 5 ) Cz;l = CZ; = A(l+ d'e), A = 22 .
(1 +X")(1 + ex')A h
S(x2 f2 2
b2: =-g—~—-"'—2——, oZi:O,oZZ:A(l +oC'"); hydrostatic
(1 +0c')A
2 2
5K~ - f
Gyt J = 2g > 5 .:\Cl = A1 +O('2), rfz = 0; balanced
(1 + ')A

The values of q obtained from the equations (h.Bal, bl, cl) have been

plotted in figure 3a. The curves a._, bll’ c,, are for ))h/l)z =1,

L1
-6 -1 ;
S =10 m."; and curves 857 b12’ ¢, are for J)h/))z = 10, while the curves

; 5 2 -1
= 5 alue of used is 107m. )
855 bl}, and ¢, 5 are for J)h/))z 100. The value J/z sed i m.sec

From these curves we see that both the hydrostatic and the balance approxima-
tions overestimate g, but the hydrostatic approximation is quite accurate for
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the disturbances whose horizontal scale is larger tham 6h (€< << 0.16). On
the other hand, the balance condition seems to be a good approximation for the
small scale disturbances. We also note the flatness of the c-curves.

If we neglect 3/t but retain the viscous terms in the radial and vertical
equations of motion, we then obtain equation (h.5a2), while the equations b2
and ¢, represent the corresponding hydrostatic and balance approximations. Here
q occurs only in the first degree, therefore the motion is either amblified or
damped but without oscillation. The values of q given by these equations are
plotted in figure 3b for the same three values of )’h/))z. It is seen that

these q values are about 10 times larger than those in figure 3a; therefore,
neglecting d/at in the radial and vertical equations of motion greatly exager-
ates the growth and the damping rates. We also note the shift of the most pre-
ferred motion to a larger horizontal scale, which is particularly pronounged in
the balance approximation (h.5c2). -

From the analysis above we see that neither the full perturbation equations
nor the hydrostatic approximation show any preference to large~scale motion,
but the complete balance requirement does produce a shift toward a larger hori-
zontal scale. Thus, an efficient mathematicel model which enhances the develop-
ment of a large-scale convective system is obtained through the use of a large
horizontal eddy viscosity coefficient and the requirement of a complete balance
between the radial pressure gradient and the centrifugal force, but retaining
the viscous terms in the vertical equation of motion. ’

However, it seems that neither the introduction of a very large ))h nor

the assumption of complete radial balance are fully justifiable from the pre-
sent consideration; they can only be considered as mathematical devices to fil-
ter out the small-scale convections. Even though the presence of the cumulus
cloud scale convection may have the effect of a large eddy viscosity for the
large-scale convection, the arresting of the enormous growth of these small
convections themselves must be due .to some physical processes in these systems,
such as the entrainment of dry air into the ascending current and the down
draft and cooling produced by falling rain.

5. MOST PREFERRED SCALE AND MARGINAL STABILITY

The relation between S and ¢C for marginal stability is obtained by let-
ting q approach zero in (4.2). Introducing the nondimensional quantities R
and T, defined by

h 24
' £
Rz%' T3 (5.1)
n Y “r

and settingk =1, A=0, Y =), = ))z, X, =17, Z, = bzoZ’, we then
find

R=b) (1+0c?)? 4 L5140, (1 +0H)?, (5.2)
o<
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when bl =_b2 = 1, this equation is identical to the equation obtained by
Chandrasekhar [4].

For a given T, R, as given by equation (5.2), attains its minimum when
o(is given by

2 b, ocl‘ 1+ oc2) + b, (<><h -1) =T. (5.3)

The roots of this equation, which we designate by OCm, are given in

table 1 for three different methods of computation. These in line a are from
the full equation (e?fl = -fa = XZ), and those in line b are from the hydro-

static approximation ( X 1= o, O?fe =L ) , while those in line c are from the
balance approximation (£ 1 ° L, X 5 = 0). The corresponding values of the

minimum R computed from (5.2) are also given in this table. Figure b illus-
trates the differences of these three computations. It is seen that the hydro-
static approximation tends to shift the most preferred motion to a still
‘smaller horizontal scale, rather than giving a preference to large-scale mo-
tion. This is shown more clearly by the asymptotic expressions for large

values of T. From either the full equation or the balance approximation we
obtain

(5.3a)
as T —» ob.

WE note that for fixed ), the critical temperature gradient Sc increases with
2

f /3 while for fixed f, Sc is proportional to )Y /3 if we keep the Prandtl num-

ber constant. On the other hand, with the hydrostatic approximation we obtain

o >/
: (5.3b)
R —yor/2
m
Table 1. - Values of OCm and Rm for various values of T.
T r o 1 10 100 1600 2500 5000
a 0.7L  0.82 1.18 1.81 2.73 3,21 3,62
oCm b 1.05 1.19 1.82 3,17 5.62 7.01 8.41
c 0.75 1.20 1.85 2.78 3.25 3.65
R

6.75 8.k 17.02 54,39 214.67 382.8 596. 7

>
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Figure 4. - The minimum critical Rayleigh number as a function of OK for a i

Taylor number T = lO3 , obtained from the three different approximations.
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We note that these critical values of R are many orders of magnitude
smaller than the value of R given by the equivalent potential temperature in !
the Tropics. Under this circumstance, the motion is apt to be very turbulent. ‘

The results obtained in these two sections show that the two selection !
rules are roughly equivalent to each other. This equivalence can be demon- !
strated more clearly by the application of the kinetic energy integral. Multi- !

plying the nonlinearized equations of motion scalarly by -7, and making use of
the continuity equation we obtain

> gp 3T
de 0 ik
. + = e t 4 .
Ft-u-v vip+e) 90 w0 +spw+vi-§;{: (5.4)
1 2 2 2y ., . .
vhere e = 3 P (W +v +w ) is the kinetic energy per unit volume, and

dv,
. 1 . . .
T-‘ik = M (k) &; is the viscous stress, /u( k) being the viscosity coefficient

in the direction X+ The summstion convention over the repeated indices i and

k has been used in the last term of this equation.

