
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A.
1-800-555-9SUN or 1-650-960-1300

Basic Customization Guide

J2ME Wireless Toolkit

2.2

October 2004

Please
Recycle

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2ME and the Java Coffee Cup logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. The Adobe logo and the PostScript logo are trademarks or registered trademarks
of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end
users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logoSun, Java, J2ME et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.Le logo Adobe. et le logo PostScript sont des marques de fabrique ou
des marques déposées de Adobe Systems, Incorporated.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en
matiere de controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du
nucleaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous
embargo des Etats-Unis, ou vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations
des produits ou des services qui sont regi par la legislation americaine en matiere de controle des exportations et la liste de
ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Contents iii

Contents

Preface vii

1. Introduction 1

1.1 Creating New Emulator Skins 1

1.2 Creating Obfuscator Plug-Ins 1

2. Skinning the Emulator 3

2.1 The Skin Property File 3

2.2 Skin Appearance 4

2.2.1 Skin Images 4

2.2.2 Screen Bounds and Paintable Area 6

2.2.3 Screen Characteristics 8

2.2.4 Icons 9

2.2.5 Fonts 10

2.2.6 Soft Button Labels 11

2.2.7 Sounds 12

2.3 Mapping User Input 12

2.3.1 The Keyboard Handler 13

2.3.2 Buttons 13

2.3.3 Assigning Desktop Keyboard Keys to Buttons 14

2.3.4 Mapping Game Keys 14

2.3.5 Mapping Keys to Characters 15

2.3.6 Mapping Commands to Soft Buttons 15

iv J2ME Wireless Toolkit Basic Customization Guide • October 2004

2.3.7 The Command Menu 16

2.3.8 Pausing and Resuming 16

2.3.9 Pointer Events 17

2.4 Locale and Character Encoding 17

3. Creating an Obfuscator Plug-in 19

3.1 Writing the Plug-in 19

3.2 Configuring the Toolkit 20

Index 21

Contents v

vi J2ME Wireless Toolkit Basic Customization Guide • October 2004

vii

Preface

The J2ME Wireless Toolkit Basic Customization Guide describes how to create your
own device skins, create obfuscator plug-ins and perform other customizations on
the J2ME Wireless Toolkit.

Who Should Use This Book
This guide is intended for developers who need to configure the J2ME Wireless
Toolkit to accommodate new device emulator skins. This document assumes that
you are familiar with Java programming, Mobile Information Device Profile
(MIDP) and the Connected Limited Device Configuration (CLDC) specifications.

How This Book Is Organized
This guide contains the following chapters and appendixes:

Chapter 1 outlines the possibilities of toolkit customization.

Chapter 2 is a tutorial that shows how to create device property files. The
tutorial shows you how to obtain and enter image files, screen properties, button
properties, soft button label areas, and icon properties. The tutorial also explains
how to set color properties and how to run the emulator for the new device.

Chapter 3 shows how to create a plug-in for an obfuscator.

viii J2ME Wireless Toolkit Basic Customization Guide • October 2004

Typographic Conventions

Related Documentation

Accessing Documentation Online
The following sites provide technical documentation related to Java technology.

http://developer.sun.com/

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

{AaBbCc.dir} Variable file names and
directories.

These files are located under the
{toolkit}\apps\{demo_name}\bin\
directory where {toolkit} is the
installation directory of the J2ME
Wireless Toolkit and {demo_name} is
the name of one of the demo
applications.

Application Title

J2ME Wireless Toolkit J2ME Wireless Toolkit User’s Guide

J2ME Wireless Toolkit J2ME Wireless Toolkit Toolkit Release Notes

http://developer.sun.com/

Preface ix

http://java.sun.com/docs/

We Welcome Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

wtk-comments@sun.com

http://java.sun.com/docs/

x J2ME Wireless Toolkit Basic Customization Guide • October 2004

1

CHAPTER 1

Introduction

The J2ME Wireless Toolkit provides an emulation environment for the
development of MIDP applications. This document provides instructions for
customizing the toolkit in two useful ways:

■ Creating new emulator skins

■ Creating obfuscator plug-ins

The remainder of this chapter briefly describes each of these customizations.

