Welcome to:

Hurricane Wind Field Research: How can HRD assist our WFO partners?

May 12-13, 2005: Hurricane Research Division, AOML, Miami FL

- identification
- 2:00 Identify common issues
- 2:15 Timed Brainstorm
- 2:45 Consensus building
- 3:00 Agreed Strategy
- 3:15 Break
- 3:30 Mesonets and portable mesonets: Shirley Murillo, HRD
- 3:45 Dave Sharp: Results of interest based WFO problem definition and interest identification
- 4:00 Identify common issues
- 4:15 Timed Brainstorm
- 4:45 Consensus building
- 5:00 Agreed Strategy
- 5:15 Icebreaker at RSMAS Commons

NOAA Hurricane Research Division

part of the NOAA's Oceanic and Atmospheric Research Atlantic Oceanographic and Meteorological Laboratories Virginia Key, Miami FL (about 20 miles east of the Tropical Prediction Center)

Resources: 30 scientists and support staff from NOAA and University of Miami Cooperative Institute for Marine and Atmospheric Studies, regional lab with oceanographic expertise, proximity to RSMAS

NOAA Hurricane Research Division Mission

Improve Intensity Forecasts*

- Objectively assess intensity and uncertainty
- Assess intensity forecast accuracy
- Contribute to development of next generation models

Diagnose and Predict Hurricane Impacts*

- Real-time wind analysis for damage projection and assessment
- Wind research and wind field reconstruction
- Risk modeling
- Improve track forecasts
- Output Stand Climate variability

You can help us to see how we can direct existing and future research programs towards helping to solve your problems