Integrating over the entire volume under consideration, assuming that the
pormal velocity vanishes on the boundary and neglecting the contribution from
the second term on the right, which is usually much smaller than the first
term, we then obtain
Py v o'

5 aVvV-D (5.4a)
o]

<im

3K _
a3t
1 Ol
where K is the average kinetic energy, D=-7F A -g;k— d V 1is the average
rate of dissipation, and the first integral on the right represents the con-
version of potential energy into kinetic energy. It is evident that when the
dissipation exceeds the rate of conversion, the kinetic energy decreases,

whereas when the rate of conversion exceeds the dissipation, the kinetic energy
increases.

In order to evaluate the various integrals, we make use of the solutions
of the linearized equations, given by

w o= Aeqt sin -;—z F' (%) %
u = -ae%t cos -;—E F (x)
- (@)

- (/%3 K9 f32)(0%/x%)

(5.5)

d
|

el

i}
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— . 2
where ¥ . =1 + c£2 + q' and 9! =1+ oc2 +q' K Q' =q b~ .
1 1 Yy 2
Yn
Substituting these solutions into (5.4a) we obtain
2 T -
(L +C° 4 =
¥ ,2 2 2 T
q (Ti-{--g) 5 1 =R--—-———(°C + 1) [1+OC2.|.. = ] (5.6a)
« e T,
=R - R
)

It is seen that the rate of conversion of potential energy into kinetic
energy is represented by the Rayleigh number R, while the dissipation is re- -
presented by the last term of this equation, which we shall denote by Ro and '

call the "critical Rayleigh number." Thus only when the actual Rayleigh num-

ber R is greeter than the critical Rayleigh number Ro will the kinetic energy
increase. ’

Since R is assumed to be a given quantity whereas Ro varies with the

wave number OC, the maximizing of the left hand side quantity in equation
(5.6a) is the same as minimizing the critical Rayleigh number Ro. Therefore

the two selection rules are roughly equivalent to each other.

To show that equation (5.6a) is the same as the criterion obtained be-
fore, we rearrange the terms and obtain

ot

Wl
-~ =, 1 r 931
1l

which is the same as equation (4.2) (for k =1, A=0and ¥ = Tl = 72) and
reduces to equation (5.2) when g = 0, Tl = T]'_ =(1+ OC2).

It may be mentioned that our consideration of the selection of a most
preferred scale only implies that this component has the largest amplitude and
therefore represents a distinct entity.

6. CONVECTION IN SATURATED CONDITIONALLY UNSTABLE AIR

Since the tropical atmosphere is only conditionally unstable, we shall
investigate the effects of the stable descending motion on the character of
the perturbations and on the stability criterion in this section. To simplify
the analysis, we take S as a positive constant (Sl) in the ascending region

< r < rl) and a negative constant ( S = 5, = -,(281) in the descending

e S s AR A e et
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region (r > rl)- The vertical function P(z) is assumed to be given by

P(z) = sin wz/h, therefore the problem is reduced to the finding of the hori-
zontal function ¢(r).

i
! ? 22
|
|
|

preferred scale of motion depend upon viscosity, the general character of the
perturbations in such a fluid can be obtained from the nonviscous solution,
which is much simpler than the viscous solution. We shall therefore discuss
the nonviscous solution first.

.! It may be remarked that even though the stability criterion and the most
1

? ! A. Nonviscous solution

Tae nonviscous solution for the case with a stable descending region and
q = O has been discussed by Haque [6] and by Lilly [10]. The two most impor-
: tant results obtained by these authors are: (i) the vertical velocity w has a
hil finite discontinuity across the surface which separates the ascending from the
i descending region, and (ii) the ratio of the area of the ascending motion to
that of the descending motion decreases as the ratio ,(2 = - SQ/S.'L increases.

‘ These conclusions hold also when the viscous effect is taken into consider-
ation. Because of the importance of these conclusions » we shall redevelop the
nonviscous solution briefly and obtain some additional information.

The functions g(r) which satisfies (4.la) in the two regions are

¢1=A § gy (<), o<r<r (6.1a)

¢2=B§{Hll(i/3§)+CH._L2(iﬂ§)},- r>r, (6.1b)
r

where § = X , Jl is the first order Bessel function, Hll and H12 are the two

first order Hankel functions, and O, ﬁ » B,and C are given by

2 I

2
2 2 'S +
‘ S skl ol B T i A I
o g's, - a° g's, - a7
P 1 &85 ‘

(6.1c)

B{rt(14f) +c i (iﬂfl)} = a3 0c€ ), o=t g5/ 8T,

. We note that o€, 4, and ¢' depend on q2. When q2 is close to its
limiting value g'Sl, both O€ and _£' become infinite while /6’ remains finite.
When f 2 is large, C approaches zero and 752 is represented by the first term

alone.
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Figure 5. - Variation of w with ¢ for ¢ =1 and £ = 2 in conditionally un-
stable atmosphere. Solid curves given by inviscid solution. Dashed
curves given by viscous solution.

The variation of the horizontal functions of w in the two regions are re-
presented in figure 5 for the two cases with €' =1 and ' =2. It is seen

that the larger is /' , the smaller is the value of ]w2| at § = § o» end

the slower is the variation of 5, with increasing § . That is to say, the

more stable are the surroundings, the more widespread is the descending motion.

The ratio of the area of the ascending region to that of the descending
motion can be obtained from the compatibility equation, which is obtained by
the substitution of the solutions (6.la,b) into the boundary condition (3.3).
For relatively large values of 4 § , aud ﬁ§ o this equation is given by

i Hol{i/fl) JO(OCfl)

(6.2)
Hll(iﬂfl) SR

tanhﬁ(fg— fl) =-

which is obtained by making use of the asymptotic approximations of the Hankel
functions.