1.1 Creating New Emulator Skins
There are three ways to customize the emulators in the J2ME Wireless Toolkit:

1. Download third-party emulators and install them into the J2ME Wireless
Toolkit. For details, see Section 4.7, “Using Third Party Emulators,” in the J2ME
Wireless Toolkit User’s Guide.

2. Create a new emulator skin based on the J2ME Wireless Toolkit’s default
emulator. This process is described in Chapter 2, “Skinning the Emulator.”

3. Customize the default emulator implementation. To do this you’ll want to
license the J2ME Wireless Toolkit source code to customize the emulator
implementation.

1.2 Creating Obfuscator Plug-Ins
An obfuscator is a tool that is used to reduce the size of an executable MIDlet suite.
Smaller MIDlet suites mean lower download times, which in the current
bandwidth-starved wireless world means less waiting, and possibly lower airtime
charges, for users.

2 J2ME Wireless Toolkit Basic Customization Guide • October 2004

The J2ME Wireless Toolkit includes support for the ProGuard obfuscator (http://
proguard.sourceforge.net/), but it includes a flexible architecture that allows
for any type of obfuscator.

Chapter 3, “Creating an Obfuscator Plug-in,” provides the technical details.

http://proguard.sourceforge.net/
http://proguard.sourceforge.net/

3

CHAPTER 2

Skinning the Emulator

This chapter describes how emulator skins are defined. You can modify existing
skins or create new skins for the emulator. This process is known as skinning the
emulator.

2.1 The Skin Property File
Emulator skins are defined by a single property file. Each skin property file is
contained in its own subdirectory of {toolkit}\wtklib\devices, where {toolkit} is
the installation directory of the J2ME Wireless Toolkit. The name of the property
file matches the directory name.

For example, the DefaultColorPhone skin is defined by
DefaultColorPhone.properties in the
{toolkit}\wtklib\devices\DefaultColorPhone directory.

The skin property file defines the appearance and behavior of the emulator skin. It
includes pointers to images and sounds that may or may not reside in the same
directory. For example, the DefaultColorPhone directory contains images for the
phone itself, but the icons and sounds for DefaultColorPhone are defined in
wtklib\devices\Share.

The remainder of this chapter describes the contents of the skin property file. The
property file is a plain text file. You can use any text editor to modify it. In general,
entries in the property file have a property name followed by a value. A colon or
equals sign separates the name and value. Lines that begin with a hash mark (#) are
comments.

The simplest way to create a new skin is to copy an existing one and modify it. For
example:

1. Copy the DefaultColorPhone directory.

2. Name the new directory with the name of your new skin.

4 J2ME Wireless Toolkit Basic Customization Guide • October 2004

3. Rename the properties file to match the directory name. If you named the
directory NewSkin, rename its contained property file NewSkin.properties.

2.2 Skin Appearance
The overall appearance of the emualtor skin is determined by a variety of factors,
each of which is described in this section:

■ Skin images

■ Screen bounds and paintable area

■ Screen characteristics

■ Icons

■ Fonts

■ Commands

■ Sounds

2.2.1 Skin Images
Much of a skin’s appearance is determined by three images:

1. The default image shows the device in a neutral state.

2. The highlighted image shows the device with all the buttons highlighted, as they
are when the user moves the mouse over the buttons.

3. The pressed image shows the device will all its buttons pressed.

Each of these images shows the entire device. The J2ME Wireless Toolkit uses
portions of these images to show button highlights and button presses.

For example, the three images from DefaultColorPhone are shown in FIGURE 1.

Chapter 2 Skinning the Emulator 5

FIGURE 1 Images for DefaultColorPhone: neutral, highlighted, and pressed

A close-up of the keypad is shown here so you can see the differences in the three
images.

FIGURE 2 Emulator skin image details: neutral, highlighted, and pressed

In the skin property file, the three image files are specified with the following
properties:

default_image=<image file name>
highlighted_image=<image file name>
pressed_buttons_image=<image file name>

The image files can be PNG, GIF, or JPEG. They should all be the same dimensions.