We will do the best we can with limited resources

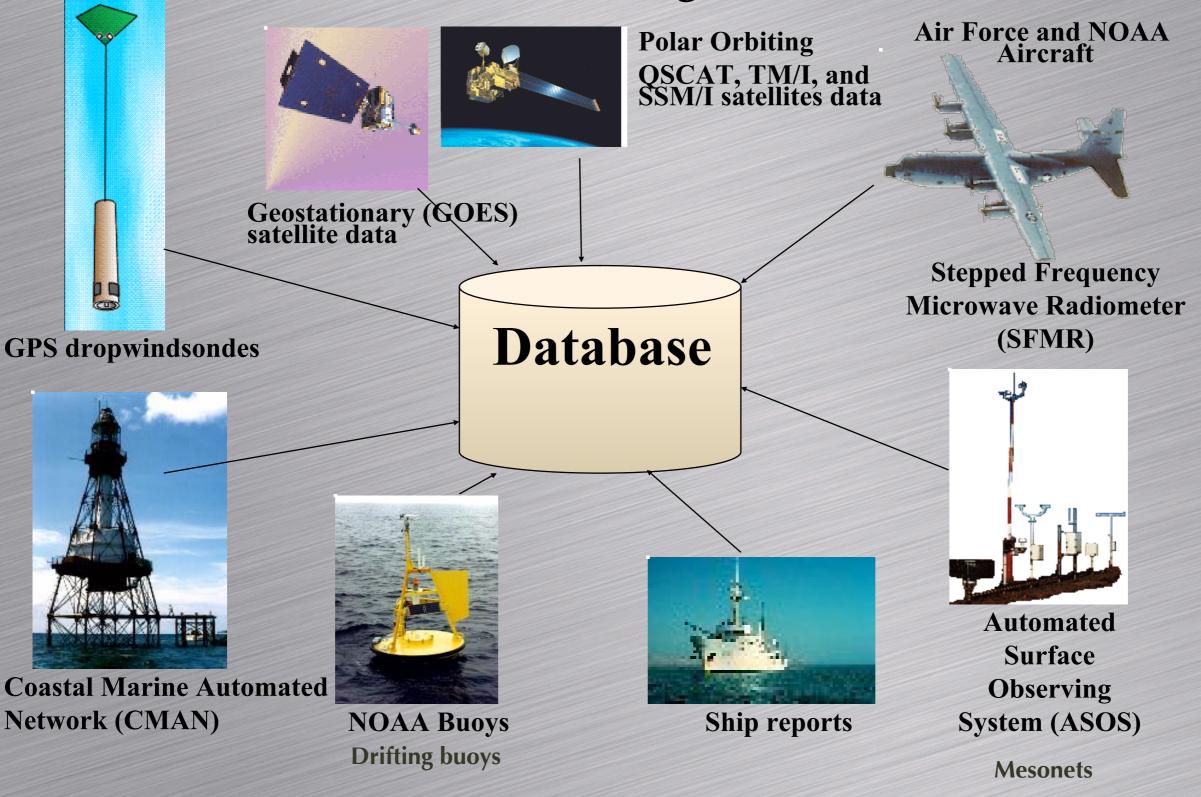
Top 5

Issue WFO->	EYW	MIA	TBW	MLB	JAX	TLH	MOB	SJPR	Totals
NDFD issues and possible solutions	5	2	1	2	3	3	2	1	19
Realtime Meso Analysis	1	1	4	2	2	1	1	8	20
experimental research products to WFOs	3	1	5	5	1	5	7	2	29
Mesonets and portable mesonets	2	3	3	1	7	1	9	3	29
Uncertainty of wind estimates	4		6	3	4	1	6	6	30
Analysis of record for extreme events	6		6	2	8	2	5	7	36
Post event wind field documentation	7		6	6	6	2	4	4	35
Model wind field forecast verification	9		6	4	5	4	3	5	36
Gust factor research	8		6	3	9	1	8	9	44
ASOS Vulnerability			2						

1. NDFD: Rachel Gross, Charlie Paxton; Mark Powell

2. Realtime meso analysis: Jeff Medlin, Matt Strahan, Pablo Santos; Mark Powell

3. Exp. research products to WFOs: Pablo Santos, Peter Wolf; Frank Marks


4. Mesonets and portable mesonets: Dave Sharp. Irv Watson; Shirley Murillo

5. Uncertainty of wind estimates: Irv Watson, Scott Spratt; Eric Uhlhorn

Interest Based Problem Solving

- 1. Define the problem: "How might we...
- 2. Break down each problem and list interests of each WFO, HRD, identify common interests
- 3. Set performance standards as a basis for success
- 4. Generate alternatives and new ideas (timed brainstorming) for solving the problem
- 5. Discuss pros/cons and reach consensus on solution
- 6. Write up the solution

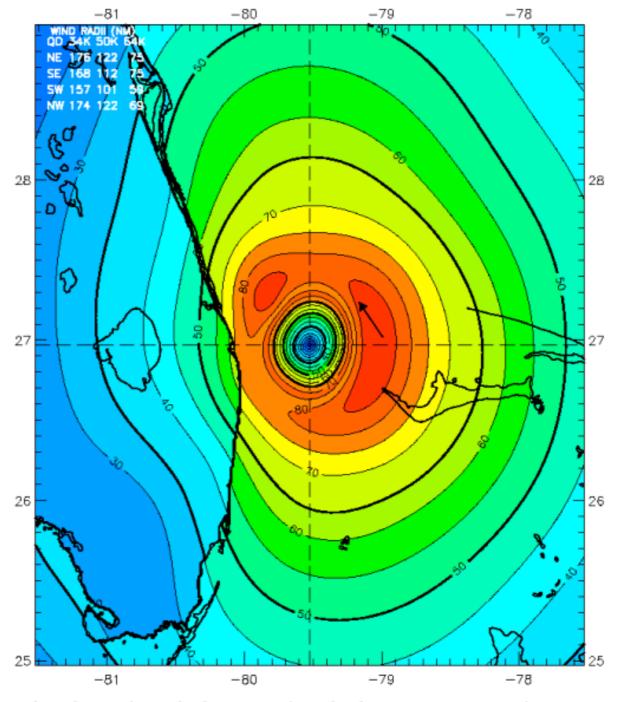
H*Wind Observing Platforms

H*Wind Demo Hurricane Frances

H*Wind Analysis Research Product

Snapshot of the sustained wind field

Assumes conditions representative over a 3-6 hour time period


Winds over land are for open terrain Not valid for complex terrain

Winds over water are for marine exposure

Hurricane Frances 0130 UTC 05 Sep 2004

Max 1 – min sustained surface winds (kt) for marine exposure Analysis based on GPSSONDE_SFC from 2336 – 2336 z; MOORED_BUOY from 1759 – 2259 z; SFMR43 from 1729 – 0012 z; DRIFTING_BUOY from 2000 – 2000 z; GPSSONDE_WL150 from 2225 – 2225 z; TOWER_LD_TO from 0005 – 0005 z; SHIP from 1810 – 2350 z; CREWS_BUOY from 0000 – 0000 z; GOES from 1902 – 1902 z; CMAN_LD_TO from 0000 – 0000 z; ASOS_LD_TO from 2353 – 2353 z; GPSSONDE_MBL from 2300 – 2300 z;

