our heads. Often, not even the weatherman knows which one will win The chief of the U.S. Weather Bureau made a celebrated slip in 1909 when he predicted clear weather for President Taft's inauguration and the ceremonies were caught in a howling snowstorm. His resignation did not solve the problems of the U.S. Weather Bureau. In 1916, a Congressman proposed abolishing the Bureau on the grounds that one of his constituents made better weather predictions with a sourwood stick. Unfortunately, both the constituent's name and his invaluable sourwood stick have been lost to history.
Every once in a while a northbound mass unexpectedly holds off a southbound one-or the other way around-ushering in an Indian summer in October, a thaw in February or a week of cool nights in July. The collisions and interactions of air masses generate winds, rains and thunderstorms from Cape Cod to San Francisco. Temperatures in Chicago or Butte typically shuttle over a range of 40° in any given month: they usually vary that much within a week, and often within a single day. As Mark Twain warned, "Weather is a literary specialty, and no untrained hand can turn out a good article on it." The transfer of the world's supply of heat that produces weather is cumbersome, inefficient and turbulent. It is the bane of the weatherman; for the rest of us it is sometimes a sower of despair, and sometimes a delight.

Man
 against
 Hurricanes

The hurricane-sometimes called typhoon, willy-willy, baguio or tropical cyclone -is nature's most destructive force. A whirling windstorm of enormous power that is spawned mysteriously and suddenly in the otherwise gentle-weathered tropics, it goes roaring northward to wreak its capricious will across thousands of miles of sea and shore. In the Atlantic and Caribbean, about 10 hurricanes are born every year. Since 1900 they have cost the lives of 12,000 U.S. citizens and destroyed some $\$ 15$ billion of U.S. property. The loss might have been less if men knew more about hurricanes-why, when and where they are formed, and why they veer in the directions they do. Weathermen are making urgent efforts to solve these puzzles, so they can give warning early enough to allow citizens to batten down or flee. One day, perhaps, man will know enough about hurricanes to stop or steer them. Until then, about all he can do is take cover.

man meeting his match

A lone man rocks off balance as a hurricane bat- come. At a storm's peak, winds may hit 150 to ters the waterfront at Palm Beach, Florida. When 200 miles an hour-striking with such force that this picture was taken, winds were gusting to
100 miles an hour, with highest winds still to clothes are ripped from people's backs, cars
swept from roads, trains brushed off their tracks.

Seeking to Know the Enemy

United States hurricane research began in a small way in the SpanishAmerican War, when the storms so threatened U.S. forces that President McKinley commented, "I am more afraid of a West Indian hurricane than of the entire Spanish Navy. es began until 1955, when Hurri canes Connie and Diane smashed an unprepared East Coast, costing billions of dollars in damage. After that the National Hurricane Center was set up at Miami, with the job of lo-
cating and tracking hurricanes, and, if possible, learning to predict their
paths and perhaps controlling them Today, hurricanes are usually spot ted at sea by passing ships or by one of the "hurricane-hunter" airplanes that patrol the Caribbean-Atlantic seedbed of storms. After locating the hurricane, the meteorologists make and warn those in its path course warnings are not issued lightly; it costs Miami's Dade County about three million dollars to batten down - mainly in lost business. But an un announced hurricane might cost a third more in property damage-and more important, the lives of hundreds.

Charting the advancing threat A weather observer in the National Hurrican ricane Cleo, as radioed in by an Air Force air plane flying in the storm. The Navy also track hurricanes: the line on the map shows the divi
sion of responsibility between the two services.

RED FLAGS OF DANGER Red and black hurricane warning flags fly at M though hurricane flags are still required by in ternational maritime convention, their purpose -to warn shipping of the approaching storm-

Keeping a
 Weather Eye Peeled

Once a hurricane begins to bear down on the mainland, the best defense against it is information. The main data-gathering arm of the National Hurricane Center is the fleet of planes and pilots supplied by the armed forces and the Weather Bureau. After the hurricane is located, these planes make several penetrations each day ne the maesstro mond which whirl turbulent 100 - to $200-\mathrm{mph}$ winds. These risky flights pinpoint the act location of the storm's center and help determine its force and the various factors that will govern its path and lifetime.
With this information in hand, Hurricane Center forecasters advise threatened coastal areas to hoist hurricane flags, and issue press, radio and TV warnings. When the warnings go out, inhabitants of low-lying areas are advised to seek shelter above the highest predicted tide levels, to
stock up on drinking water and foods that need no refrigeration, to store loose objects and to tape windows.