Equation (6.2) has an infinite number of roots, the first one of which is
interesting to us. The values of this root corresponding to different values
of /' and of/ﬁ( 52 - fl) are given in table 2. It is seen that for a given
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Table 2. - Values of o( §l as given by (6.2) for different values of & ( Eg -

El) and f'.
A 35 * El)\g' 1 2 3 5 10
0o 1.615 1.28 1.12 097 0.83
2.5 1.605 1.27 1.11 0.96 0.83%
2.0 1.59 1..26 1.10 0.95 0.82
1.5 1.57 1.25 1.09 0.94 0.81
1.0 1.45 1.10 0.96 0.84 0.7
0.5 1.10 0.82 0:72 0.65 0.54

£, o§ | decreases with decreasing /4 ( £ 5" El), showing that the placing

of a fixed wall at a finite distance reduces the area of the ascending motion.
This conclusion is similar to that reached by Bjerknes [1], and has been ob-

tained by Lilly. However, this effect is prominent only when/é?(f 5~ EJ)
is smaller than. 1.5. For still larger values of & ( fa - El),OCE | is al-
most equal to its optimum value corresponding to EE = Q0.

According to (6.1c) the factor _¢' attains its minimum value when
q = 0, and attains its maximum value when q has its maximum. Therefore the
largest possible ascending area for given values of ¢Z and § 5 is that of the

steady state solution, which we shall call the "limiting" motion, while the
smallest ascending area is that of the fast growing disturbance. Taking f =
5 x 10 sec. ™" (20 deg. lat.), g5 =5 x 10‘5sec.'2, h =5 km., we find

OCO = 0.707 x 10_2 for the "limiting" disturbance. For this value of O, the
values of the maximum radius ﬂn of the ascending region for different values
of ¢ and E 5 = oo are given in table 3. It is seen that these values of rm

are of the same order of magnitude as that of the rain areas of the tropical
storms. These values suggest that somehow they represent the most favored
scale of motion, although the results obtained from the linearized equations
for conditionally unstable saturated air tend to select a much smaller scale
of convection. In the last section we shall discuss a semi-nonlinear process
which favors these maximum values rm.

B. Viscous solution and stability criterion

The amplification rate g of the other disturbances can be obtained by
joining the two solutions (6.la,b) at § = § 39 and meking use of the relation

(6.2). The manipulation is complicated and will not be carried out here.
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Table 3. - Radius of ascending region of the limiting disturbance for differ-
ent values of £, h =5 km., ol = 0.007

P 4 i 2 3 5] 10
o fl 1.615 1.28 1.12 0.97 0.83
. (km. ) 362 288 252 218 187

Instead we shall determine the critical value of R and favored scale of motion
for marginal instability from the viscous solution by application of the energy

integral..

When viscosity is included, the function ¢ for marginal stability is the
solution of the equation

-1)¢-RD¢-T¢=O, DEZEE%%'&%" (6.3) |
and is given by 3 !
¢=Z ALY 2y (OCF) (6.4)
s=1

where Cx are the roots of equation (5.2) and Z stands for the Bessel func-
tions in the ascending region and the Hankel functlons in the descending
region (where R =-u?2Rl)- It can be seen from equation (5.2) that for large

Rl and large T, the three roots are given by

(o ARz CH e _
| & TR, X, v/ R OC5 =+y/ R . (6.ka)
Since O, is real and its magnitude is much larger than Cil when Rl is large,
A_/A must be very small in order to have w remain positive for f '<C:§l.

Therefore the solution in the ascending region is given by

o« Jocf)

g= A8y I () 1}uJ(OR/h§ R ACE N OB N CHEY
l

It may be mentioned that the hydrostatic approximation cannot be used in this
region when friction is included. On the other hand, this approximation may
be assumed as valid for the descending region. We then have
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The variation of w with f as given by these solutions are represented by the
dashed curves for ¢ ' = 1 and L' =2 in figure 5. It is seen that the viscous
terms of these solutions contribute very little except very close to f = §

We shall therefore neglect these viscous terms and take (6.1la ,b) as the solu-

tion in applying the energy integral. We shall also neglect the variation of
po in these solutions. Putting

nz g nz 1 df

uz-Acos——hf, wnAsinh—?—d}- (6.5a)
where g is given by (6.1a,b), we find that o' and v are given by
30 2
1 ol h .. 7wz AdC
@l = = = — sin — J(cS) + ...
1 = dSz 3{2 h ]_+0C2 o
1 % w2, afi (X §1) 1,
gl = = — sin — 3 H (lﬁf)'l-...
n : 1 1% 1
A T]'/2 1z : (6.5b)
vl = 5 cos . Jl(OC§) + 5
1+X
ATJ‘/E nZ Jl(OCEl) 1,.
v, = 5= COs = T ; Hl (1ﬂf)+...
1-4 frEgs)

where o stands for OCl and /67 stands for ﬁl

viscous term of the solutions which is to be neglected in the énergy integral,
(5.4a). Substituting these functions into equation (5.lka), setting 0K/3t to
" zero, and making use of the relation A5 = X, ve obtain

» and the dots represent the

2

| 1+ 2.2 1 2
| R (1 - I) =1+ + = [T+ (1 +6d)? 1 (6.6)
| e = :

g

_‘ 1,2

i 1+ (H /Hl)2 ( iy ) HH, - JJ

o e, Iy = 5 5 ¢ (6.6a)
1+ (JO/Jl) I 7+ ay
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Table 4. - Values of I. and 12 for various values of/£

1
Fa 1 2 3 5 10
I, 0.2k " 0.25 0.23 0.21 0.17
I, 0.76 015 0.77 0.79 0.8%

where JO and Jl are Bessel functions of argument cXZfl and H are Hankel func-

tions of the first kind, of orders zero, one, and two and argument i/é?fi-

x : 2
Slncelgf is usually very small, we may neglect/(? against 1 in the left’ hand
side of equation (6.6). '

The values of Il and 12 for various values of/l? are given in table L.
It is seen that they are almost constant. We shall take Il = 0.20 and 12 =
0.80 for all values of £. Equation (6.6) then becomes

0.
(L -0.2X)R = 7(.2 + f%_" (T + xe) (6.7)
where :( =1+ OCE.
As a function of :K, R attains its minimum value when )fis given by

(4.8 - 1.6 )(T + XB) = 2X(X - 1)(5.2X -1 - XD+ X2 (X - 12 (6.8)

For sufficiently large T, the equations (6.7) and (6.8) lead to the fol-
lowing asymptotic expressions for the most favored wave number()im and the

lowest critical Rayleigh number Rm:
X —=> 7z, R ~%T (6.9}

These asymptotic relations reveal a fundamental difference between the
present case of conditional instability and that of absolute instability dis-
cussed in the preceding sections. Here, for sufficiently large T, the criti-
cal value of R is equal to T, therefore the critical potential temperature

gradient is given by

&, =y £ (6.92)

Thus the value of Sm is determined by f2 and the Prandtl number, and it is
independent of the actual values of the coefficients of viscosity and con-
ductivity.