0130 z position extrapolated from 0000 z Extrapolation wind center using 285 deg @ 4 kts; mslp = 951.0 mb

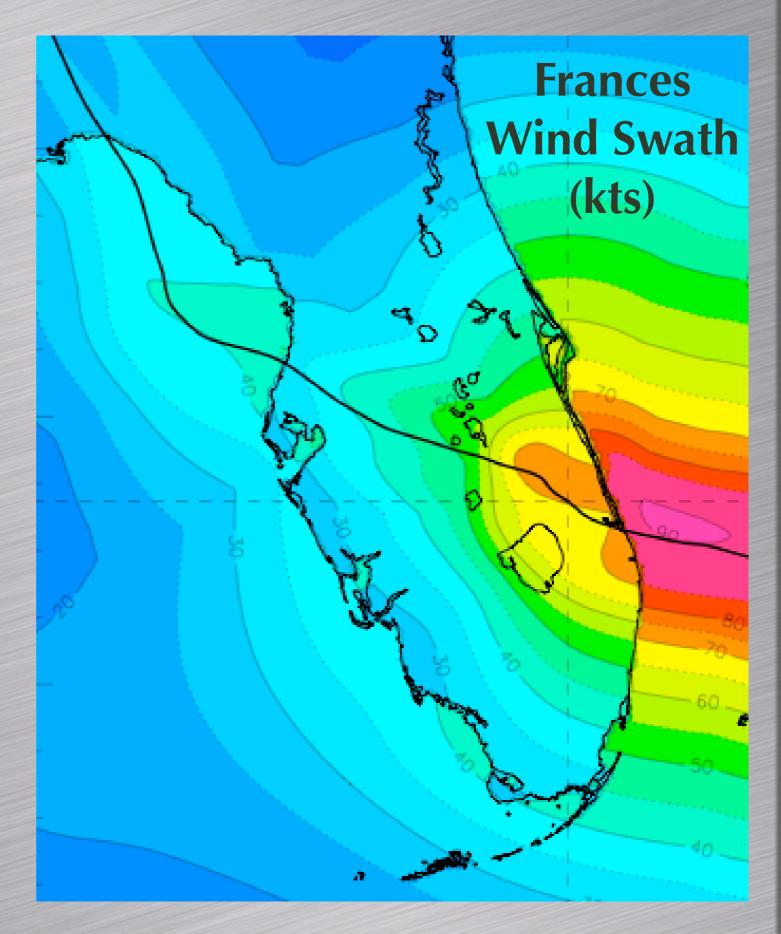
Observed Max. Surface Wind: 90 kts, 29 nm NE of center based on 2044 z GPSSONDE_MBL sfc measurement Analyzed Max. Wind: 90 kts, 29 nm NE of center Experimental research product of:

NOAA / AOML / Hurricane Research Division

H*Wind Experimental Wind Swath Product

Swath of the maximum sustained winds

Winds over land are for open terrain


Designed for damage assessment support; also in shape file format

Uses landfall analysis and applies HRD inland decay model

Preliminary indications: Decay too rapid Model needs revision for Florida

Future:

With a robust observing network a decay model would not be required... Real-time observations would provide instant updates to a swath map

NDFD: Potential HRD efforts

- Deterministic projections of wind field along official track (decay built in)
- Orrections to open terrain over land
- Peak gusts for open terrain
- Geographic forecast error
- Ensemble forecast landfall spread
- Forecast grid verification; Analysis of record for hurricane events
- Bring expertise/analysis of advanced observing systems to the WFOs
 - SFMR, Airborne Doppler, GBVTD, GPS sondes, Aerosondes
- Possible products for actual/complex terrain (with University partners)
- Graphical interactive QC of observations -> Objective analysis
- Grid point wind exceedance probability from peturbing the track according to geog. dependent forecast errors: hundreds of possible tracks

Real-time Mesoscale Ananlysis: Potential HRD efforts

H*Wind

- Bring expertise/analysis of advanced observing systems to the WFOs
 - SFMR, Airborne Doppler, GBVTD, GPS sondes, Aerosondes, mobile mesonets
- Archival record of event "Analysis of record"
- Gridded fields, color contour images, and GIS products from analyses
- Graphical interactive QC of observations -> Objective analysis
- Conversion from marine to open terrain
- Data processed to standard framework: height, avg. time, exposure
- Gust factors f (Zo, time)
- Possible corrections for actual/complex terrain (with University partners)