For example, DefaultColorPhone.properties has the following entries:

default_image=neutral.png
highlighted_image=hilight.png
pressed_buttons_image=pressed.png

6 J2ME Wireless Toolkit Basic Customization Guide • October 2004

2.2.2 Screen Bounds and Paintable Area
The screen represents the display of a real device. It is defined by the overall screen
bounds, the paintable bounds, and other parameters that determine factors like the
number of colors.

The overall screen bounds are the total area of the display. They are defined in
pixel measurements relative to the origin of the image files, which is in the upper
left corner.

FIGURE 3 The bounds of the screen

The screen bounds are specified in the property file as follows:

screen.x=<x coordinate>
screen.y=<y coordinate>
screen.width=<width>
screen.height=<height>

For example:

screen.x=60
screen.y=76
screen.width=240
screen.height=320

Most devices do not make their full display area available to MIDP applications.
The remainder of the screen is generally reserved for icons and indicators of
various kinds. Similarly, the J2ME Wireless Toolkit emulator allows you to define a
subset of the full screen, called the paintable area, that is available for MIDP
applications. The origin of the paintable area is expressed in coordinates relative to

x

y

width

height

Chapter 2 Skinning the Emulator 7

the upper left corner of the display. For example, the DefaultColorPhone
emulator skin uses a top bar for icons and a bottom bar for soft labels and other
icons, as shown in FIGURE 4.

FIGURE 4 The paintable screen area in DefaultColorPhone

In the emulator skin property file, the paintable area is expressed as follows:

screenPaintableRegion.x=<x coordinate>
screenPaintableRegion.y=<y coordinate>
screenPaintableRegion.width=<width>
screenPaintableRegion.height=<height>

For example:

screenPaintableRegion.x=0
screenPaintableRegion.y=10
screenPaintableRegion.width=240
screenPaintableRegion.height=290

Note – For full screen mode (in MIDP 2.0), the emulator uses the area beginning at
the paintable area origin and extending through the bottom right corner of the
screen. In DefaultColorPhone, this is the entire screen region with the exception
of the top bar.

paintable origin paintable width

paintable height

8 J2ME Wireless Toolkit Basic Customization Guide • October 2004

2.2.3 Screen Characteristics
The emulator skin property file determines the number of colors supported by the
screen and the aspect ratio of the pixels. First, the following property specifies
whether the emulator skin uses color or grayscale.

isColor=<true for color or false for grayscale>

Another property, colorCount, specifies the number of available colors. For
grayscale devices it specifies the number of gray levels.

colorCount=<number>

For example, DefaultColorPhone has a color screen with 4096 colors:

isColor=true
colorCount=0x1000

The emulator’s handling of alpha (transparency) is determined by the following
property:

enableAlphaChannel=<true or false>

Gamma correction can also be enabled by using the following property:

gamma=<number, where 1 means no error correction>

Double buffering can be enabled or disabled with the following property:

screenDoubleBuffer = <true or false>

The background color that is used for the non-paintable areas of the screen is
defined as follows:

screenBorderColor=<color>

For example, DefaultColorPhone uses the following color:

screenBorderColor=0xb6b6aa

On grayscale devices, the background color of the screen can be set using the
following property:

screenBGColor=<color>

Chapter 2 Skinning the Emulator 9

2.2.4 Icons
The J2ME Wireless Toolkit emulator supports the use of icons, which are small
images that convey information to the user. Usually, icons are placed on the display
but outside the paintable area. The emulator implements a fixed set of icons which
are described in TABLE 1.

Icons are defined with a location (measured relative to the origin of the screen), a
default state, and a list of images that correspond to the possible states. For
example, here is the definition of the down icon in DefaultColorPhone. This icon
is a downward-pointing arrow that appears when a list or form is shown that is
taller than the available screen space.

icon.down: 113, 314, off
icon.down.off:
icon.down.on: ../Share/down.gif

The first line specifies the location where the icon will be shown, which for
DefaultColorPhone is a location in the center of the bottom bar, outside the
paintable screen area. The default state is off.

There is no image file that corresponds to the off state, but the on state uses the
image down.gif from the wtklib\devices\Share directory.