The other result is that C(m approaches a constant limit Y 2 for large
T instead of increasing with T indefinitely, showing that in a conditionally



Table 5. - Values of CXQ and Rm for different values of T

 — m—
i 0 10 100 1000
oC, 0.625 0.975 1.27 1.39
R 8.25 25.2 125, 1003.

unstable fluid layer, further increase of rotation beyond a certain value does

not have the effect of reducing the horizontal dimension of the ascending
motion.

The roots of equation (6.8) have been computed for various values of T
and are given in table 5 in terms of O%f together with the corresponding
values of Rm. It is seen that these cxm values are smaller than those in
table 1 and the Rmvalues are higher. This latter effect is to be expected
because the stratification is stable in the descending region. It is also
seen that for T > lO3
relations (6.9).

y C(m and Rm are very accurately given by the asymptotic

It may be mentioned that for convection in a conditionally unstable at-
mosphere, the descending motion can be considered as occurring in the whole
space for every perturbation except the area of the ascending motion of this

perturbation, therefore the scale of the motion is defined for the ascending
motion only.

7. SOLUTIONS FOR VERTICALLY VARIABLE S

In natural convection, the unstable layer is usually not bounded by solid
surfaces but by more stable layers, and the mean lapse rate ususlly varies
with height. To examine the effects of these factors, we shall consider three
different cases: (a) An unstable layer bounded by a solid surface below and
by a stable layer above. (b) An unstable layer sandwiched between two stable i
layers. S is assumed to be constant in each layer for these two cases. (c) !
An unstable layer bounded by a solid surface below, with S decreasing linearly
with height and becoming stable in upper levels. This last model is more

rrealistic and therefore shall be studied more thoroughly, while the cases (a) i
and (b) will be discussed only very briefly.

In obtaining the solutions corresponding to a vertically variable S5, it
will be assumed that the horizontal variation is represented by a harmonic
function F(x,y) satisfying (k.1a). For simplicity, the operator ° shall be
replaced by a constent multiple ¥ as given in (4.3). Then the vertical func-
tion P(z) is determined by the following equation

2 2
d§+gg 720c21==o (7.1)
at 7+ 7

where { = nz/h, h being the depth of the unstable layer.
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Case a. S = Sl > 0 for z =< h
2
S = = -
82 Vi Sl for h < z =< ©0o.
The solutions of equation (7.1) in the two layers are
xS
= A - 2
Py =4 sink ¢, Py = By B
o > (7.2)
gs, - ) g.0% + ¥°
2 1 2 2 1 2
- mesgms—m ky === —3— &«
£+ 3 7+ Y
Substitution of these solutions in the condtions (3.4) yields .
kl '
-}—{—- = - tan (k.l‘l'f)- (7'28')

2
This equation has been discussed in some detail by Lilly [10].

The function P as given by (7.2), with kg and k2 satisfying (7.2a), is

represented in figure 6 for different values of £ . These curves show that

the more stable the upper layer is (larger £ ), the faster will the disturb-
ance be damped out in the stable layer, and the nearer is the level of maxi-

mum P moved toward the middle of the unstable layer.

Case b. For this case it is convenient to shift the origin to the middle of
the unstable layer. We then have

5 =18 > 0 for ,z I*: h/2

_ 2
S =8,=-45 for |z | >n/2
Assuming the depths of the stable layers are infinite, we then have
1k2§

P = A cos ki U, Py = hye (7.3)

Applying the internal boundary conditions (3.l4) we obtain

k k.x
2 - gan (L),

5

(7.3a)

In studying the stability problem when the unstable layer is bounded by
stable layers it 'is convenient to introduce an effective depth (H) of the un-
stable layer. For the present case, it may be defined as twice the distance
between the maximum point { = O and the point kl.f = /2. For case a, H may

be defined as twice the value of z where P has its maximum. These definitions
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Figure 6. - Variations of the vertical function P with height as given by the
two-layer constant S model. The numbers attached to the P-curves are the
values of j - Dashed curve G represents temperature perturbation.
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Table 6. - Values of the effective relative depth H/h.

Vi 1 2 3 5 10
Case a 1.334 1.1 1.102 1.066 1.033
Case b 2.00 1.420 1.256 1.1kY 1.068

give H = nh/kl. The values of H/h for these two cases. and for different

values of / are given in table 6. It is seen that H is always greater than
h, but approaches h when the bounding layers are extremely stable.

The perturbation potential temperature @' is given by
h2 890 :
' = - W (7.)-#)
2
)JZﬂE(RE + o9) Jz

.

Since w is continuous but 890/8z is discontinuous for these two cases, ©' has

a finite discontinuity across the internal boundaries and changes its sign
there, as is represented by curve G in figure 6. This is a definite defect of
these discontinuous models.

Case c. S decreases linearly with height and the unstable layer is bounded

"below by a fixed plane, so that the distribution of S is given by

S =B (1 - z/h) £7:3)

where B = B, for z < hand B = B_ = 4€2Bl for z=>= h, and both Bl and B2 are

1 2
positive.

For this vertical distribution of S, the equation for P can be simplified

by the transformation

2
Af=ﬂ(§-l+-%)g ﬂ(%-l) (7.6a)
2 2
Ao (B o (7.60)

Bot
It may be mentioned that if the hydrostatic approximation were used, the
last term on the right side of (7.6a) would be absent. In this case, the zero
point of f is at z = h and it is positive in the stable layer and negative in

the unstable layer. We shall refer to this approximation in the illustrations.

