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What processes drive the regional changes of ocean circulation 
and sea level in the Atlantic and Arctic oceans? 
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Global and Regional Sea Level Change 

Altimetric global mean sea level (GMSL) in 1993-2013. The 
annual and semi-annual signals are removed and a 6-month 
filter is used to obtain the red curve. The data are corrected for 
postglacial rebound. Credits: CLS/ CNES/LEGOS. 

•  Global mean sea level has been rising at the rate of 3.19 mm/year over 1993-2013 

•  Sea level change is the net result of many evironmental processes 

•  Sea level change is not uniform; regional differences are caused by ocean dynamics 

 

Slope=3.19 mm/yr 

Jan 1993 – Dec 2012 linear trend of SSH (mm/yr) 



Objectives 
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Jan 1993 – Dec 2012 linear trend of SSH (mm/yr) 
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•  Variability of the ACC fronts 
south of Africa 

•  Variability in Agulhas 
Retroflection and in the 
South Atlantic subtropical 
gyre changing 

•  Can we predict the variability 
of the Florida Current? 

•  How well do the climate 
models reproduce the Gulf 
Stream? 

•  What drives the mesoscale 
variability of sea level in the 
Lofoten Basin? 

•  What drives the 
nonseasonal variability of 
the Arctic Ocean mass and 
sea level? 

ACC fronts 

Linking regional and large-scale processes supports NOAA’s 
objective for scientific understanding of the changing climate 
system and its impacts  



Antarctic Circumpolar Current (ACC) Fronts 
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•  The variability of local wind field modulates the 
structure of the ACC south of Africa 

•  Stronger westerly winds are associated with a warmer 
ACC and smaller (larger) Sub-Antarctic Front (Antarctic 
Polar Front) transport 

•  The Sub-Antarctic Front (Antarctic Polar Front) location 
south of Africa is not linked to the local wind forcing 

Domingues et al. (2014) 

Absolute surface velocity (m/s) 
and location of fronts  

AX25 



Agulhas Current and Rings 

AOML Program Review 5 Lumpkin et al. (2013) 

•  Inter-basin water exchange between the Indian and 
Atlantic oceans is dominated by shedding of 
Agulhas rings (~1 Sv) 

•  Ring shedding events are subject to interannual 
variability: 2001 low number (3) of rings; 6 rings 
shed in 1997, 2002, 2004, 2010 

•  Do numerical models adequately reproduce the 
shedding of rings? 

Space-time diagram of SSH anomalies 



South Atlantic Subtropical Gyre and Brazil-Malvinas 
Confluence  
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•  Observed long-term expansion of the subtropical gyre 

•  The expansion is reflected in the trends of sea surface 
temperature, sea surface height, eddy kinetic energy, and wind 
stress curl (WSC). 

•  In 1993-2007 the Brazil-Malvinas Confluence Front shifted 
southward by ~1 degree  

•  There is also a transition of dominant periodicity in the location 
of the Brazil-Malvinas Confluence front from annual to bi-annual 

•  The expansion of the gyre means more subtropical water is 
advected to subpolar regions 

climatology 

1993 
2006 

Lumpkin and Garzoli (2011), Goni et al. (2011) 

Meridional excursions of the Brazil-Malvinas Confluence Front 



Florida Current relation to coastal sea level 
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•  Variability of the FC 
transport is correlated 
with SSH anomalies 
propagating westward 
across the Atlantic 
Ocean (lag ~6 yrs) 

•  Sea level anomalies 
that reach the east 
US coast can be used 
to explain  (and 
eventually predict) up 
to 50% of Florida 
Current transport 

Time-longitude diagram of SSH anomaly along 34N:  
westward propagating anomalies are correlated with the FC 
transport (lag ~6 yrs) 



Gulf Stream in Climate Models 
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•  The Gulf Stream (GS) 
from climate models is 
too weak and wide 
compared to 
observations 

•  The weak GS in 
models is unable to 
adequately simulate 
heat transport to mid-
latitudes 

•  Implications: heat 
released to the 
atmosphere at mid-
latitudes is 
underestimated by 
models 



Dynamics of the Lofoten Basin  
in the Norwegian Sea 
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Standard deviation of SSH 

Volkov et al. (2013) 

•  Observed a cyclonic 
propagation of SSH 
anomalies around the 
center of the Lofoten Basin 

•  The propagation is 
characterized by the dipole 
and quadrupole wavelike 
modes that explain over 
2/3 of the high-frequency 
SSH variance in the center 
of the LB 

•  The cyclonic propagation 
of SSH anomalies is a 
manifestation of barotropic 
topographic Rossby waves 

Future research:  
how do the dynamic 
processes in the LB 
affect the poleward heat 
transfer? 

Dipole wave 

Quadrupole wave 

CEOF-1 

CEOF-2 

Reconstructed SSH anomalies 



Non-seasonal Variability of the Arctic Ocean Mass 
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OcM Change
Fresh Water
Advection

a)

b)

ECCO2 ocean 
model result: 
The time change of 
the Arctic Ocean 
mass (gray), net 
transport across 65°N 
(blue), the 
contribution of fresh 
water fluxes (red) 

Volkov and Landerer (2013); Volkov (2014) 

•  The non-seasonal variability of the mass-
related sea level is almost uniform over the 
Arctic Ocean and Nordic seas 

•  The non-seasonal variability of the Arctic 
Ocean mass is due to divergence/
convergence; the contribution of fresh water 
fluxes is small 

•  Dominant forcing mechanism – Ekman 
dynamics induced by winds over the 
northeastern North Atlantic, Nordic and 
Bering sea 
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Summary   
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•  Showed the importance of sustained in situ observations and their 
synergy with satellite observations and ocean numerical model output 

•  Identified the variability of mesoscale features that could be linked to 
larger-scale ocean changes (e.g. AMOC, South Atlantic subtropical 
gyre): ACC frontal variability, Agulhas rings, Florida Current transport 
variability, topographic Rossby waves  

•  Showed the value of data analysis to assess numerical model outputs 
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Future work 

•  Continue studies on regional ocean dynamics synthesizing 
satellite and hydrographic data, and ocean models 

•  Investigate the role of mesoscale processes in modulating 
the meridional heat transport 

•  Investigate the sensitivity of regional sea level to the 
variability of heat advection and wind forcing 

•  Assess the role of regional dynamic processes in the 
AMOC variability 



Thank you very much 
 

Questions? 

. AOML Program Review 
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