Another interesting example is the inmode icon, which includes seven states with
six corresponding image files:

icon.inmode: 113, 2, off
icon.inmode.off:
icon.inmode.ABC: ../Share/ABC.gif
icon.inmode.abc: ../Share/abc_lower.gif
icon.inmode.123: ../Share/123.gif
icon.inmode.kana: ../Share/kana.gif
icon.inmode.hira: ../Share/hira.gif
icon.inmode.sym: ../Share/sym.gif

TABLE 1 Emulator icons

Name Description

battery Shows battery state

domain Indicates the protection domain of the running MIDlet

down Indicates that scrolling is possible

inmode Indicates the input mode: lower case, upper case, numbers

internet Shows Internet activity

left Indicates that scrolling is possible

reception Shows wireless signal strength

right Indicates that scrolling is possible

up Indicates that scrolling is possible

10 J2ME Wireless Toolkit Basic Customization Guide • October 2004

Another aspect of the emulator that is similar to an icon is the network indicator.
Instead of being located in the screen, the network indicator is shown on the
emulator skin. In DefaultColorPhone, the network indicator is shown as a small
green light in the upper left of the emulator skin. The network indicator is defined
using two properties:

netindicator.image: <image>
netindicator.bounds: <x>, <y>, <width>, <height>

For example, in DefaultColorPhone, the network indicator looks like this:

netindicator.image: net_indicator.png
netindicator.bounds: 53, 27, 30, 30

The width and height should match the width and height of the network indicator
image.

2.2.5 Fonts
The fonts used by the emulator are defined in the skin property file. In essence you
can define a font for each of the faces, styles, and sizes that are available in MIDP’s
Font class. The format is as follows:

font.<face>.<style>.<size>:

You can surmise the fact, style, and size parameters from the MIDP Font API,
except the identifiers are lower case in the emulator skin property file. The font face
is system, monospace, or proportional, the style is plain, bold, or italic,
and the size is small, medium, or large.

The font specifier follows the convention laid out in the J2SE java.awt.Font
class. The following example from DefaultColorPhone defines the proportional
italic fonts in all three sizes:

font.proportional.italic.small: SansSerif-italic-9
font.proportional.italic.medium: SansSerif-italic-11
font.proportional.italic.large: SansSerif-italic-14

Chapter 2 Skinning the Emulator 11

You need to specify a default font that will be used in case no other definition is
available. In DefaultColorPhone, a 10-point SansSerif font is used for the
default:

font.default=SansSerif-plain-10

Fonts may also be underlined. By default, this is supported by the MIDP
implementation, but you can disable for specific fonts like this:

font.<face>.<style>.<size>.underline.enabled=false

If you wish, you can disable underlining for all fonts like this:

font.all.underline.enabled=false

Instead of using system fonts, you have an additional option of using a bitmap font.
A bitmap font is simply an image that contains character shapes for a font. The
bitmap font image is a single line of text containing one of each character shape. To
define a bitmap font, use the following property:

font.<name>=

The font property file contains the following property definitions:

font_image = <image file>
font_height =
font_ascent =
font_descent =
font_leading =

The image file should be in PNG, GIF or JPEG format. It should contain a row of
characters:

FIGURE 5 Bitmap font image

The height, ascent, descent, and leading are all specified in pixels. If you are
unfamiliar with these font terms, refer to the J2SE documentation for
java.awt.FontMetrics.

The font property file should also contain a list of mappings between ASCII
character codes and horizontal pixel offsets into the image. In the following
example, the ASCII code 65 is mapped to the horizontal offset 124:

ascii_x-65=124

Once a bitmap font is defined, its name may be used as a font specifier.

2.2.6 Soft Button Labels
Soft buttons are buttons without a fixed function. They will be fully discussed later
in this chapter. Labels for the soft buttons are shown on the screen. The emulator
skin property file determines where and how the soft button labels are shown.

12 J2ME Wireless Toolkit Basic Customization Guide • October 2004

The fonts for the soft button labels are defined using font aliases, which are short
names that you assign to a font. Each soft button label is described by a property:

softbutton.<n>=<x>, <y>, <width>, <height>, , <alignment>

Valid values for alignment are left, right, and center.