Substituting this transformation into equation (7.1) reduces it to

5 .
&L -¥r=o. (7.7)
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The solutions of this equation can be expressed in terms of the Hankel

functions of order 1/3 and argument 51/2/ jl/j
terms of the Airy integrals Ai( § ) and Bi(¥ ):

P(§)=01A1(§)+02}31(‘§). (7.8)

The functions Ai (§ ) and Bi (&) are oscillatory for negative § (i.e., in the
unstable layer), with their amplitude decreasing as (- ¥) increases. TFor posi-
tive { (i.e., in the stable layer), Ai ( § ) decreases ang Bi({ ) increases ex-

ponentially with increasing § (see H. Jeffreys [7], and British Association
of Mathematical Tables [2]).

3 Or more conveniently, in

When the stable layer extends to infinity, we must exclude Bi (§) from
Pe. Therefore P2 is given by
| S '
P, (§) =ctai (¥). (7.82)

where f ' is defined by (7.6a) with B = B, in A, while Pl is given by (7.8).
Substituting these two solutions into the two conditions (3.4) we find

c.l ¢ B
T 1
C, =% {l+(B1)/3}
1 (7.9)

c B
1 2 x1s5
02=3.H6111{l“(31)/}'

Ins

When Bl = B2, we have Cl = Cll, C2 =0, and f' = f - Therefore the solution
is represented by (T.Ba) at all levels. We shall discuss this case only.

The lower boundary is at E = §l' At this boundary we must have
A (%)) =o0. (7:10)

The first root of this equation is El = -2.3381, giving A = 1.3436. From the
relations (7.6a,b) we then find

2 g 2
.f__’:_g__ n = 2.4258 (1 - —g— )5. (7.11)

B

This equation determines the amplification rate q as a function of the hori-
zontal wave number OC and the stability parameter B.

Neglecting the higher powers of B'?/B on the right side of this equation
we then find § 1is given by

y2 0.7 o® - ¢°

1+ 2.31 0(2

(7.12)
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Table 7. - Values of Cﬁm and Roc for different values of T.

—_—= —=

T 0 5 10 100 1000
o(m 0.61 0.89 1.00 1.56 2.57
- 12.2 23.1 30.1 9k.9 ~ 372.0

This is to be compared with equation (4.2).

From equation (7.11) we find the critical Rayleigh number is given by

RO=5(l+oc2)2+£c')—i2—2 {T+(l+0C2)2} . (7.13)

b L :
where R = gBlh /KY n , which is equal to twice of the mean R of the unstable

layer.
For a given T, RO attains its minimum when OC is given by

6 L

o +1.2158 oC = 0.2158 (T + 1). (7.1ka)

The values of'C(m given by this equation and the corresponding Roc are
given in table 7. It is seen that these values of CX& and Roc/2 are smaller
than those in table 1.

For sufficiently large T, ng, and R are given by

OCm —0.7725 pt/3
(7.1%p)

2/3
Roc-—> 3,23 T

which are of the same form as (5.3%a), but with different numerical coefficients.

The variation of P as a function of z for this case (B = Bl) is repre-

sented by the full curve in figure 7. The maximum value of P occurs at
z = 0.5641 h, which is lower than that of case a for ¢ = 1.

When the stable layer is of finite depth h', we must include Bi (f ) in
the solution. However, when h' is not too small compared with the depth h of
the unstable layer, the result differs very little from that for an infinite
h', as is indicated by the dashed curve in figure T, which represents the P-

function for h' = h.

The vertical variation of the perturbation potential temperature o'
in the ascending region is represented by the curve G in figure 7. It is
seen that for this case @' changes its sign continuously across the boundary
at z = h. In this respect the continuous model is much better than the
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discontinuous model, even though they give similar vertical distributions of
velocity and pressure.

From the equations (2.10 - 2.13) we find that the vertical variation of
pov is given by the function X , and the vertical variations of p u and P' are
o]

given by - X, where X is defined by
3 -0z/2 “
X=5;(Pe o2 ). (7-15)

This function has also been plotted in figure 7. It is seen that low pressure
and cyclonic circulation occupy the lower part of the unstable layer while in
the upper levels the pressure is high and the circulation is anticyclonic.

These solutions show that the most important effects of the verticdal
variation of S are the diminution of the perturbation intensity in the stable
layer and the shifting of the level of maximum vertical motion from the top
toward the middle of the unstable layer. The more stable the upper layer is,
the faster will the disturbance be damped out in this layer, and the nearer is
the level of meximum P to the middle of the unstable layer.

8., VERTICAL TRANSPORT OF HEAT AND MODIFICATION OF MEAN TEMPERATURE
DISTRIBUTION BY CONVECTION

In this section we shall determine the vertical transport of heat and the
modification of the mean temperature distribution by convection and calculate
the maximum velocity attainable from the realization of the unstable stratifi-
cation. The calculations will be based on the solutions for the parabolic
Go—profile obtained in the preceding section, case c, which can be taken as a

good approximation to the real atﬁospheric condition.

A parabolic Go-profile may be visualized as being maintained by radiation

and evaporation in the atmosphere, with the ground and the ozone layer as the
two main immediate sources of heat, which absorb solar radiation directly. We
shall approximate the radiation process by the combination of an equivalent
conduction (Brunt [3] and Goody [5]) and a distribution of cold sources in the
atmosphere, which takes away the heat that is conducted into the atmosphere
from the heat sources.

For convenience, we introduce h, he/}(, and VK 5O/gh5 as the units of

length, time, and temperature, respectively, and convert the equations into

nondimensional forms. The eddy conductivity K and the eddy viscosity coeffi-
L i

g éﬁ as the

cient )) are both assumed to be constant. We also write R = =——— 3
KY g z

Rayleigh number.

Combining the thermodynamic equation and the continuity equation, and in-
tegrating over the entire horizontal plane in gquestion and assuming that there
is no net transport of heat across the boundary we obtain the following equa-

tion for the mean potential temperature



ua a(p W_-G-')
3T 3 =
% oz dz

I =

+ Q (8.1)

@}

Q being the internal cold source. The variation of Po in the second term is

not important and will be disregarded from the present consideration.