A hurricane hunter at work

Weather Bureau plane (above) prepares to take
off for a research flight on a hurricane. Inside the temperature, humidity, pressure
and winds. The seated man at right watches a
off for a researcc flight on a hurricane. Inside the
plane (right) researchers record data while ac- winds. The seated man at right watches a
radarscope that tells the shape of the storm.

Piercing a

Hurricane's Heart

Until 1943, no aircraft had ever flown nto a hurricane. That year an Arm ir Force colonel, Joseph P. Duck worth, piloted a single-engine train r into a hurricane's eye. "The only embarrassing episode," he later com mented in his report, "would have been engine failure, which, with the trong ground winds, would proba have prevented a landing, an i parachute highly inconvenient ia parachute highly inconvenient. han Duckworth's have severely damaged hurricane-hunter aircraft, and one such plane was never heard rom after it entered a storm.
Once a plane ventures into a hur ricane it endures a few minutes pounding winds and waterfall rainand then it enters the eye. Like sheltered lagoon, the eye is devoid of all the terrors of the surrounding wall of clouds. The sun or stars may e out and gentle breezes may be wh. But there is way of lea ing the storm's full fury once more.
maelstrom's peaceful interior A hurricane's eye looks like this from an alt
ude of 18,000 feet with blue sea visible below Wde of 18,000 feet with blue sea visible below clouds torn from the wall of the eye and swept
into the center. where gentle winds prevail.

New Help from Science

INTELLIGENCE CENTER AT WORK During a storm. Miami hurricane specialists (op
posite) use space-age information to keep the posite) use space-age information to keep the
public informed. Xavier Proenza (foreground) pieces together satellite photographs to make a
composite hurricane picture: forecaster composite hurricane picture; forecaster Ray
Kraft pores over a map before issuing warnings.

Weather spy in the sky A Nimbus I experimental weather satellite
(above) rides out to orbit from California Thor Agena booster. During its lifetime of less than a month, the first Nimbus photographed
the 1964 hurricanes Cleo. Dora. Ethel and Florence, plus Pacific typhoons Ruby and Sally.

SPACE PORTRAIT OF A STORM This Nimbus photograph (right), with an out line map of Florida superimposed, one of a se quence of frames that were taken August 29
1964, shows Hurricane Cleo. Less than four minutes after Nimbus pictures are taken, they can be viewed by ground-based weathermen

(1) THE STORM'S PARENT WIND The four diagrams here and below illustrate one widely accepted theory of the birth and decay
of a typical Altantic hurricane. The arrow above represents the steady flow of the easterlies, or trade winds. as they blow in late summer over
seas having a temperature of at least $80^{\circ} \mathrm{F}$.

(2) A LIET TO THE UPPER AIR

The first step in the birth of a hurricane usually occurs when a low-pressure disturbance diverts
part of the easterly northward. The winds part of the easterly northward. The winds.
squeezed at this curve, pile up on one another. squeezed at this curve, pile up on one another.
Their warm air rises as high as 40.000 feet, releasing heat and moisture before descending.

(3) PICKING UP MOMENTUM The rotation of the earth imparts a twist to the
rising column, which gradually takes the form of a cylinder whirling around a core of relatively still air. Warm, moist air drawn in off the sea
picks up speed as it comes. constantly feeding picks up speed as it comes, constantly feeding

The Structure of a Giant Storm

Tew people suffering under the hur ricane's bewildering lash would sus ect that the chaos and confusio art on all around them is really hurricanes have in commo One important feature is
 bands that spiral into the center. Un were unaware that rainbands existed. Now they are the principal way of dentifying a hurricane on a radar cope or satellite picture.
These rainbands indicate the paths
of winds bringing in the storm's essential diet of warm, moist air that feeds into the central "wall clouds." Meteorologists still do not fully understand all the conditions necessary to produce a hurricane. In particular events interact to trigger a self-sustaining hurricane (diagrams at left). What they do know about the relative frequency with which hurricane-inducing conditions occur leads them to puzzle over another problem: why don't hurricanes occur more often?