For example, the following properties tell the toolkit to use a Courier 12-point font
for the soft button labels. First the font alias softButton is defined. The first label
is left-justified, while the second is right-justified.

font.softButton=Courier-plain-12
softbutton.0=1,306,78,16, softButton, left
softbutton.1=160,306,78,16, softButton, right

2.2.7 Sounds
MIDP alerts have associated sounds. In the J2ME Wireless Toolkit emulator, sounds
are defined using files, one for each type enumerated in the MIDP AlertType
class. The emulator can use any sound file type that is supported by the underlying
J2SE implementation. In J2SE SDK 1.4, this includes AIFF, AU, WAV, MIDI, and
RMF. For example, here are the definitions in DefaultColorPhone:

alert.alarm.sound: ../Share/mid_alarm.wav
alert.info.sound: ../Share/mid_info.wav
alert.warning.sound: ../Share/mid_warn.wav
alert.error.sound: ../Share/mid_err.wav
alert.confirmation.sound: ../Share/mid_confirm.wav

A default sound will be played if no sound is defined for a specific alert type:

alert.confirmation.sound: <sound file>

In addition, you can define a sound that will be played to simulate a phone’s
vibration. In DefaultColorPhone, it looks like this:

vibrator.sound: ../Share/vibrate.wav

2.3 Mapping User Input
There are two parts to describing an emulator skin. The first part is the appearance,
which is described above. The second part defines how user input is mapped in the
emulator.

Chapter 2 Skinning the Emulator 13

2.3.1 The Keyboard Handler
A keyboard handler takes button presses and performs an appropriate action in the
emulator. For example, if you use the mouse to press one of the soft buttons, it is
the keyboard handler that makes the appropriate action happen in the emulator.

The keyboard handler defines a set of standard button names, which you will use
when you define buttons. You just have to tell the emulator where the buttons are
located in the skin and the keyboard handler takes care of the rest.

The J2ME Wireless Toolkit emulator includes two keyboard handlers, one for
phone devices with an ITU-T keypad (DefaultKeyboardHandler) and one for
devices with a full Qwerty keyboard. For example, DefaultColorPhone includes
this keyboard handler property:

keyboard.handler = com.sun.kvem.midp.DefaultKeyboardHandler

DefaultKeyboardHandler recognizes the following standard button names: 0
through 9, POUND, ASTERISK, POWER, SEND, END, LEFT, RIGHT, UP, DOWN, SELECT,
SOFT1, SOFT2, SOFT3, SOFT4, USER1 through USER10.

In QwertyDevice, the keyboard handler looks like this:

keyboard.handler = com.sun.kvem.midp.QwertyKeyboardHandler

QwertyKeyboardHandler supports the same buttons as
DefaultKeyboardHandler and also includes buttons found on a standard
keyboard like alphabetic keys, shift, and alt.

2.3.2 Buttons
Buttons are defined using a name and a set of coordinates. If two sets of
coordinates are supplied, a rectangular button is defined. If more than two sets of
coordinates are present, a polygonal area is used for the button.

The button region is defined relative to the device skin image. When the user
moves the mouse over a defined button region, the corresponding region from the
skin highlight image is shown. If the user presses a button, the corresponding
region from the skin pressed image is shown.

By themselves, buttons aren’t very interesting. They just associate a button name
with a rectangular or polygonal region. It’s the keyboard handler’s job to map the
button name to a function in the emulator. Later, you’ll see how keys on your
desktop computer’s keyboard can be mapped to buttons.

14 J2ME Wireless Toolkit Basic Customization Guide • October 2004

The following property shows how to define a rectangular region for the 5 button.
Its origin is 140, 553, with a width of 84 and a height of 37.

button.5 = 140, 553, 84, 37

Here is an example polygonal definition for the asterisk button:

button.ASTERISK = 66, 605, 110, 606, 140, 636, 120, 647, 70, 637

This polygon is defined using straight line segments connecting the listed points:

66, 105
110, 606
140, 636
120, 647
70, 637

2.3.3 Assigning Desktop Keyboard Keys to Buttons
Buttons can have one or more associated desktop keyboard keys. This means that
you can use your desktop keyboard to control the emulator instead of having to
move the mouse over on the device skin and press the mouse button.