We shall consider the equilibrium steady states for 8. The varigtion of
temperature before convection sets in, which we denote by'go, is governed by

the two terms on the right side of equation (8.1). It is evident that to
maintain a parabolic Qo~profile in steady state, it is necessary to have g

uniform cold source Qo ( = —Ro) to remove the inflow of heat, ©

Subtraction of the equation for 9, from equation (8.1) results in the
following equation for 8 (= ¢ - 90)

v —
S BCTD
342 T oz - Y (8.2)

Z

where Ql =Q - QO is the additional heat source needed to maintain a steady

state when there is convection, which will be determined below. Integrating
this equation once and again, we obtain.

T 4O - k555
& e - 1 2
Q=90+4}z+8w9’dz-'§QlZ (8.3b)

where /ﬁz denotes the value of géé at z = 0, and 30 is the value of @ at z = 0.

In order to fix the constants /67, 8 and Q, we must make use of the
o’ o i

boundary conditions. Since the disturbance decreases exponentially with height
in the stable layer and is already very small at z = 2, we may assume that ©
is to vanish at this height and above, even when the depth of the stable layer
is infiinite.

Using the condition @ =0 at z = 2 in equation (8.3b) it gives

2If the cooling is proportional to the temperature, the steady state 90-

profile will be sinusoidal. The solution of the seminonviscous equations
will then be represented by Mathieu functions in z. The basic character is
the same as that for the parabolic profile discussed here.




37

z

1
S w Q' dz, 2, = 2. (8.3c)
o)

e

o - A-5%"

Additional conditions are needed in order to determine the lhree constants.
Since convection and conduction only redistribute the heat, we shall assume
the following requirements

(1) 8, =0, (i1) §az =0, z,= 2. (8.ka)

Integrating (8.3%b) once again and making use of (8.4a) we obtain

2 Z ’
Lo - 4 -3 S g CEDICHR (8.5)

Since 55 is assumed to be zero, the two equations (8.3c) and (8.5) determine

Ql and %?s in terms of the integrals of w @'.

For the parabolic eo—profile we mey use the solution obtained in sec-

tion 7. The solution w and @ are given by

W= Gy mM(E) P (x,y) (8.6a)

2
C.n
BT e R (L -2) Ai({) F(x,v) (8.6b)°

i (k2+CC2)

where F (x,y) is the horizontal harmonic function, Cl is an arbitrary constant,
and RoC is the critical value of RO. It should be mentioned that since these

are the solutions of the linearized equations, we must use R in (8.6b).
From these solutions we find w ©' is given by

c 22

R
7o = L0 (1-2) mf). (8.7)

2(k2+ 0(2)

jHere, as in (6.5), we are using the approximation that the application of the
Laplacian operator in the viscous terms is equivalent to a multiplication by

- (k2 + 0(2).
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The variation of this function and its derivative are represented in
figure 8. It is seen that there is a divergence of the convective heat flux
in the lower part of the unstable layer and in the upper part of the stable
layer and a convergence in the middle.

Substituting (8.7) into (8.3c) and (8.5), solving for 9 andl/?’ and then
substituting into (8.3b) we finally obtain

] =‘:—K {H(Z) +0.07695 z° - 0.23627 z} .

: 5 (3.8)
bt 2 Cl i Roc
BE) =% | (-2 m%(f)as, A=13056, k=225,

(k" + 6C)

The variation of this 9 with z is represented in figure 9 by the curve a,
the units being Z&B o - Roc’ i.e., the excess of RO over its critical value.

Note that this § is quite similar to -3(w ©')/dz given in figure 8. It re-
duces the value of 85/52 in the lowest layer and also in the upper part of

the unstable layer and lower part of the stable layer, and augments 65/62

in the middle part of the unstable layer. Thus as a result of convection,
the mean temperature gradient is closer to the adiabatic lapse rate except it
becomes more stable near the top and more unstable near the bottom, and the

level where aa/az changes sign has been raised.

The curves b and c¢ in figure 9 represent the solution which satisfy the
requirements

2
'50 =0 and Q =0, but g az *o. (8.4p)
(o]
2 .
Q =0 and ® dz =0, but 'é'o % 0. (8.k4¢)
(8]

It appears that these two conditions are not as realistic as condition (8.ka).

The as yet unspecified constant C, can be determined by substituting the

1
solutions into the thermal energy integral which we shall derive immediately.
The essence of this method which was first introduced by Stuart [1l] in study-
ing other fluid motion problems, is to take the solution of the linearized
equations as the first approximation of the nonlinear solution, and to utilize
an appropriate energy integral to determine the intensity.

Multiplying the thermal energy equation by ©' and integrating over the
entire volume, assuming that there is no net transport across the boundaries,

we obtain



S T e e S LI SR e

(==

L0

B2 P — 7
= - Rwr = e /e (8.12a)
—_ ®__% %
o8 oz NB_Z (8.12b)
=R (l-z)-%g-:ﬁnl*

where R stands for the actual Rayleigh number, when convection is present, and
the bar denotes an average over the horizontal plane and the bracket denotes
an average over the vertical. Substituting this R into equation (8.12a) and
assuming that a steady state has been established for the convection it gives

{W R (1-1z)+ Q'VEG'} dz = wer %% dz. (8.13)

o} (0}

We mention that because the solutions are based on the critical value Roc’
the left hand side of this equation differs from zero when RO:>— Roc' Further-

. 2
more, since the left side contains C. while the right side contains Clu, this

1

equation determines Cl .

Substituting w' from (8.7), g% from (8.%a) and 6' from (8.4b) we find

I
2 2 .2 2 2

C.7 =" (k5 +<C) -+ 1 (8.14)

1 I
2

5 R
where 1~ = Eg - 1 and Il stands for the difference of the thermal energy
oc

released from the undisturbed temperature distribution and the dissipation
of temperature variance by conduction, and 12 is proportional to the energy

stored up in 8 which is given by the integral

o' éﬁ dz.

oz

0

For the three different sets of boundary condtions (8.lka, b, c) discussed
above, we find the following three values for the ratio Il/I2:

(a) 15.15, () 25.06, () 1L.L5. (8.15)

These results show that more thermal energy has been converted into
kinetic energy when the boundary temperature is fixed and the volume mean

temperature is allowed to ‘increase, and less kinetic energy is created if
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the bottom temperature is allowed to fall. However, the difference is not
very significant.

