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Overview

TC intensity forecasting has shown less improvement than track forecasting
* Intensity change involves multiscale processes
Observations key component of a balanced approach toward advancing
understanding and improving forecasts of TC intensity change
* HRD uniquely positioned to contribute to this effort through a combination of data
collection and analysis and numerical model experiments
IFEX: Multi-year field campaign intended to improve TC intensity forecasts

* Partnership among NOAA (NHC, EMC, AOC) and other government, academic
agencies (NASA GRIP, HS3; NSF PREDICT)

e Goals: 1. collect observations that span TC life cycle in a variety of environments for
model initialization and evaluation

2. develop and refine measurement technologies that provide improved real-
time monitoring of TC intensity, structure, and environment

3. improve understanding of physical processes important in intensity change
for a TC at all stages of its life cycle

What is the role of convective-scale processes in tropical cyclone intensity change?
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IFEX Goal 1: Observations for model initialization and evaluation

Svynergy of high resolution forecast and airborne observations
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Hurricane Isaac (2012)




IFEX Goal 1: Observations for model initialization and evaluation

Positive impact of Tail Doppler radar data on TS Karen intensity forecast

Intensity Forecast for Karen (2012)
Valid 12 UTC 4 October 2013
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NHC Forecast Discussion on October 4, 5 PM:

“...THE 12Z HWRF RUN SHOWED CONSIDERABLY LESS INTENSIFICATION WITH KAREN
COMPARED TO PREVIOUS RUNS AFTER ASSIMILATING DATA FROM THE FROM THE
NOAA P-3 TAIL DOPPLER RADAR. THIS MARKS THE FIRST TIME DOPPLER RADAR DATA
HAVE BEEN ASSIMILATIED INTO AN OPERATIONAL HURRICANE MODEL IN REAL TIME. ..”
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IFEX Goal 2: Techniques for real-time TC monitoring

Tail Doppler radar from the high-altitude NOAA G-IV aircraft

Flight track for the G-V on Doppler-derived wind speed (shaded, m s'1) and vectors and dropsonde
15 Sept 2013 in Hurricane Ingrid measurements at 1, 6, 12-km altitude for Hurricane Ingrid (2013)
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IFEX Goal 3: Improved understanding of TC processes:
Role of convective-scale processes

What is the difference in the inner-core structure of intensifying and steady-state hurricanes?

Radial distribution of convective bursts (%) and axisymmetric vorticity (shaded, x 104 s'1)
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* Analyses obtained from composites of multiple intensifying vs. steady-state hurricanes
* Convective bursts defined as top 1% of vertical velocity distribution at 8 km altitude (5.5 m/s)
* Intensifying cases have more bursts, more inside 2-km RMW compared with steady-state cases




IFEX Goal 3: Improved understanding of TC processes:
Role of convective-scale processes

What is the inner-core convective structure of a rapidly-intensifying hurricane?

Airborne Doppler observations of the rapid intensification (RI) of Hurricane Earl (2010)
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* Most convective bursts located inside 2-km RMW during this flight

* Updraft core originates from PBL inside RMW, nearly vertical ascent

* Slope of updraft core departs significantly from angular momentum (M) surface

* Peak updraft inside local RMW throughout ascent, in locally high inertial stability regime
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IFEX Goal 3: Improved understanding of TC processes:
The Tropical Cyclone Diurnal Cycle
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IFEX Goal 3: Improved understanding of TC processes:

Role of convective-scale processes

How well does HWRF produce microphysics fields in deep convection?

Evaluation of ice microphysics in HWRF simulations

Radar reflectivity (shaded, dBZ) from ER-2 in Bonnie (1998)
; L T o 50 Axisymmetric graupel concentration (shaded, x 10~ kg/kg) at 54 h for idealized
| ! HWREF runs using Thompson (left) and operational Ferrier (right) scheme
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* Thompson scheme produces graupel at high (12 km)
altitudes, but may produce too much

* Ferrier does not produce any graupel at these heights,
produces much less overall than Thompson

* Bonnie was an unusual storm; more research needed in a
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Summary

* HRD is advancing the IFEX goals of improving TC intensity
forecasting through a combination of observations, modeling, and

theory
 assimilation of airborne Doppler, new radar platforms, research on
convection and its role in TC intensity change

* HRD is uniquely positioned to combine these approaches

* Ongoing work will continue to develop and refine our
observational and modeling capabilities, covering the spectrum of

spatial and temporal scales important in TC intensity change
* new sampling strategies, model evaluation

* These efforts advance NOAA’ s mission of building a Weather-
Ready Nation
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IFEX Goal 1: Observations for model initialization and evaluation

Spatio-temporal scales targeted by IFEX field experiments
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IFEX Goal 1: Observations for model initialization and evaluation

Percentage (%) of on-station aircraft flight hours
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IFEX Goal 2: Techniques for real-time TC monitoring

Real-time analyses of TC inner-core structure from airborne radar

Doppler-derived wind speed (shaded, m s) South-north cross section of Doppler-
and vectors and dropsonde measurements derived wind speed (shaded, m s1) through
at 1-km altitude for Hurricane Irene (2011) Hurricane Irene (2011)

valid: 201108252306 ~ m/s

-
-

height (km)

N W A~ OO N 00 ©

-

261 264 26.7 27 273 276 279 282 285 2838

S N

* Analyses are available within 1-2 h after aircraft lands
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IFEX Goal 3: Improved understanding of TC processes:
Convective-scale processes

HWRF simulations of the rapid intensification of Hurricane Earl (2010)

2-km axisymmetric wind maximum and coverage of convective bursts between r* = 0.5 and 1
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* After bifurcation period, coverage of bursts for Exp. 1826 increases markedly
* Enhanced coverage occurs prior to significant increase in symmetric wind speed
* Transient, limited coverage of bursts for Exp. 1226




IFEX Goal 3: Improved understanding of TC processes:
Role of convective-scale processes

Convective burst module in Tropical Storm Gabrielle (2013)

Infrared satellite image and flight Contoured frequency by altitude Contoured frequency by altitude
track showing 2" of 3 box patterns diagram (CFAD) of vertical velocity diagram (CFAD) of vertical vorticity
flown around convective burst (shaded, %) for 2" box pattern (shaded, %) for 2" box pattern
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Convective burst module:
* Collect Doppler and dropsonde data in vicinity of a convective burst at high time frequency (~30-45 minutes)
* Document structure and evolution of convective-scale properties, e.g., statistics of reflectivity, vertical velocity,
vorticity, mass flux over convective/mesoscale time scales
* Quantify impact of convective-scale processes on parent system
* Evaluate and improve HWRF microphysics parameterization




IFEX Goal 3: Improved understanding of TC processes:
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Role of convective-scale processes

Can high-resolution numerical models capture structural features of RI?

HWRF 3-km simulations of the rapid intensification of Hurricane Earl (2010)

Wind speed at 2 km(shaded, m s)

Intensity traces for Hurricane Earl (2010) Streamlines at 2 km(black), 8 km(white) during bifurcation period
Convective burst locations (red contours)
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* Two HWRF runs: initialized at 12 UTC 26 August (Exp. 1226) and 18 UTC 26 August (Exp. 1826)
e Both runs capture early intensity evolution well

* Bifurcation period at 00 UTC 8/30 — Rl aborted in Exp. 1226 for 24 h

* More convective bursts inside 2-km RMW in Exp. 1826 during bifurcation period
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