For example, DefaultColorPhone allows you to press F1 on your desktop
keyboard to simulate the left soft button. The left soft button is defined as SOFT1 in
the property file:

button.SOFT1 = 78, 417, 120, 423, 126, 465, 74, 440

And the desktop keyboard shortcut is defined thus:

key.SOFT1 = VK_F1

The actual key definitions are virtual key codes, which are defined in J2SE’s
java.awt.event.KeyEvent class. See the J2SE documentation for details.

You can assign multiple desktop keyboard keys to a button, if you wish. In the
following example from DefaultColorPhone, the 5 key or the the number pad 5
key on your desktop keyboard are both defined as shortcuts for the 5 button on the
emulator skin:

key.5 = VK_5 VK_NUMPAD5

2.3.4 Mapping Game Keys
Game actions are already defined in DefaultKeyboardHandler, but you can
specify your own game actions with QwertyKeyboardHandler. Use lines of the
form:

game.<function> = <button name>

The function can be one of LEFT, RIGHT, UP, DOWN and SELECT. Standard button
names are described earlier in this chapter.

Chapter 2 Skinning the Emulator 15

The default settings are:

game.UP = UP
game.DOWN = DOWN
game.LEFT = LEFT
game.RIGHT = RIGHT
game.SELECT = SELECT

2.3.5 Mapping Keys to Characters
With QwertyKeyboardHandler, you can specify which character is generated by
a button press either alone or in combination with the shift or alt buttons.

Use a line of the form:

keyboard.handler.qwerty.<button> = '<base character>' '<shift character>'
'<alternate character>'

The base character is the character the button normally generates, shift character is
the character used when the button is pressed at the same time as shift, and
alternate character is the character generated when the button is pressed at the
same time as alt.

There are two ways you can do a button press at the same time as pressing shift or
alt:

■ Map the buttons to the keyboard, as in the previous section, and press the key
associated with the button at the same time as the shift or alt keys.

■ Press the button shift-lock or alt-lock and then do the button press. Press shift-
lock or alt-lock again to revert to the initial state.

For example:

keyboard.handler.qwerty.A = 'a' 'A' '?'

2.3.6 Mapping Commands to Soft Buttons
Commands are part of the MIDP specification. They are a flexible way to specify
actions that should be available to the user, without mandating how a particular
device makes them available.

In general, MIDP devices use soft buttons to invoke commands. The command text
is shown on the display, somwhere physically near to the soft buttons. If there are
more commands than available soft buttons, the implementation will show one soft
button label as a menu. Pressing the menu soft button brings up a menu of
available commands.

16 J2ME Wireless Toolkit Basic Customization Guide • October 2004

The J2ME Wireless Toolkit emulator allows you to specify where you want certain
types of commands to appear, based on the command types specified in
javax.microedition.lcdui.Command. For example, on an emulator skin with
two soft buttons, you might prefer that BACK and EXIT commands always appear
on the left soft button, while OK commands should appear on the right soft button.

You can specify these types of preferences in the emulator skin property file, using
lines like the following:

command.keys.<command type>=<button>

For example, DefaultColorPhone defines command preferences this way:

command.keys.BACK = SOFT1
command.keys.EXIT = SOFT1
command.keys.CANCEL = SOFT1
command.keys.STOP = SOFT1

command.keys.OK = SOFT2
command.keys.SCREEN = SOFT2
command.keys.ITEM = SOFT2
command.keys.HELP = SOFT2

By specifying additional button names, you can specify other preferred buttons for
a particular command type. For example, this line tells the emulator that BACK
commands should be mapped to END, if it is available, or SOFT1 otherwise.

command.keys.BACK = END SOFT1

Finally, if you wish, you can specify that a soft button will only be used for specific
command types. The following definition allows only the command types BACK,
EXIT, CANCEL, and STOP to be mapped to the SOFT1 key.

command.exclusive.SOFT1 = BACK EXIT CANCEL STOP

2.3.7 The Command Menu
When there are more commands than available soft buttons, commands are placed
in a menu. The J2ME Wireless Toolkit emulator offers control over the command
menu. You can choose the button which is used to show the menu, the buttons that
are used to traverse the items in the menu, and the text labels that are shown for
the menu.