-1

As an example, let us take f = 5 x 107 sec. , h =5 km. (depth of un-

stable layer), Y =K =70 B s , giving T = 3. From (7.14%a) and (7.13)

we find(%£ = 0.82, ROC = 19.6. For a surface stability factor SO = 2,5 %
107

-1 L
m. , we find RO = 3.1 x 105, giving n2 = 1.55 x 10 . Using this value of
2
1 in (8.14%) and putting in the dimensional factor K/h in w we find the maxi-

mum vertical velocity attainable with conditions (8.k4a) is 1L4.7 m.sec.-l,
while that with the conditions (8.4b) is 19 m. sec.-l. The horizontal veloc-
ities u and v attainable by these convective motions are about 25 m.seo."l.
The change of the mean temperature is a cooling of about 4°C. in the middle
troposphere. If, however, the cumulus cloud scale convection is suppressed by
some physical processes such as the entrainment of the dry air, then the large
scale perturbations will have a chance to grow. The kinetic energy will then
be mainly in the horizontal motions.

9. COMPOSITE VARIATION

Since the mean atmosphere is conditionally unstable in the lower layer,
we must obtain the solution for the case when S is negative both in upper
levels and in the descending region. Aside from the application of these so-
lutions to the present problem of convection in a conditionally unstable atmos-
phere, they also illustrate the property of the solutions when the differential
equation is hyperbolic in one region and elliptic in another. For simplicity

we take S = 8,= -Afg S, in all the stable regions. In case of circular symme-

try, four different solutions need to be used for the following four regions:

(i) Low level unstable ascending region, 0<r< r,, 0<z< h.

Y =4 sink ¢ - § J; ), t =nz/n, §=nr/n. (9.1)
(ii) Low level stable descending region, r:>-rl, 0<<z=<<h,
3, (X §)
. 1. 1 1
Y g Al sin klg f Hl (%ﬁff ). T TR (9.2)
1 (148,
(iii) High level stable ascending region, 0<<r< rs z > h.
-k, (t-n)
Y 5= sinkn-e 2 ¥ aecl) (9.3)

(iv) High level stable descending region, r=r,, z>h.
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The functions (9.1 - .3) are the solutions discussed in sections 6 and 1.
In order that the conditions(3.3%ii) and (3.4ii) are satisfied, X and & must
be related by (6.2) and k, and k_ be related by equation (7.2a).

1 2
=~k ({-n)
In region (iv), continuity of ¥ requires *L to vary as e along

the vertical wall (r ='rl, z == h) and to vary as { Hll (%A? f ) along the
horizontal plane (z = hy, r :»—rl). However, the product of these two func-
tions is not a solution of the differential equation for region iv, therefore
%’u must be obtained separately.

To simplify the equation for ‘+L, we 1introduce the independent variables
{ and n, defined by

2 2
f
t = az/h, n = ﬁ{ ( ——75“41£L—§ )1/2- (9.4)
gl” 8 +a

Neglecting friction, the differential equation for %1} then becomes

2
5 19%, Y,

L ek e = 0. (9.5)

The solution of this equation that satisfies the boundary conditions
+L =0at n=00, =00, is found to be given by

00 00
5 1), (n, ) = S &5 oin Teriik { g Y (oo Sin knan)
0]

(0]

00 00
+ g e‘kn sin ktdk ( g Wﬂ - sin kgodgo) (9.6)
: o)

(o]

where %Jg -0 and 7Jﬂ - o € the values of ‘V2 and %; on the two lines z = h

and r = s respectively.

10. DISTURBANCES IN UNSATURATED ATMOSPHERE AND
INITTATION OF LARGE-SCALE CIRCULATION

The results obtained in the preceding sections show that in a saturated
conditionally unstable atmosphere of infinite horizontal extent, all disturb-
ances with a horizontal scale smaller than that of the "limiting perturbation"

defined by OC2 = fe/gsl can gain kinetic energy from the unstable stratifica-
tion, but the one with the dimension of a cumulus cloud has the maximum rate
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of amplification. If random perturbations of smell amplitudes are introduced
in such an atmosphere, the cumulus cloud scale convection will grow to the
largest amplitude and there seems to be no reason to expect the "limiting
perturbation” to become the dominating one. Therefore the existence of the
much larger and very distinctive disturbances such as the tropical depressions
remains unexplained.

On examining the mean tropical atmosphere as represented by figure 1, we
notice that it is actually not saturated apd therefore 1is stable for all in-
finitesimal perturbations. On the other hand, the latent energy of conditional
jnstability can be realized by finite amplitude perturbations whose vertical
velocity is above a certain threshold value, so as to provide enough 1lift of
the air mass and produce saturation. For the tropical atmosphere represented
in figure 1, a lift of aboub 600 meters is needed.

Assuming finite amplitude disturbances of different wavelengths are, pre-
sent in the atmosphere before saturation, we shall now discuss & selection- of
the scale of motion among these finite amplitude perturbations, first by
studying their ability to produce saturation and then by investigating their
subsequent development.

Since the atmosphere under consideration is stable before saturation,
these perturbations are likely to be oscillatory, with their period-wavelength
relationship similar to that of the pure gravitational waves, that is, the
longer the wavelength, the longer the period. For the present qualitative
discussion of the mechanism we are visualizing, it suffices to take the period-
wavelength relation of the gravitational waves as an example, end apply it also
to other types of disturbances, including the easterly waves.