Chapter 2 Skinning the Emulator 17

The following property, from DefaultColorPhone, tells the emulator skin to use
the second soft button to show or hide the menu.

command.menu.activate = SOFT2

By default, the UP and DOWN buttons are used to traverse the menu, while SELECT
is used to choose a command. You can change these assignments using the
following properties:

command.menu.select = <button>
command.menu.up = <button>
command.menu.down = <button>

2.3.8 Pausing and Resuming
The MIDP specification allows applications (MIDlets) to be paused at any time,
possibly in response to other phone events like incoming calls.

You can use the emualtor skin property file to define desktop keyboard shortcuts
for pausing and resuming MIDlets. DefaultColorPhone, for example, uses F6 for
pausing (suspending) and F7 for resuming:

midlet.SUSPEND_ALL = VK_F6
midlet.RESUME_ALL = VK_F7

2.3.9 Pointer Events
A single property determines whether the emulator skin has a touch screen. If it
does, pointer events will be delivered to Canvases.

touch_screen=<true or false>

2.4 Locale and Character Encoding
A locale is a geographic or political region or community that shares the same
language, customs, or cultural convention. In software, a locale is a collection of
files, data, and code, which contains the information necessary to adapt software to
a specific geographical location.

Some operations are locale-sensitive and require a specified locale to tailor
information for users, such as:

■ Messages displayed to the user
■ Cultural information such as, dates and currency formats

In the J2ME Wireless Toolkit emulator, the default locale is determined by the
platform’s locale.

18 J2ME Wireless Toolkit Basic Customization Guide • October 2004

To define a specific locale, use the following definition:

microedition.locale: <locale name>

A locale name is comprised of two parts separated by an dash (-), for example, en-
US is the locale designation for English/United States while en-AU is the
designation for English/Australia.

The first part is a valid ISO Language Code. These codes are the lower-case two-
letter codes defined by ISO-639. You can find a full list of these codes at a number
of sites, such as:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

The second part is a valid ISO Country Code. These codes are the upper-case two-
letter codes defined by ISO-3166. You can find a full list of these codes at a number
of sites, such as:

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

The input and output APIs in CLDC use named character encodings to convert
between 8-bit characters and 16-bit Unicode characters. Specific MIDP
implementation might make only a small set of encodings available for MIDlets to
use.

In the emulator, the default encoding is default encoder of the platform you are
running on. Your emulator might use other encodings, such as UTF-8 and UTF-16,
providing they are available in the J2SE platform.

To define the character encoding used by an emulator skin, use the following
definition:

microedition.encoding: <encoding>

To define the set of all available encodings, use the following definition:

microedition.encoding.supported: <list of encodings>

For example:

microedition.encoding: UTF-8
microedition.encoding.supported: UTF-8, UTF-16, ISO-8859-1,

ISO-8859-2, Shift_JIS

To support all encodings supported by the J2SE platform, leave the
microedition.encoding.supported definition blank, as in:

microedition.encoding.supported:

Note – Note – The encoding ISO-8859-1 is always available to applications running
on emulated devices, whether or not it is listed in the
microedition.encoding.supported entry.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

19

CHAPTER 3

Creating an Obfuscator Plug-in

The J2ME Wireless Toolkit allows you to use a bytecode obfuscator to reduce the
size of your MIDlet suite JAR. The toolkit comes with support for ProGuard and
RetroGuard, as described in the J2ME Wireless Toolkit User’s Guide.

If you want to use a different obfuscator, you can write a plug-in for the J2ME
Wireless Toolkit.

3.1 Writing the Plug-in
Obfuscator plug-ins extend the com.sun.kvem.environment.Obfusctor
inteface. The interface itself is contained in {toolkit}\wtklib\kenv.zip.

The Obfuscator interface contains two methods that you must implement:

public void createScriptFile(File jadFilename, File projectDir);

public void run(File jarFileObfuscated, String wtkBinDir,
String wtkLibDir, String jarFilename, String projectDir,
String classPath, String emptyAPI) throws IOException;

To compile your obfuscator plug-in, make sure to add kenv.zip to your
CLASSPATH.