We assume that before saturation the motion is represented either by stand-
ing waves Or waves traveling in the x-direction, so that

“bcﬁt -
W = E A _ e sin o (x + cC{t) sin - (10.1)

which satisfies equation (2.21) provided the damping factor bc>C and the phase

speed ¢ satisfy the following relations

2 2
_vzﬂ 2 2_,/6(0(.‘ _gSOC2+f2
ba\— =) (l+cx )’ coc = 2_ D "2'
h o o (1 + o)
The vertical displacement QC( produced by the single wave o is then given by

-b__t
A e &

_ & . - . . 1Z ) .
QOC = T?;£x§1 co%/Aoct) boe SIQ/CQX?.} sin §= cosXX (10.2)

2 2
/abc + tbc

Taking gs = Lo x lO"hsec.-g, f =5x10 -2 sec._l, we find the period
P = 10 min. for & = 2 (cumulus cloud scale), P = 18 hours for K= 0.007

(10.1a)
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(the limiting perturbation) and P = 35 hours for ©C = 0. Taking the maximum

vertical velocity as 3 cm. sec. 1 or less, it is evident that only the waves
longer than the limiting size can provide the required 1ift to produce
saturation. Therefore the small-scale perturbations are insignificant during
the pre-saturation stage of the motion.

Remembering that perturbations larger than the limiting scale will be
damped out by friction even in the saturated conditionally unstable atmosphere,
it becomes clear that the maximum sgale of the growing disturbances is the
limiting perturbation defined by &< = f2/gSl. Therefore it is only necessary

to analyze the subsequent development of the perturbations whose scale is
smaller than the limiting scale.

The most important distinction between the present system and convection
in a saturated conditionally unstable atmosphere of infinite horizontal dimen-
sion is that in the present system saturation exists only in the ascending
region of the larger perturbation, while outside this region the air is un-
saturated and more stable. Under this circumstance the upward motions of the
smaller disturbances must take place inside this ascending region in order to
gain energy from the instability, whereas the descending motions can take place
outside. In this way the descending and ascending branches of the small-scale
convections are detached from each other and they can contribute directly to
the large-scale circulation. On the other hand, in the case of saturated con-
ditionally unstable atmosphere of infinite horizontal extent, ascending motion
of the small-scale perturbations can take place anywhere and there is no pre-
ference to organize them into a larger circulation.

Although suggestions of the possibility of an organization of small-scale
convection cells into large-scale circulation have occasionally been made by
synoptic meteorologists and by theoreticians, the kinematics and dynamics of
such a process have never been discussed before. A more detailed analysis of
this process will be presented in another paper.

11. CONCLUSIONS i

If justifications of the various approximations are the closeness of the

‘results they yield as compared with the results obtained from the more exact
‘relations, then the analysis in section L4 shows that the hydrostatic approxi-

mation is valid for disturbances whose horizontal scales are much larger than
the vertical scale, whereas the balance approximation is valid for the per-
turbations with smaller horizontal dimensions. In light of this rule and the
results obtained in sections 4 and 5, we conclude that in an atmosphere which
is statically unstable, whether absolutely or only conditionally (i.e., un-
stable for ascending motion only), the convective motion that will evolve from
random small perturbations will have the dimension of a cunulus cloud. A dis-
tinct large-scale circulation can not be created by merely introducing random
infinitesimal perturbations in such a situation; some organizing mechanism
which has the effect of arresting the enormous growth of the cumulus convec-

tion is needed.

|
|
|
§
|
|
’;
|




45

On the other hand, if the balance approximation for the circular - or
line-symmetric flow is Jjustifiable for the large-scale perturbations from
other considerations, then the use of the balance condition and inclusion of
the frictional effect in the vertical equation of motion will lead to the
development of a large-scaele circulation.

The effects of the stable descending motion have been studied in sec-
tion 6. It has been found that a much larger lapse rate in the ascending
region is required to sustain the motion. For a sufficiently large Taylor
_ K
Y
ponding most preferred scale is given by©¢C "~ = 2. These two results are com-
pletely different from that for convection in an absolutely unstable rotating
fluid. Another effect of the stable descending motion is that it makes the
ascending motion concentrated in a much smaller region and the descendlng
motion widespread, a result obtained in previous studies.

number T, this critical lapse rate is given by gS 1 fe, while the corres-

The effect of the stable stratification in upper layers has been analyzed
in section T through the use of three models, two are composed of unstable and
stable layers of constant S, while in the third model S decreases linearly
with height. The overall vertical distributions of velocity and pressure ob-
tained from these models are quite similar, both showing a rapid decrease of
the perturbation in the stable layer. However, the temperature perturbation
obtained from the third model is continuous, showing the desirability of using
a continuous model.

The modification of the vertical distribution of the mean potential tem-
perature by convection has been determined in section 8, based on the solution
for the continuous parabolic Qo- profile. It is shown that convection makes

the middle troposphere nearly adiabatic (moist) and the upper part more stable.
The maximum vertical velocity attainable from the tropical atmosphere is about

15 to 20 m. sec.-l, assuming unstable stratification for both ascending and
descending motions, while the horizontal velocity may reach 30 m. sec.“l, if
we assume OC = 2 for the most preferred motion. For large-scale motion, the
motion would be mainly horizontal.

The solutions when S varies both vertically and horizontally are dis-
cussed in section 9. It is shown that in the upper and outer part where
descending motion is taking place in the absolutely stable air, a composite
solution is required.

In section 10 an organizing mechanism is proposed, by taking into con-
sideration the fact that the mean tropical atmosphere is not saturated and
therefore is stable for all infinitesimal perturbations. The latent in-
stability can become realized only after saturation has been produced, which
we assume to be accomplished by the vertical motion of the perturbation. It
is found that a threshold vertical velocity of the order of 2 to 3 cm. sec.”
is needed, and it must be associated with the large-scale perturbations such
as the easterly waves in order to be effective. After saturation has been
produced in a limited region, it is possible to have the small-scale convec-

tion contribute to this large-scale motion.
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Other processes that tend to enhance the development of the large-scale
circulation are those physical processes which impede the continued growth
of the cumulus cloud scale convection, such as the entrainment of dry air and
cooling by the falling rain. It seems that a more detailed knowledge of the
smaller systems is needed in order to have a complete understanding of the
development of the large-scale systems such as tropical storms and hurricanes.
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