20 J2ME Wireless Toolkit Basic Customization Guide • October 2004

For example, here is the source code for a very simple plug-in. It doesn’t actually
invoke an obfuscator, but it shows how to implement the Obfuscator interface.

import java.io.*;

public class NullObfuscator
 implements com.sun.kvem.environment.Obfuscator {
public void createScriptFile(File jadFilename, File projectDir) {

 System.out.println("NullObfuscator: createScriptFile()");
 }

 public void run(File jarFileObfuscated, String wtkBinDir,
 String wtkLibDir, String jarFilename, String projectDir,
 String classPath, String emptyAPI) throws IOException {
 System.out.println("NullObfuscator: run()");
 }
}

Suppose you save this as {toolkit}\wtklib\test\NullObfuscator.java. Then
you can compile it at the command line like this:

set classpath=%classpath%;\WTK22\wtklib\kenv.zip
javac NullObfuscator.java

3.2 Configuring the Toolkit
Once you’ve written an obfuscator plug-in, you have to tell the toolkit where to
find it. To do this, edit {toolkit}\wtklib\Windows\ktools.properties. You’ll
need to edit the obfuscator plug-in class name and tell the toolkit where to find the
class. If you’re following along with the example, edit the properties as follows:

obfuscator.runner.class.name: NullObfuscator
obfuscator.runner.classpath: wtklib\\test

Restart KToolbar and open a project. Now choose Project > Package > Create
Obfuscated Package. In the KToolbar console, you’ll see the output of
NullObfuscator:

Project settings saved
Building "Tiny"
NullObfuscator: createScriptFile()
NullObfuscator: run()
Wrote C:\WTK22\apps\Tiny\bin\Tiny.jar
Wrote C:\WTK22\apps\Tiny\bin\Tiny.jad
Build complete

21

Index

A
Alert sounds, 12

B
Buttons, 13

mapping keys, 14
polygonal, 14
rectangular, 13

Buttons, mapping to emulator actions, 13

C
Character encoding, 17

property, 18
Characters

mapping keys, 15
Commands

command menu, 16
mapping soft buttons, 15

D
DefaultKeyboardHandler, 13
Double buffering, 8

E
Emulator skin

creating, 3
images, 4
property file, 3

F
Fonts, 10

bitmap fonts, 11
default font, 11
underlining, 11

G
Game keys, 14
Gamma correction, 8

I
Icons, 9

images, 9
inmode example, 9
location, 9

K
Keyboard handler, 13
Keyboard keys

mapping to buttons, 14

L
Locale, 17

O
Obfuscator, 19

configuring KToolbar, 20
example code, 20

Obfuscator interface, 19

22

P
Pause and resume, 16
Pointer events, 17

Q
QwertyKeyboardHandler, 13

mapping, 15

S
Screen

background color, 8
bounds, 6
full screen mode, 7
number of colors, 8
paintable area, 6
size and location, 6
specifying color or grayscale, 8

Skinning, 3
Soft buttons

exclusive use, 16
labels, 11
mapping commands, 15

Sounds, 12

T
Touch screen, 17

	Basic Customization Guide
	Contents
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Accessing Documentation Online
	We Welcome Your Comments

	Introduction
	1.1 Creating New Emulator Skins
	1.2 Creating Obfuscator Plug-Ins

	Skinning the Emulator
	2.1 The Skin Property File
	2.2 Skin Appearance
	2.2.1 Skin Images
	2.2.2 Screen Bounds and Paintable Area
	2.2.3 Screen Characteristics
	2.2.4 Icons
	2.2.5 Fonts
	2.2.6 Soft Button Labels
	2.2.7 Sounds

	2.3 Mapping User Input
	2.3.1 The Keyboard Handler
	2.3.2 Buttons
	2.3.3 Assigning Desktop Keyboard Keys to Buttons
	2.3.4 Mapping Game Keys
	2.3.5 Mapping Keys to Characters
	2.3.6 Mapping Commands to Soft Buttons
	2.3.7 The Command Menu
	2.3.8 Pausing and Resuming
	2.3.9 Pointer Events

	2.4 Locale and Character Encoding

	Creating an Obfuscator Plug-in
	3.1 Writing the Plug-in
	3.2 Configuring the Toolkit

	Index

